Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
NSKToolBox/postSpikeFieldAnalysis.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
720 lines (617 sloc)
31.3 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [fieldPar,hand,varOut]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin) | |
% [fieldPar,hand,varOut]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin) | |
% Function purpose : Calculate distribution of post spike fields (PSF) | |
% | |
% Function recives : avgWF - average spike STAs over all electrodes in ch [Double [neurons x ch x samples] | |
% ch - the channel numbers of the channels in avgWFWaveform [NChannels,Time] - the raw voltage samples of all channels | |
% Fs - sampling frequency of the WFs | |
% preSpikeMs - pre spike time in avgWF | |
% neuronNames - names of neurons [2 x n], [channel numbers ; neuron number] | |
% En - electrode layout | |
% varargin ('property name','property value') | |
% | |
% Function give back : par - a structure of output parameters | |
% .classIE - I/E marker (I=2, E=3) | |
% lowpassWF - the sif waveforms with spikes removed | |
% hand - a structure of handles from generated plots | |
% | |
% Last updated : 14/12/14 | |
%help, avgWF [neurons x ch x samples] | |
hand=[];fieldPar=[]; | |
%% default variables | |
electrodePitch=100; | |
nearestNeighborsDistance=190; | |
postSpikeFieldStartMs=4; | |
postSpikeFieldEndMs=20; | |
preSpikePeakMs=2; %this can be larger since the exact spike time is defined by the algorithm | |
postSpike0CrossLimMs=20; | |
medianFilterLengthMs=7; | |
spikePeakWidthMs=1; | |
smartInterSmoothness=0.0001; %smoothing [0 1] - higher values fit is close to data (no low pass), 0.0000005 - more low pass | |
weightFunctionStdMs=7; | |
maxPostSpikeWidthMs=3; | |
stdThresholdCrossingSpikeInitiation=4; | |
preSpikeMinInitiationMs=1.5; | |
preSpikeMaxInitiationMs=0.5; | |
postSpikeCorrMs=10; %5 | |
maxSIFMethod='spikeNearstNeigbohrs'; %maxLocalPeak | |
IEclassificationMethod='kernelProd'; %'kernelProd','delay2Crossing'; | |
ECorrTh=[0]; | |
ICorrTh=[0]; | |
plotIEClass=0; | |
plotMaxWFAll=0; | |
PSFMethod='max';%'integral','max','extrapInt' | |
fieldPositionMethod='interpolatedMaxima';%'maxima','interpolatedMaxima','COM' | |
removeEdges=false; | |
dAngle4Plot=30; | |
maxFields4Plot=375; | |
plotFieldMapAllNeurons=false; | |
polarPlot=true; | |
plotElectrodeNames=true; | |
plotFieldVectors=true; | |
summaryPlotPerNeurons=false; | |
neuronIdxPolarPlot=false; | |
plotNeuronNumbersAllFields=false; | |
polarPlotRemoveOuliers=false; | |
polarPlotDistanceThreshold=[]; | |
normalizeColorCode=true; | |
extrapolateMaxima=true; | |
markerSizeAllFields=15; | |
triangulateCellPosition = true; | |
cellPosition=[]; % [2 x nNeurons] correction to position based on spike shape [um] | |
preSpikeHPMs=2; | |
postSpikeHPMs=3; | |
classIE=true; %[true,false,vec]if false, all assumed inhibitory, can also be a vector with excitatory (2) and inhibitory (3) classifications (or 0 for require classification) | |
%internal variables that can be added as input | |
lowpassWF=[]; | |
lowpassWFBaseline=[]; | |
%% Output list of default variables | |
%print out default arguments and values if no inputs are given | |
if nargin==0 | |
defaultArguments=who; | |
for i=1:numel(defaultArguments) | |
eval(['defaultArgumentValue=' defaultArguments{i} ';']); | |
if numel(defaultArgumentValue)==1 | |
disp([defaultArguments{i} ' = ' num2str(defaultArgumentValue)]); | |
else | |
fprintf([defaultArguments{i} ' = ']); | |
disp(defaultArgumentValue); | |
end | |
end | |
return; | |
end | |
%% Collects all input variables | |
for i=1:2:length(varargin) | |
eval([varargin{i} '=' 'varargin{i+1};']) | |
end | |
%% Main code - general calculations | |
postSpikeFieldStartSamples=postSpikeFieldStartMs*Fs/1000; | |
postSpikeFieldEndSamples=postSpikeFieldEndMs*Fs/1000; | |
preSpikeSamples=preSpikeMs*Fs/1000; | |
preSpikePeakSamples=preSpikePeakMs*Fs/1000; | |
spikePeakWidthSamples=spikePeakWidthMs*Fs/1000; | |
maxPostSpikeWidthSamples=maxPostSpikeWidthMs*Fs/1000; | |
postSpikeCorrSamples=postSpikeCorrMs*Fs/1000; | |
weightFunctionStdSamples=weightFunctionStdMs*Fs/1000; | |
preSpikeMinInitiationSamples=preSpikeMinInitiationMs*Fs/1000; | |
preSpikeMaxInitiationSamples=preSpikeMaxInitiationMs*Fs/1000; | |
preSpikeHPSamples=preSpikeHPMs*Fs/1000; | |
postSpikeHPSamples=postSpikeHPMs*Fs/1000; | |
medianFilterSamples=round(medianFilterLengthMs*Fs/1000/2)*2+1; %has to be an odd number | |
postSpike0CrossLimSamples=postSpike0CrossLimMs*Fs/1000; | |
[nNeurons,nCh,nSamples]=size(avgWF); | |
timeVec=(1:nSamples)/Fs*1000-preSpikeMs; | |
%Build inverse map between electrode and location | |
[meshX,meshY]=meshgrid(1:size(En,1),1:size(En,2)); | |
Xc(En(~isnan(En)))=meshX(~isnan(En))*electrodePitch; | |
Yc(En(~isnan(En)))=meshY(~isnan(En))*electrodePitch; | |
% get the channel with max spike for extimating spike remove segment | |
maxSpikeAmp=max( abs(avgWF(:,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2))) ,[],3); | |
[~,pMaxSpikeElec]=max( maxSpikeAmp ,[],2); | |
for i=1:nCh | |
pNeighbors{i}=find(sqrt((Xc-Xc(i)).^2+(Yc-Yc(i)).^2)<=nearestNeighborsDistance); | |
end | |
if size(ch,1)>size(ch,2) | |
ch=ch'; | |
end | |
%% pre-process the input waveforms | |
if isempty(lowpassWF) || isempty(lowpassWFBaseline) | |
lowpassWF=zeros(size(avgWF)); | |
lowpassWFBaseline=zeros(size(avgWF)); | |
pBaseline=1:(preSpikePeakSamples-preSpikeMinInitiationSamples); | |
preExtension=round(preSpikePeakSamples/8); %extend the detection point by a few samples | |
for i=1:nNeurons | |
fprintf('%d,',i); | |
%extract the initiation segment right before the spike (on nearest neigbohrs) and remove the mean of the initial part of this segment so that all segments start at 0 | |
spikeInitiationWF=squeeze(avgWF(i,pNeighbors{pMaxSpikeElec(i)},(preSpikeSamples-preSpikePeakSamples):preSpikeSamples));% | |
spikeInitiationWF=bsxfun(@minus,spikeInitiationWF,mean(spikeInitiationWF(:,pBaseline),2) ); | |
%calculate the spike onset (tr) according to where std increases rapidely over different electrode | |
stdProfile=std(spikeInitiationWF); | |
pSpikeOnset=min([preSpikePeakSamples-preSpikeMaxInitiationSamples,find(stdProfile > mean(stdProfile(pBaseline)) + stdThresholdCrossingSpikeInitiation*std(stdProfile(pBaseline)),1,'first')-1]); | |
pSpikeStart(i)=(preSpikeSamples-preSpikePeakSamples+pSpikeOnset-preExtension); | |
pSpikeSoftEnd=(preSpikeSamples+maxPostSpikeWidthSamples); | |
%weights for slow synaptic potential extraction | |
w1=ones(1,nSamples); | |
w1(pSpikeStart(i) : pSpikeSoftEnd)=0; | |
w1((pSpikeSoftEnd+1):(pSpikeSoftEnd+weightFunctionStdSamples*3))=1-exp(-( (1:weightFunctionStdSamples*3)/weightFunctionStdSamples).^2); | |
%weights for baseline extraction | |
pSpikeSoftEnd2=1200; | |
w2=ones(1,nSamples); | |
w2(pSpikeStart(i) : pSpikeSoftEnd2)=0; | |
w2((pSpikeSoftEnd2+1):end)=1-exp(-( (1:(nSamples-pSpikeSoftEnd2))/weightFunctionStdSamples/2).^2); | |
w2(1:pSpikeStart(i))=1-exp(-( (pSpikeStart(i):-1:1)/weightFunctionStdSamples/3).^2); | |
lowpassWF(i,:,:) = csaps(1:nSamples,squeeze(avgWF(i,:,:)),smartInterSmoothness,1:nSamples,w1); | |
lowpassWFBaseline(i,:,:) = csaps(1:nSamples,squeeze(lowpassWF(i,:,:)),1e-6,1:nSamples,w2); | |
%lowpassWFBaseline(i,:,:) = lowpassWF(i,:,:); | |
%lowpassWFBaseline(i,:,(pSpikeStart(i)-50):1200) = interp1([1:(pSpikeStart(i)-50) 1200:2000],squeeze(lowpassWF(i,:,[1:(pSpikeStart(i)-50) 1200:2000]))',(pSpikeStart(i)-50):1200)'; | |
%plotting | |
%{ | |
h(1)=subplot(2,3,1); | |
plot(timeVec,squeeze(avgWF(i,pMaxSpikeElec(i),:)));hold on;plot(timeVec,squeeze(lowpassWF(i,pMaxSpikeElec(i),:)));plot(timeVec,(w1-1)*50);plot(timeVec,(w2-1)*50); | |
xlabel('Time [ms]');axis tight; | |
spikeZoom=squeeze(avgWF(i,pNeighbors{pMaxSpikeElec(i)},(preSpikeSamples-preSpikePeakSamples):(preSpikeSamples+postSpikeFieldEndSamples)));% | |
spikeZoom=bsxfun(@minus,spikeZoom,mean(spikeZoom(:,200),2) ); | |
h(2)=subplot(2,3,4); | |
plot(timeVec((preSpikeSamples-preSpikePeakSamples):(preSpikeSamples+postSpikeFieldEndSamples)),spikeZoom'); | |
xlabel('Time [ms]');axis tight; | |
h(3)=subplot(2,3,[2 6]); | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on; | |
[hPlot]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac);hold on; | |
[hPlot]=activityTracePhysicalSpacePlot(h(3),1:120,squeeze(lowpassWFBaseline(i,:,:)),En,'scaleFac',scaleFac,'traceColor',[0.5 0.5 0.5]); | |
pause; | |
delete(h); | |
%} | |
end | |
end | |
%% | |
%calculate baseline substracted traces | |
%preBaseline=median(lowpassWF(:,:,(preSpikeSamples-preSpikePeakSamples):(preSpikeSamples-preSpikeMinInitiationSamples)),3); | |
%baselineSubstractedSIF=bsxfun(@minus,lowpassWF,preBaseline); | |
%baselineSubstractedSIF=lowpassWF-lowpassWFBaseline; | |
baselineSubstractedSIF=bsxfun(@minus,lowpassWF,lowpassWF(:,:,preSpikeSamples)); | |
% get the channel with max field for classification | |
if strcmp(maxSIFMethod,'spikeNearstNeigbohrs') | |
%build extended grid | |
nNeighbors=1; | |
[nRowsTmp,nColsTmp]=size(En); | |
EnExt=NaN(nRowsTmp+nNeighbors*2,nColsTmp+nNeighbors*2); | |
EnExt(1+nNeighbors:end-nNeighbors,1+nNeighbors:end-nNeighbors)=En; | |
%find max amp electrode | |
[~,pSpikeElec]=min(avgWF(:,:,preSpikeSamples+1),[],2); | |
for i=1:nNeurons | |
[pX,pY]=find(EnExt==pSpikeElec(i)); | |
pElecs=EnExt(pX-nNeighbors:pX+nNeighbors,pY-nNeighbors:pY+nNeighbors); %get electrodes in extended grid | |
pElecs=pElecs(~isnan(pElecs)); %remove NaNs | |
nElecs=numel(pElecs); | |
tmp=squeeze(baselineSubstractedSIF(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples))); | |
pIntersection=findfirst(tmp(:,2:end)>0 & tmp(:,1:end-1)<0, 2, 1); | |
pIntersection(pIntersection==0)=postSpikeFieldEndSamples-postSpikeFieldStartSamples; | |
sortedIntersection=sort(pIntersection); | |
postSpikeFieldEndSamplesNew(i)=(preSpikeSamples+postSpikeFieldStartSamples)+sortedIntersection(round(0.2*nElecs)); | |
tmp=tmp(:,1:(postSpikeFieldEndSamplesNew(i)-(preSpikeSamples+postSpikeFieldStartSamples))); | |
[SIFscore]=mean( tmp ,2); | |
[~,pOrder]=sort(abs(SIFscore)); | |
polarityScoreAll{i}=SIFscore(pOrder(round((nElecs*0.5):end))); %take only the high 50% of fields | |
polarityScore(i)=mean(polarityScoreAll{i}); | |
polarityVote(i)=mean(sign(polarityScoreAll{i})); | |
pMaxField(i)=pElecs(pOrder(end)); | |
%polarity for verification does not work well | |
%[polarityValidity(i)]=mean(sign( mean( abs(lowpassWF(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples)))-... | |
% abs(lowpassWFBaseline(i,pElecs,(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples))) ,3) )); | |
%{ | |
h(1)=subplot(1,3,1:2); | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on; | |
[hPlot]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac);hold on; | |
[hPlot]=activityTracePhysicalSpacePlot(h(1),1:120,squeeze(lowpassWFBaseline(i,:,:)),En,'scaleFac',scaleFac,'traceColor',[0.5 0.5 0.5]); | |
h(2)=subplot(1,3,3); | |
plot(SIFscore); | |
%title(['polarity= ' num2str(polarityScore(i)), ' , Validity= ' num2str(polarityValidity(i))]); | |
pause; | |
delete(h); | |
%} | |
end | |
end | |
%% inhibitory excitatory classification | |
%determine which neurons to classify | |
%classes: 3 = excitatory, 2 = inhibitory, 1 = unclassified | |
if numel(classIE)==1 | |
if classIE==0 %do not classify, but set all to be inhibitory | |
classIE=3*ones(1,nNeurons); | |
elseif classIE==1 %classify all | |
classIE=ones(1,nNeurons); | |
end %nothing happens for the case of one neuron in recording that was already clasified in the input | |
toClassify=(classIE==1); | |
else | |
toClassify=false(1,nNeurons); | |
end | |
pNotClassified=[]; | |
if any(toClassify) | |
useScore=0; | |
if useScore | |
polarityThresh=0.5; | |
pExcit=find(polarityScore<-polarityThresh); | |
pInhib=find(polarityScore>polarityThresh); | |
pNotClassified=find(polarityScore>=-polarityThresh & polarityScore<=polarityThresh); | |
else | |
polarityThresh=0; | |
pExcit=find(polarityVote<-polarityThresh); | |
pInhib=find(polarityVote>polarityThresh); | |
pNotClassified=[]; | |
%pNotClassified=find(polarityScore>=-polarityThresh & polarityScore<=polarityThresh); | |
end | |
fieldPar.polarityScore=polarityScore; | |
fieldPar.polarityVote=polarityVote; | |
fieldPar.classIE=ones(1,nNeurons); | |
fieldPar.classIE(pExcit)=3; %excitatory | |
fieldPar.classIE(pInhib)=2; %inhibitory | |
fieldPar.classIE(~toClassify)=classIE(~toClassify); %give the neurons that should not be classified their original classification | |
else | |
pExcit=find(classIE==3); | |
pInhib=find(classIE==2); | |
fieldPar.classIE=classIE; | |
end | |
if plotMaxWFAll | |
%define number of subplots | |
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio | |
xPlots=n*5; | |
yPlots=n*3; | |
nPlotPerPage=xPlots*yPlots; | |
cMap=lines(2); | |
cMap=[cMap;0 0 0;0 0 0]; | |
f=figure('Position',[50 50 1800 900],'Visible','off'); | |
for i=1:nNeurons | |
h=subaxis(f,yPlots,xPlots,i,'S',0.001,'M',0.001); | |
plot(timeVec,squeeze(avgWF(i,pMaxField(i),:)));hold on; | |
plot(timeVec,squeeze(lowpassWF(i,pMaxField(i),:)),'r');axis tight; | |
set(h,'XTickLabel',[],'YTick',[],'XTick',0,'TickLength',h.TickLength*5); | |
%text(h.XLim(2),h.YLim(2),[num2str(neuronNames(1,i)) '-' num2str(neuronNames(2,i))],'VerticalAlignment','top','HorizontalAlignment','right'); | |
text(h.XLim(1),h.YLim(1),'*','color',cMap(4-fieldPar.classIE(i),:),'FontSize',18) | |
text(h.XLim(2),h.YLim(2),[num2str(i) ',' num2str(neuronNames(1,i)) '-' num2str(neuronNames(2,i))],'VerticalAlignment','top','HorizontalAlignment','right'); | |
end | |
f.Visible='on'; | |
end | |
%{ | |
for i=1:nNeurons | |
f=figure; | |
h=axes; | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r','DrawElectrodeNumbers',1);hold on; | |
[hPlot]=activityTracePhysicalSpacePlot(h,1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac); | |
title(['neuron ' num2str(neuronNames(:,i)') ', class = ' num2str(fieldPar.classIE(i))]); | |
pause; | |
delete(f); | |
end | |
%} | |
%% calculate post spike fields | |
fprintf('\nCalculating PSDs...'); | |
pRelevantSamples=(preSpikeSamples+postSpikeFieldStartSamples):(preSpikeSamples+postSpikeFieldEndSamples); | |
% include the fact that each neuron has a different end time for integration | |
% pRelevantSamples=(preSpikeSamples+postSpikeFieldStartSamples):postSpikeFieldEndSamplesNew(i); | |
switch PSFMethod | |
case 'max' | |
%peak voltage normalized by pre spike peak | |
%fieldPar.val(pInhib,:)=max(lowpassWF(pInhib,:,pRelevantSamples),[],3)-mean(lowpassWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3); | |
%fieldPar.val(pExcit,:)=-(min(lowpassWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(lowpassWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3)); | |
fieldPar.val(pInhib,:)=max(lowpassWF(pInhib,:,pRelevantSamples),[],3)-mean(lowpassWF(pInhib,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3); | |
fieldPar.val(pExcit,:)=-(min(lowpassWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(lowpassWF(pExcit,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3)); | |
%set not classified the same as inhibitory | |
fieldPar.val(pNotClassified,:)=max(lowpassWF(pNotClassified,:,pRelevantSamples),[],3)-mean(lowpassWF(pNotClassified,:,(preSpikeSamples-spikePeakWidthSamples/2):(preSpikeSamples+spikePeakWidthSamples/2)),3); | |
case 'maxBaselineSubstracted' | |
fieldPar.val(pInhib,:)=max(baselineSubstractedSIF(pInhib,:,pRelevantSamples),[],3); | |
fieldPar.val(pExcit,:)=-(min(baselineSubstractedSIF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)); | |
%set not classified the same as inhibitory | |
fieldPar.val(pNotClassified,:)=max(baselineSubstractedSIF(pNotClassified,:,pRelevantSamples),[],3); | |
%{ | |
IE=['?';'I';'E']; | |
pTmp=find(timeVec==0); | |
spikeMarker=ones(120,1)*nan(1,numel(timeVec)); | |
spikeMarker(:,pTmp)=min(lowpassWF(:)); | |
spikeMarker(:,pTmp+1)=max(lowpassWF(:)); | |
for i=1:nNeurons; | |
h1=subplot(3,4,[1 11]); | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h1,1:120,squeeze(avgWF(i,:,:)),En,'traceColor','r');hold on; | |
activityTracePhysicalSpacePlot(h1,1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac,'DrawElectrodeNumbers',1); | |
activityTracePhysicalSpacePlot(h1,1:120,spikeMarker,En,'scaleFac',scaleFac,'DrawElectrodeNumbers',1,'traceColor',[0.7 0.7 0.7]); | |
title(['Neuron=' num2str(neuronNames(:,i)') 'index=' num2str(i) ', Max ch=' num2str(pMaxField(i)) ', C=' num2str(fieldPar.polarityVote(i))]); | |
h2=subplot(3,4,8);hCB=IntensityPhysicalSpacePlot(ch,fieldPar.val(i,:),En,'h',h2,'plotElectrodeNumbers',0); | |
title(IE(fieldPar.classIE(i))); | |
pause; | |
delete([h1 h2]); | |
end | |
%} | |
case 'baselineSubstractedIntegral' %!!!! Has to be rewritten to support separation between excitatory and inhibitory | |
%mean voltage normalized by pre spike mean | |
fieldPar.val(pInhib,:)=mean(baselineSubstractedSIF(pInhib,:,pRelevantSamples),3); %for inhibitory cells | |
fieldPar.val(pExcit,:)=-mean(baselineSubstractedSIF(pExcit,:,pRelevantSamples),3); %for inhibitory cells | |
fieldPar.val(pNotClassified,:)=mean(baselineSubstractedSIF(pNotClassified,:,pRelevantSamples),3); | |
otherwise | |
error('SIF calculation method not valid'); | |
end | |
makeGaussianFit=0; | |
if makeGaussianFit | |
gaussFit.mX=zeros(1,nNeurons); | |
gaussFit.mY=zeros(1,nNeurons); | |
gaussFit.sX=zeros(1,nNeurons); | |
gaussFit.sY=zeros(1,nNeurons); | |
gaussFit.A=zeros(1,nNeurons); | |
gaussFit.Theta=zeros(1,nNeurons); | |
for i=1:nNeurons | |
[fitresult] = fmgaussfit(Xc,Yc,fieldPar.val(i,:)); %[amp, ang, sx, sy, xo, yo, zo] | |
gaussFit.A(i)=fitresult(1); | |
gaussFit.Theta(i)=fitresult(2); | |
gaussFit.sX(i)=fitresult(3); | |
gaussFit.sY(i)=fitresult(4); | |
gaussFit.mX(i)=fitresult(5); | |
gaussFit.mY(i)=fitresult(6); | |
end | |
end | |
if removeEdges | |
[~,pMax]=max(fieldPar.val,[],2); | |
[m,n]=size(En); | |
fieldPar.edgeNeurons=zeros(1,nNeurons); | |
for i=1:nNeurons | |
[pX,pY]=find(En==neuronNames(1,i)); | |
if pX==1 || pX==n || pY==1 || pY==m | |
fieldPar.edgeNeurons(i)=1; | |
else | |
surroundingSquare=En(pY-1:pY+1,pX-1:pX+1); | |
if any(any(isnan(surroundingSquare))) | |
fieldPar.edgeNeurons(i)=2; | |
end | |
end | |
end | |
else | |
fieldPar.edgeNeurons=zeros(1,nNeurons); %set all neuron as ones not at the edge | |
end | |
fprintf('\nCalculating field peak...'); | |
switch fieldPositionMethod | |
case 'interpolatedMaxima' %fits a 2D polynomial on a local grid of 9 points surrounding center | |
[m,n]=size(En); | |
Z=nan([m,n]); | |
%Z=zeros([m,n]); | |
fieldCoord=zeros(2,nNeurons); | |
for i=1:nNeurons | |
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:); | |
[fieldCoord(:,i)] = peakfit2d(Z); | |
%p = polyFit2D(Z,XGrid,YGrid,2,2);f = polyVal2D(p,XGrid,YGrid,2,2);imagesc(f) | |
end | |
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch; | |
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch; | |
case 'medianCOM' %biased by array edges | |
%pTmp=fieldPar.val>median(fieldPar.val,2)*ones(1,nCh); | |
medSubstractedField=fieldPar.val-(median(fieldPar.val,2)*ones(1,nCh)); | |
fieldPar.Xfield=(sum(bsxfun(@times,medSubstractedField,Xc),2)./sum(medSubstractedField,2))'; | |
fieldPar.Yfield=(sum(bsxfun(@times,medSubstractedField,Yc),2)./sum(medSubstractedField,2))'; | |
case 'maxima' | |
[PSF,pChPSF]=max(fieldPar.val,[],2);%location of field integral maxima | |
fieldPar.Xfield=Xc(ch(pChPSF)); | |
fieldPar.Yfield=Yc(ch(pChPSF)); | |
case 'fitGaussian' | |
[m,n]=size(En); | |
Z=nan([m,n]); | |
%Z=zeros([m,n]); | |
fieldCoord=zeros(2,nNeurons); | |
[YGrid,XGrid]=meshgrid(1:size(Z,1),1:size(Z,2)); | |
for i=1:nNeurons | |
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:); | |
[fitresult] = fmgaussfit(XGrid,YGrid,Z); | |
fieldCoord(:,i) = fitresult([5 6]); | |
end | |
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch; | |
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch; | |
case 'sumOfRegMax' | |
[m,n]=size(En); | |
%Z=min(fieldPar.val(:))*ones([m+2,n+2]); | |
%Z0=min(fieldPar.val(:))*ones([m,n]); | |
Z=zeros([m+2,n+2]); | |
Z0=zeros([m,n]); | |
fieldCoord=zeros(2,nNeurons); | |
[YGrid,XGrid]=meshgrid(1:size(Z,1),1:size(Z,2)); | |
for i=1:nNeurons | |
%Z0(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:); | |
Z0(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=fieldPar.val(i,:)-min(fieldPar.val(i,:)); | |
Z(2:end-1,2:end-1)=Z0; | |
[ind] = find(imregionalmax(Z,8)); | |
pTmp=find(Z(ind)>(fieldPar.val(i,pMaxField(i))/2)); | |
nPeaks=numel(pTmp); | |
ys=zeros(nPeaks,1);xs=zeros(nPeaks,1); | |
for j=1:nPeaks | |
K=Z((XGrid(ind(pTmp(j)))-1):(XGrid(ind(pTmp(j)))+1),(YGrid(ind(pTmp(j)))-1):(YGrid(ind(pTmp(j)))+1)); | |
% approximate polynomial parameter | |
a = (K(2,1)+K(1,1)-2*K(1,2)+K(1,3)-2*K(3,2)-2*K(2,2)+K(2,3)+K(3,1)+K(3,3)); | |
b = (K(3,3)+K(1,1)-K(1,3)-K(3,1)); | |
c = (-K(1,1)+K(1,3)-K(2,1)+K(2,3)-K(3,1)+K(3,3)); | |
%d = (2*K(2,1)-K(1,1)+2*K(1,2)-K(1,3)+2*K(3,2)+5*K(2,2)+2*K(2,3)-K(3,1)-K(3,3)); | |
e = (-2*K(2,1)+K(1,1)+K(1,2)+K(1,3)+K(3,2)-2*K(2,2)-2*K(2,3)+K(3,1)+K(3,3)); | |
f = (-K(1,1)-K(1,2)-K(1,3)+K(3,1)+K(3,2)+K(3,3)); | |
% (ys,xs) is subpixel shift of peak location relative to point (2,2) | |
xs(j) = (6*b*c-8*a*f)/(16*e*a-9*b^2); | |
ys(j) = (6*b*f-8*e*c)/(16*e*a-9*b^2); | |
end | |
fieldCoord(:,i)=[mean(XGrid(ind(pTmp))-1+xs);mean(YGrid(ind(pTmp))-1+ys)]; | |
testPos{i}=[XGrid(ind(pTmp))-1+xs YGrid(ind(pTmp))-1+ys]'*electrodePitch; | |
%testPos{i}=[XGrid(ind(pTmp))-1 YGrid(ind(pTmp))-1]'*electrodePitch; | |
end | |
fieldPar.Xfield=fieldCoord(1,:)*electrodePitch; | |
fieldPar.Yfield=fieldCoord(2,:)*electrodePitch; | |
%s = regionprops(L, 'Centroid'); | |
end | |
%incorporate cell position | |
if triangulateCellPosition && isempty(cellPosition) %run cell position estimation | |
avgSpkWF=avgWF(:,:, (preSpikeSamples-preSpikeHPSamples+1):(preSpikeSamples+postSpikeHPSamples) )-lowpassWF(:,:, (preSpikeSamples-preSpikeHPSamples+1):(preSpikeSamples+postSpikeHPSamples) ); | |
[est,hest]=spikePositionEstimation(avgSpkWF,ch,preSpikeHPMs,Fs,En,fieldPar.classIE,'plot3D',0); | |
cellPosition(1,:)=est.X; | |
cellPosition(2,:)=est.Y; | |
%{ | |
figure; | |
for i=1:nNeurons | |
h=axes; | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgSpkWF(i,:,:)),En,'traceColor','b','DrawElectrodeNumbers',1);hold on;title(neuronNames(:,i)); | |
pause; | |
delete(h); | |
end | |
%} | |
elseif ~triangulateCellPosition && isempty(cellPosition) %use max spike electrode as a cell position estimator | |
cellPosition(1,:)=Xc(neuronNames(1,:)); | |
cellPosition(1,:)=Yc(neuronNames(1,:)); | |
end | |
%create projection vectors | |
X=[cellPosition(1,:);fieldPar.Xfield]; | |
Y=[cellPosition(2,:);fieldPar.Yfield]; | |
pTmp=isnan(fieldPar.Xfield); | |
X(:,pTmp)=NaN; | |
Y(:,pTmp)=NaN; | |
if size(cellPosition,2)==1 && size(cellPosition,1)~=2 | |
error('cellPosition was not entered in the correct format'); | |
end | |
mag=sqrt((X(2,:)-X(1,:)).^2 + (Y(2,:)-Y(1,:)).^2); | |
angle=atan2(Y(2,:)-Y(1,:),X(2,:)-X(1,:)); | |
if ~isempty(polarPlotDistanceThreshold) | |
pp=find(mag>=polarPlotDistanceThreshold(1) & mag<=polarPlotDistanceThreshold(2)); | |
mag(pp)=0; | |
end | |
pPosMagI=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pInhib); | |
pPosMagE=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pExcit); | |
if summaryPlotPerNeurons | |
IE=['?';'I';'E']; | |
pTmp=find(timeVec==0); | |
spikeMarker=ones(120,1)*nan(1,numel(timeVec)); | |
spikeMarker(:,pTmp)=min(lowpassWF(:)); | |
spikeMarker(:,pTmp+1)=max(lowpassWF(:)); | |
minMaxXPos=[min(Xc) max(Xc)]; | |
minMaxYPos=[min(Yc) max(Yc)]; | |
f=figure('position',[10 50 1500 600]); | |
for i=1:nNeurons | |
hA(1)=subplot(2,5,[1 7]); | |
[hPlot,scaleFac]=activityTracePhysicalSpacePlot(hA(1),1:120,squeeze(avgWF(i,:,:)),En,'traceColor',[0.2 0.1 0.8],'gridLineWidth',0.5);hold on; | |
%activityTracePhysicalSpacePlot(hA(1),1:120,squeeze(lowpassWF(i,:,:)),En,'scaleFac',scaleFac,'DrawElectrodeNumbers',0,'DrawGrid',0); | |
%activityTracePhysicalSpacePlot(hA(1),1:120,spikeMarker,En,'scaleFac',scaleFac,'traceColor',[0.7 0.7 0.7],'gridLineWidth',0.5); | |
title(['Neu=' num2str(neuronNames(:,i)') ',idx=' num2str(i) ',Cls=' num2str(IE(fieldPar.classIE(i))) ',Mxch=' num2str(pMaxField(i)) ',P=' num2str(fieldPar.polarityVote(i))]); | |
hA(2)=subplot(2,5,[3 9]); | |
hA(2).Clipping='off'; | |
F = scatteredInterpolant(Xc', Yc',fieldPar.val(i,:)'); | |
[Xtmp,Ytmp]=meshgrid([(minMaxXPos(1)):100:(minMaxXPos(2))],[(minMaxYPos(1)):100:(minMaxYPos(2))]); | |
[XtmpNew,YtmpNew]=meshgrid([(minMaxXPos(1)):10:(minMaxXPos(2))],[(minMaxYPos(1)):10:(minMaxYPos(2))]); | |
Vq = interp2(Xtmp, Ytmp,F(Xtmp,Ytmp),XtmpNew,YtmpNew,'spline'); | |
imagesc([(minMaxXPos(1)):10:(minMaxXPos(2))],[(minMaxYPos(1)):10:(minMaxYPos(2))],Vq);hold on; | |
set(hA(2),'YDir','normal'); | |
hCB=colorbar('position',[ 0.7463 0.5943 0.0064 0.3314]); | |
xlabel('[\mum]'); | |
ylabel('[\mum]'); | |
plot(Xc,Yc,'.g') | |
hTmp=arrow([X(1,i);Y(1,i)]',[X(2,i);Y(2,i)],'Width',4); | |
plot(testPos{i}(1,:),testPos{i}(2,:),'*r'); | |
hA(3)=subplot(2,5,5); | |
hCB2=IntensityPhysicalSpacePlot(ch,fieldPar.val(i,:),En,'h',hA(3),'plotElectrodeNumbers',0,'plotGridLines',0,'markerSize',50,'plotColorBar',0);hold on; | |
hCB2=IntensityPhysicalSpacePlot(ch,maxSpikeAmp(i,:),En,'h',hA(3),'plotElectrodeNumbers',0,'plotGridLines',0,'markerSize',25); | |
set(hCB2,'position',[0.9129 0.7800 0.0051 0.1457],'YTick',[]); | |
title('out=SIF , in=spk'); | |
pause; | |
delete(hA); | |
end | |
end | |
%% Plotting results | |
if polarPlot | |
%prepare for plotting | |
f=figure('position',[100 100 500 500]); | |
P = panel(f); | |
P.pack(2,2); | |
P.margin=8; | |
angleBins=(dAngle4Plot/360/2*pi):(dAngle4Plot/360*pi):(pi*2); | |
if polarPlotRemoveOuliers | |
maximalMag=median(mag([pPosMagI pPosMagE]))+6*mad(mag([pPosMagI pPosMagE]),1); | |
else | |
maximalMag=max(mag([pPosMagI pPosMagE])); | |
end | |
%inhibitory | |
hand.polar(1,1)=P(1, 1).select(); | |
hRose=rose(angle(pPosMagI),angleBins); | |
hRose.Color=[0.8 0.2 0.2]; | |
XdataRose = get(hRose,'Xdata');XdataRose=reshape(XdataRose,[4,numel(XdataRose)/4]); | |
YdataRose = get(hRose,'Ydata');YdataRose=reshape(YdataRose,[4,numel(YdataRose)/4]); | |
hPatch=patch(XdataRose,YdataRose,[0.8 0.2 0.2]); | |
set(gca,'color','k'); | |
%compass(U,V) | |
hand.polar(1,2)=P(1, 2).select(); | |
polar(0,maximalMag,'-k');hold on; %set scale for polar plot | |
hTmp=polar(angle(pPosMagI),mag(pPosMagI),'.r'); | |
if neuronIdxPolarPlot | |
text(hTmp.XData',hTmp.YData',num2str(neuronNames(:,pPosMagI)'),'FontSize',8); | |
%text(hTmp.XData',hTmp.YData',num2str(pPosMagI'),'FontSize',8); | |
end | |
%excitatory | |
hand.polar(2,1)=P(2, 1).select(); | |
hRose=rose(angle(pPosMagE),angleBins); | |
XdataRose = get(hRose,'Xdata');XdataRose=reshape(XdataRose,[4,numel(XdataRose)/4]); | |
YdataRose = get(hRose,'Ydata');YdataRose=reshape(YdataRose,[4,numel(YdataRose)/4]); | |
hPatch=patch(XdataRose,YdataRose,[0.2 0.2 0.8]); | |
set(gca,'color','k'); | |
hand.polar(2,2)=P(2, 2).select(); | |
polar(0,maximalMag,'-k');hold on; %set scale for polar plot | |
hTmp=polar(angle(pPosMagE),mag(pPosMagE),'.'); | |
if neuronIdxPolarPlot | |
text(hTmp.XData',hTmp.YData',num2str(neuronNames(:,pPosMagE)'),'FontSize',8); | |
%text(hTmp.XData',hTmp.YData',num2str(pPosMagE'),'FontSize',8); | |
end | |
end | |
%DSI=(prefered - (prefered+pi))/(prefered + (prefered+pi)) | |
if plotFieldVectors | |
f=figure('position',[100 100 700 700]); | |
hand.hVec=axes; | |
hand.hVec.WarpToFill='off'; %to avoid error in arrow3 function | |
if plotElectrodeNames | |
hand.electrodeText=text(Xc,Yc,num2str(ch'),'fontsize',8,'Parent',hand.hVec,'horizontalAlignment','center'); | |
xlim([min(Xc)-electrodePitch max(Xc)+electrodePitch]); | |
ylim([min(Yc)-electrodePitch max(Yc)+electrodePitch]); | |
hold(hand.hVec,'on'); | |
end | |
%hQ=quiver(Xc(neuronNames(1,:)),Yc(neuronNames(1,:)),intdX,intdY,'filled','lineWidth',2,'MaxHeadSize',0.1,'color','k','MarkerSize',2,'MarkerFaceColor','k'); | |
[tmpX,tmpY]=pol2cart(angle,50); | |
nInhib2Display=numel(pPosMagI); | |
cMapR=flipud([ones(1,60);(0:0.01:0.59);(0:0.01:0.59)]'); | |
normColorI = ceil(min(mag(pPosMagI)./maximalMag,1).*60); | |
if ~isempty(pPosMagI) | |
hand.hArrowI=arrow3([X(1,pPosMagI);Y(1,pPosMagI)]',[X(1,pPosMagI)+tmpX(pPosMagI);Y(1,pPosMagI)+tmpY(pPosMagI)]','^r2',0.7,1);hold on; | |
for i=1:nInhib2Display | |
hand.hArrowI(i+1).FaceColor=cMapR(normColorI(i) ,:,:); | |
end | |
end | |
nExcit2Display=numel(pPosMagE); | |
cMapB=flipud([(0:0.01:0.59);(0:0.01:0.59);ones(1,60)]'); | |
normColorE = ceil(min(mag(pPosMagE)./maximalMag,1).*60); | |
if ~isempty(pPosMagE) | |
hand.hArrowE=arrow3([X(1,pPosMagE);Y(1,pPosMagE)]',[X(1,pPosMagE)+tmpX(pPosMagE);Y(1,pPosMagE)+tmpY(pPosMagE)]','^b2',0.7,1); | |
for i=1:nExcit2Display | |
hand.hArrowE(i+1).FaceColor=cMapB(normColorE(i) ,:,:); | |
end | |
end | |
xlabel('X [\mum]','FontSize',14); | |
ylabel('Y [\mum]','FontSize',14); | |
end | |
if plotFieldMapAllNeurons | |
if normalizeColorCode | |
Ilim=0; | |
else | |
Ilim=[min(fieldPar.val(:)) max(fieldPar.val(:))]; | |
end | |
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio | |
xPlots=n*5; | |
yPlots=n*3; | |
nPlotPerPage=xPlots*yPlots; | |
f=figure; | |
P = panel(f); | |
P.pack(yPlots,xPlots); | |
P.margin=0.001; | |
for i=1:nNeurons | |
hand.hAllFieldAxes(i)=P(ceil(i/xPlots),i-(ceil(i/xPlots)-1)*xPlots).select(); | |
IntensityPhysicalSpacePlot(1:120,fieldPar.val(i,:),En,'plotElectrodeNumbers',0,'plotGridLines',0,'plotColorBar',0,'markerSize',markerSizeAllFields,'h',hand.hAllFieldAxes(i),'Ilim',Ilim); | |
text(Xc(neuronNames(1,i))/electrodePitch-0.5,Yc(neuronNames(1,i))/electrodePitch-0.5,'o','horizontalAlignment','center','fontsize',6); | |
if plotNeuronNumbersAllFields | |
text(0,0,num2str(i),'horizontalAlignment','left','verticalAlignment','bottom','fontsize',6); | |
end | |
line( [Xc(neuronNames(1,i)) fieldPar.Xfield(i)]/electrodePitch - 0.5 , [Yc(neuronNames(1,i)) fieldPar.Yfield(i)]/electrodePitch - 0.5 ,'color','k'); | |
end | |
end | |
if nargout==3 | |
varOut.lowpassWF=lowpassWF; | |
varOut.lowpassWFBaseline=lowpassWFBaseline; | |
end |