Skip to content

Commit

Permalink
Merge branch 'master' into review
Browse files Browse the repository at this point in the history
  • Loading branch information
HendrikSchultheis committed May 29, 2018
2 parents 0a551d6 + 4842b10 commit 0099ea0
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 6 deletions.
2 changes: 1 addition & 1 deletion R/geneView.R
Original file line number Diff line number Diff line change
Expand Up @@ -306,7 +306,7 @@ geneView <- function(input, output, session, data, metadata, level = NULL, plot.

#enable plot button only if plot possible
shiny::observe({
if(is.null(input$genes) | length(selector$selectedColumns()) < 1){
if(is.null(input$genes) || !shiny::isTruthy(selector$selectedColumns())){
shinyjs::disable("plot")
}else if(input$plotType == "violin"){
factor1.levels <- metadata.r()[level == selector$type() & key %in% selector$selectedColumns() & factor1 != ""][, .N, keyby = factor1][["N"]]
Expand Down
6 changes: 3 additions & 3 deletions R/pca.R
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ pca <- function(input, output, session, data, types, levels = NULL, entryLabel =
})
levels.r <- shiny::reactive({
if(is.null(levels)){
metadata.r()[["level"]]
types.r()[["level"]]
}else{
if(shiny::is.reactive(levels)){
levels()
Expand Down Expand Up @@ -162,11 +162,11 @@ pca <- function(input, output, session, data, types, levels = NULL, entryLabel =
shinyjs::reset("dimB")
shinyjs::reset("pointsize")
shinyjs::reset("labelsize")
columnSelect <<- shiny::callModule(columnSelector, "select", type.columns = shiny::reactive(types.r()[level %in% levels.r(), c("key", "level"), with = FALSE]), columnTypeLabel = "Column types to choose from")
columnSelect <<- shiny::callModule(columnSelector, "select", type.columns = shiny::reactive(types.r()[level %in% levels.r()]), columnTypeLabel = "Column types to choose from")
clearPlot(TRUE)
})

columnSelect <- shiny::callModule(columnSelector, "select", type.columns = shiny::reactive(types.r()[level %in% levels.r(), c("key", "level"), with = FALSE]), columnTypeLabel = "Column types to choose from")
columnSelect <- shiny::callModule(columnSelector, "select", type.columns = shiny::reactive(types.r()[level %in% levels.r()]), columnTypeLabel = "Column types to choose from")

output$datalevel <- shiny::renderUI({
shiny::selectInput(session$ns("select"), label = "select data level", choices = unique(levels.r()))
Expand Down
6 changes: 4 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,11 @@ The WIlsON R package includes a toolbox of R Shiny modules that can be used to c
## Availability
All components of the WIlsON R package have been implemented in an integrated web application that is available for download from the Github repository [wilson-apps](https://github.molgen.mpg.de/loosolab/wilson-apps) and can be tested on our [official demonstration server](http://loosolab.mpi-bn.mpg.de/apps/wilson/).

Usage instructions can be found in the extensive [documentation](https://github.molgen.mpg.de/loosolab/wilson-apps/wiki).

Get a Docker container [here](https://hub.docker.com/r/loosolab/wilson/).

Please make sure to check our other projects at http://loosolab.mpi-bn.mpg.de/.
Please make sure to check our other projects at [loosolab](http://loosolab.mpi-bn.mpg.de/).

## Organization and Philosophy
Visualizations are organized hierarchically as Shiny modules, such that larger visualizations are built from small, general, and reusable components.
Expand All @@ -34,7 +36,7 @@ CLARION: generiC fiLe formAt foR quantItative cOmparsions of high throughput scr

CLARION is a data format especially developed to be used with WIlsON, which relies on a tab-delimited table with a metadata header to describe the following columns. It is based on the Summarized Experiment format and supports all types of data which can be reduced to features and their annotation (e.g. genes, transcripts, proteins, probes) with assigned numerical values (e.g. count, score, log2foldchange, z-score, p-value). Most result tables derived from RNA-Seq, ChIP/ATAC-Seq, Proteomics, Microarrays, and many other analyses can thus be easily reformatted to become compatible without having to modify the code of WIlsON for each specific experiment.

Please check the following link for details considering the [CLARION format](https://github.molgen.mpg.de/loosolab/wilson-apps/blob/master/wilson-basic/introduction/format.md).
Please check the following link for details considering the [CLARION format](https://github.molgen.mpg.de/loosolab/wilson-apps/wiki/CLARION-Format).

## How to cite
*Schultheis H, Kuenne C, Preussner J, Wiegandt R, Fust A, Bentsen M, Looso M*. WIlsON: Webbased Interactive Omics VisualizatioN. (2018), doi: https://XY
Expand Down

0 comments on commit 0099ea0

Please sign in to comment.