Skip to content
This repository has been archived by the owner. It is now read-only.
Permalink
bbe1e8a55d
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
executable file 8945 lines (8883 sloc) 446 KB
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 456667, 8936]
NotebookOptionsPosition[ 454356, 8865]
NotebookOutlinePosition[ 454711, 8881]
CellTagsIndexPosition[ 454668, 8878]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"Jee", ",", "Jei", ",", "Jie", ",", "Jii", ",", "n", ",", "gi", ",",
"detJ", ",", "te", ",", "ti"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Jee", "=", "1.5"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Jei", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Jie", "=", "10"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Jii", "=", "1"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"n", "=", "3"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"gi", "=", "0.01"}], ";"}], "\[IndentingNewLine]", " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"te", "=", "0.1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ti", "=", "1"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"detJ", "=",
RowBox[{
RowBox[{
RowBox[{"-", "Jee"}], "*", "Jii"}], "+",
RowBox[{"Jei", "*", "Jie"}]}]}], ";"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.710822355025261*^9, 3.710822356368614*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"+",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"+",
RowBox[{
"+", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}\
]}]}]}]}]}]}]}]}]}]}]}]}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"Hopf", " ", "bifurcation"}], ",", " ",
RowBox[{"detJ", ">", "0"}], ",", " ",
RowBox[{"Trace", ">", "0"}], ",", " ",
RowBox[{
"trajectory", " ", "starts", " ", "outside", " ", "of", " ", "limit", " ",
"cycle"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"+",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\
}]}]}]}]}]}]}]}]}]}]}]}]}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"ge", ",", "cplus", ",", "func1", ",", "func2", ",", "plot1", ",",
"plot2", ",", "plot3", ",", "plot4", ",", "Ge", ",", "Gi", ",", "P", ",",
"F", ",", "z0", ",", "Z", ",", "s", ",", "re1", ",", "ri1", ",", "x",
",", "y", ",", "t", ",", "z"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"**", "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "********)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"SSN", " ", "parameters"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**"}], "********)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ge", "=", "5"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"cplus", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "*", "Jii", "*", "ge"}], "+",
"gi"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Characteristic", " ", "function", " ", "for", " ", "detJ"}],
">", "0"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*", "z"}], "+",
"cplus"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"-",
RowBox[{"Jei", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"P", "[", "z", "]"}], ")"}], "^", "n"}], ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[LessEqual]", "0"}]}], "}"}]}],
"}"}], "]"}]}], "-", "z", "+", "ge"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<P(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"F", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "5.5"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<F(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"GraphicsRow", "[",
RowBox[{"{",
RowBox[{"plot1", ",", "plot2"}], "}"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<detJ=\>\"", ",", "detJ"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"z0", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";", " ",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossing", " ", "of", " ", "P"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of P is z0=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"z0", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Z", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossings", " ", "of", " ", "F"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of F is z1=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Steady", " ", "states", " ", "in", " ", "the", " ", "phase", " ",
"plane"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"re1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ri1", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], "+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*",
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "+", "cplus"}], ")"}],
"^", "n"}]}], ";",
RowBox[{"(*",
RowBox[{"steady", " ", "state"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
"\"\<The steady state of the SSN is re=\>\"", ",", " ", "re1", ",",
" ", "\"\<, ri=\>\"", ",", " ", "ri1"}], "]"}]}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "6.5"}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"func1", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"func2", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0.69"}], "}"}], ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2"}], "}"}], ",", "None"}], "}"}]}], "}"}]}],
",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "False"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}], ",",
"Automatic", ",", "Automatic"}], "}"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot4", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func2", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"None", ",",
RowBox[{"{",
RowBox[{"5.15", ",", "6"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"None", ",", "None"}], "}"}]}], "}"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"False", ",", "False", ",", "False", ",", "True"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic", ",", "Automatic", ",",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], "}"}]}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Overlay", "[",
RowBox[{"{",
RowBox[{"plot3", ",", "plot4"}], "}"}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Export", "[",
RowBox[{
"\"\<Desktop/MultiplicityPlos_16_11_2_N/Figures/Figures_Components/\
HopfSolAfterOutside_rE_rI.eps\>\"", ",", "%"}], "]"}], "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Right", " ", "side", " ", "of", " ", "the", " ", "SSN", " ",
"equations"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], "]"}]}]}], ")"}], "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"Gi", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "y"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], "]"}]}]}], ")"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"splot", "=",
RowBox[{"StreamPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"Gi", "[",
RowBox[{"x", ",", "y"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "4", ",", "7.2"}], "}"}], ",",
RowBox[{"StreamStyle", "\[Rule]", "Black"}], ",",
RowBox[{"StreamScale", "\[Rule]", "0.25"}], ",",
RowBox[{"StreamPoints", "\[Rule]", "2"}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "ri1"}], "}"}], ",",
RowBox[{"{",
RowBox[{".15", ",", "6.5"}], "}"}]}], "}"}], ",",
RowBox[{"VertexColors", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Gray"}], "}"}]}]}], "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{".15", ",", "Gray"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"ri1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6.5", ",", "Gray"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]", "None"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"splot", ",",
RowBox[{"ParametricPlot", "[",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"First", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "t", "]"}], ",",
RowBox[{"y", "[", "t", "]"}]}], "}"}], "/.",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.15"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "6.5"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "0.85"}], "}"}]}], "]"}]}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "0.85"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.02", "]"}]}], "}"}]}]}], "]"}],
"]"}]}], "]"}], "\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.685677189377378*^9, 3.685677243125893*^9}, {
3.68567730937472*^9, 3.685677313592951*^9}, 3.685677345556738*^9, {
3.6856773934298353`*^9, 3.685677447701723*^9}, {3.685677543127553*^9,
3.685677544360421*^9}, {3.6856776195855217`*^9, 3.6856776207853518`*^9}, {
3.685677659645158*^9, 3.685677678786574*^9}, {3.68567779933453*^9,
3.6856777999074173`*^9}, {3.6856779258202887`*^9, 3.685677933342494*^9}, {
3.685678015346306*^9, 3.6856780191049*^9}, {3.6856794651441727`*^9,
3.68567949959622*^9}, {3.685679893428782*^9, 3.6856799012431383`*^9}, {
3.685679952897346*^9, 3.685680018671288*^9}, {3.68568006635898*^9,
3.68568007027983*^9}, 3.685680104729885*^9, {3.68568025528459*^9,
3.685680264454615*^9}, {3.685680357201186*^9, 3.6856803666794*^9}, {
3.6856804256504593`*^9, 3.685680446083946*^9}, {3.685680515730089*^9,
3.685680548061092*^9}, {3.685680669994792*^9, 3.685680672264647*^9}, {
3.685680709198947*^9, 3.685680710586028*^9}, {3.68568078384114*^9,
3.6856809264711103`*^9}, {3.685681118314526*^9, 3.685681130743466*^9}, {
3.685682541775557*^9, 3.685682561317686*^9}, {3.6856825987560883`*^9,
3.685682668685031*^9}, {3.685683098889963*^9, 3.685683101098599*^9}, {
3.685683207140081*^9, 3.685683211995487*^9}, {3.685683475131372*^9,
3.6856834765474358`*^9}, {3.6856842991618013`*^9, 3.685684327589468*^9}, {
3.685684361182838*^9, 3.685684365845892*^9}, {3.685684401453896*^9,
3.685684416327414*^9}, {3.685684514664062*^9, 3.685684522003676*^9}, {
3.685684690205645*^9, 3.685684734620929*^9}, {3.685685047720972*^9,
3.685685049284556*^9}, {3.685768908135826*^9, 3.685768939432003*^9}, {
3.6857689795997877`*^9, 3.685768980839006*^9}, 3.6857690109458103`*^9, {
3.685769104419147*^9, 3.685769191589469*^9}, {3.685769347208147*^9,
3.6857694850438967`*^9}, {3.685769515095687*^9, 3.685769522107192*^9}, {
3.685771346354574*^9, 3.68577135077038*^9}, {3.685771603278409*^9,
3.685771606731985*^9}, 3.6857724582931967`*^9, 3.685779994202208*^9, {
3.685780029526911*^9, 3.685780030676902*^9}, {3.685780435757375*^9,
3.685780446554172*^9}, {3.6857808305497847`*^9, 3.6857808350838547`*^9}, {
3.685780866414919*^9, 3.6857808682772913`*^9}, {3.685780927405457*^9,
3.68578092748177*^9}, {3.6857810359620743`*^9, 3.685781045487274*^9}, {
3.685781086824643*^9, 3.685781092795149*^9}, {3.685785135880855*^9,
3.685785181772943*^9}, {3.685786946564019*^9, 3.685786984205812*^9}, {
3.687069870701064*^9, 3.6870698755373583`*^9}, {3.6870699158655443`*^9,
3.687069967719934*^9}, {3.687070336611423*^9, 3.687070351347144*^9}, {
3.687070383810861*^9, 3.687070386370254*^9}, 3.687070452350451*^9, {
3.687070533925933*^9, 3.687070535796899*^9}, {3.687070582565789*^9,
3.687070634092678*^9}, {3.687070688914496*^9, 3.687070705865612*^9}, {
3.6870707479411793`*^9, 3.687070756577277*^9}, {3.687071077436655*^9,
3.687071088362377*^9}, {3.687071120448612*^9, 3.687071202694916*^9}, {
3.687071251583274*^9, 3.6870712858949957`*^9}, {3.687071424161702*^9,
3.6870714272738247`*^9}, {3.687071549050539*^9, 3.68707160395732*^9}, {
3.687071651969523*^9, 3.687071656820125*^9}, {3.687071865359481*^9,
3.687071870374509*^9}, {3.687072071287073*^9, 3.687072086060611*^9}, {
3.687072251793434*^9, 3.687072252618878*^9}, {3.687072299592122*^9,
3.687072300779703*^9}, {3.687072356511713*^9, 3.68707235671618*^9},
3.687072406425762*^9, {3.6870724947159157`*^9, 3.6870725030731297`*^9}, {
3.6870725404453297`*^9, 3.687072542984063*^9}, {3.687072833307149*^9,
3.687072959093812*^9}, {3.687073008753489*^9, 3.687073032638172*^9}, {
3.687073122324132*^9, 3.687073230484559*^9}, {3.687074231621009*^9,
3.6870742350352907`*^9}, {3.6870750842513523`*^9, 3.687075177644423*^9}, {
3.687075317211907*^9, 3.6870753350238037`*^9}, {3.687075462621604*^9,
3.687075476975004*^9}, {3.687075700601996*^9, 3.687075762049705*^9}, {
3.687075806502212*^9, 3.6870758290707073`*^9}, {3.687075940992485*^9,
3.687075974337154*^9}, 3.6870760944484367`*^9, {3.6870761805283012`*^9,
3.687076227694604*^9}, {3.687076289804641*^9, 3.687076306796029*^9}, {
3.6870763457588453`*^9, 3.687076411919258*^9}, {3.687076444740369*^9,
3.687076455357971*^9}, {3.687076563139367*^9, 3.6870766029788933`*^9}, {
3.687076636024844*^9, 3.687076700415585*^9}, 3.687076737330447*^9, {
3.687076774417528*^9, 3.687076873525983*^9}, {3.687076906272581*^9,
3.687076936343718*^9}, {3.687076969124411*^9, 3.687077055793126*^9}, {
3.687085864279261*^9, 3.687085864504649*^9}, 3.6870884814522877`*^9, {
3.687088541698291*^9, 3.687088544174057*^9}, {3.687088695112679*^9,
3.6870886951704283`*^9}, {3.6870887282519073`*^9, 3.687088776515318*^9}, {
3.687089142958605*^9, 3.6870891749498997`*^9}, {3.687089246041688*^9,
3.687089294201271*^9}, {3.6870894655392227`*^9, 3.687089465796674*^9}, {
3.687089522104879*^9, 3.6870895448673153`*^9}, {3.6870900434403257`*^9,
3.6870900435356693`*^9}, {3.687090132674615*^9, 3.687090132739732*^9}, {
3.6870918582242193`*^9, 3.6870918583349857`*^9}, {3.6870921768231277`*^9,
3.68709217861229*^9}, {3.7100016684715357`*^9, 3.71000171372441*^9}, {
3.710006661524241*^9, 3.7100066623871202`*^9}, {3.710006703202921*^9,
3.710006704651361*^9}, {3.710006742003716*^9, 3.710006743382112*^9}, {
3.7100068063436117`*^9, 3.710006809687467*^9}, 3.710007043387865*^9, {
3.710007132344645*^9, 3.710007140960188*^9}, {3.7100073420750313`*^9,
3.710007350490432*^9}, {3.710007384151943*^9, 3.710007388170313*^9}, {
3.710007436119519*^9, 3.710007440028348*^9}, {3.710007573716017*^9,
3.710007578589087*^9}, 3.7100076906149263`*^9, 3.710010019066654*^9, {
3.7100100990580263`*^9, 3.710010155218705*^9}, {3.710010224983658*^9,
3.710010227559523*^9}, {3.710010274600655*^9, 3.71001027706917*^9}, {
3.7100104313112164`*^9, 3.7100104683023376`*^9}, {3.7100105317090597`*^9,
3.7100105577929153`*^9}, 3.7100106127552357`*^9, {3.710010643350287*^9,
3.710010679930348*^9}, {3.7100107152853947`*^9, 3.710010760675459*^9}, {
3.710010806372808*^9, 3.710010980590365*^9}, {3.710261329586319*^9,
3.710261374833929*^9}, {3.7102614366735*^9, 3.710261473013032*^9}, {
3.710261567328677*^9, 3.71026160120503*^9}, {3.710261788878169*^9,
3.7102617985088167`*^9}, {3.710261936588929*^9, 3.7102619838389482`*^9}, {
3.7102626362591057`*^9, 3.710262636909005*^9}, {3.7102628053104486`*^9,
3.710262811292046*^9}, {3.710262886369969*^9, 3.710262905036956*^9}, {
3.710262951944428*^9, 3.7102629556039457`*^9}, {3.710263010073155*^9,
3.7102630167829638`*^9}, {3.7102678093431587`*^9, 3.710267820402993*^9},
3.7102681636153193`*^9, {3.710268388327097*^9, 3.710268391005827*^9}, {
3.710301287532256*^9, 3.7103013433637037`*^9}, {3.710301402258226*^9,
3.710301410373437*^9}, {3.710381934851499*^9, 3.710381936230175*^9}, {
3.71038215801758*^9, 3.7103821604386797`*^9}, {3.710382201769433*^9,
3.710382273519068*^9}, {3.710382306272499*^9, 3.710382322898452*^9}, {
3.7104960655528717`*^9, 3.710496076401218*^9}, {3.71082221558461*^9,
3.710822352126999*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVyHs81Xccx/Hjstw5v/PjtGNdkJTkkmhj8fluU1FRzmEJyaKmRbRkqAe5
NZUasVzSSgepmUtUmjjfOOvUIhyOjjsHJ5fDDzl5VC6zP96P1+P5NjwSyj6q
SKPRXJf3f3cfHWnBo56OoykLV+rkJH5b8v2RPpYNjAd1bvh52UwN0dUKlhMU
Ldx8ZrhsCzvdgpssD3hnGz57fpbE9s1by66xAmGfUfbySWJ8o972Cisc+BOF
I9VTJE6Iuxx5iZUIHiGSkopxEgeGU6yLrAxwnz+4OWuAxKoZLnlT0/ngv7LL
aOcrEj9utt61a00pjESwa9Mektgrobuz/nIlGFvsziRvkTi0/LR51uwTIEN/
7OhJJPFMavsLBQUePFrICXL+icQvnj3nNW2vg8DfmxdKdpP4eJSL1kEZHzri
O6N9NpL4mZr1UnGIAHSi2QK5MokLufxF/fX/gtsNyYaQTgZGzJo7nJIGyPMk
YwNLGNhc0F31fFMT6Pp6vubHMHAb4kzem2yGj9KAhKIdDBysfkIoshLCfmt3
b7E6A78SH6jRvtoK8Y4vIZtPYM5Or4GhoTZ4uK4u4nokgbfdvnzgtnE7KPgk
O3zaROD+xfS2oNg3YLRlIUW5iY6HXZq4zHoxpF/a8E/YKTouy+6LajHsBIks
sdxAiY4LkpUumkZ3wWKBQMTV18HyAO+xY9Xd8CRGM3ZxszbWcLrALl/ZC3P6
j5qnmVr4HH1Yc8C3D3RdFMI4SxpYs9aM9sa1H6QpX3jndahjh4h9C/Uf+8HB
rsnUJlEN5+ancNflDsAnn0tBHpaq2M/TplFtjwS09D0OFeevwA9FR9Nr30ug
Sm8gGq/4DNs1lClKrw/Ch9NdHZbBSthgxzF5utMQXH/gG+OaroBtbWzTKqVD
sKZ13m11zBKvb+bKS27SMJj4u6raVH7iyba6J7GspTB0KySr32eOZzJuPqbQ
KoWGLajHSvcdj298RhgW9xbCGouc2/1kvN/aRAFs4xFIjdZ1LqmR8CgOTlPk
j4Bqt3C88W4L74Gn3nd2p0bh/IMpq4raCuA2JtyUMMbAytT+K0eiC+YEvmcZ
dWNAv9O22nLVGPSn8eT0k+OgOWRrsD35Hbxv+ZoVry0DZbVt9gadHyAswwhH
PZWBY9Y5piyOhlY2GtGH/Cbg2qHHXdo0ZcQRFc+vWpwAyeHBcKs0FTRzOC+4
+/4kqP6QmVuTrYF4/qVJ2nspmLKIifZL0kF/NwXv6XWjQCioNrbL1EGPHDcR
Je4URCb2DDLv6aDiVQW5rgcocH41ktfVoINyxDkVKUcoUDEIZexQp6Mz+y8M
qEdRsNXEsM6BTUdm6JCDSiEFv6aFNHgN0pFJqb7SmyIKDp4Mq/xFRkdGa8Qv
Cv+kIF/KNsuS09Hn82yPneUUCLydnveoEGhFlfOJpKcUNJo+qTy7mUADljbZ
Sq0USNePXlOMIFD3H9N+rSIKGDHno+xjCSTWKjXmiilI2GYxfTqZQK/HTcu+
7aXAO8o7YzyHQE/vrhXEjS57bftfEzwCVTF7UtxlFCiwaYbWLwlUkZTDNqQo
cNvlaxIpJND9AL1ePEuBntmXI6rDBCoQCrmpcxRsnJnP50wS6PY3qcf9P1LA
NI+fvTVHoNwyV0urBQqsnMfaJ2gMlLlWQ760REF1qddeB3UG+g/HMmKJ
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"P(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {-4.989999979591837, 4.5099994591836845`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {192., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}], InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV13k4VWsXAHBjiJK9U0iGciNNEipk7Qw3Y+SkqBShS1FEhlDJLBGiqJCh
lJKpQTdThItMGY9z9hlkDKU+RIbv3X+c5zy/Z+0/3r3W+75rbcWzl6xd+Hh4
eKbQj/o3dRlprxq10fvl9HhpeRknhguOnWVJawCPZuj9V8jrRLviSqQNQSzI
Tf0M8s79a3MfSR+FKgObcxVLOKHdtqcwUdoZNDK2tAYt4kTVgxrN29I+0Fx8
L29uHidCQ275x0iHwWTheOqvaZxw9vkuHS19F1xVd3iOfsMJ4bsmj39M5YB3
y6aVe7tx4m2b+qFDcq/gsp5b2YaPOGEbyqDX3CoFT57qvQ8LcOJSkfeO+/8r
A3dx6cv1qTjx8053Ay9vJRh4jvq+icCJhuq6ylbdjyDi1cqKuYwTbgEmq+zG
a0HoiXuB9RmcqBZRX37hUQ/zx6TqFy1w4kl27ZLMX40QKqO2dlIHJ4h15Vm0
gma4MN25qmsbTuyoZ7yrU22FZ5do57tlcaKToE0+m2yDUmnxrZGrcMJ95YWO
LrUOaA8YKNvLgxNNvcfLV8d9gRm2bvr3nxhB+9uW8/VrJyS3/FRQGsYIrcxb
xzOVuiHB9l46jYkR7KWkTtfrPcDWdohc3YkRYuNtt/zCeoD/3xsfJr9gxL6+
VQYR0T2gu6J+RSvynZLIouykHpjc2UOPRyZcA+PIpz1gphAegiE/bj9rfLSt
B8q0sc8bOjDibM7uD6DYCwNi9UF6bRgxaNKava6mF0xkTA58asYIpVvK8QkN
vSA4cf9FHrJz8/WrYi29YOCFa8Uicw+rHeHr6wXVkox7NGSSlrA0MdkLQ3Jv
kweaMKLXnmb3SaYPDuRN3RRGbvTqWe1zuQ/i8HWm5/7DCJGSXfOTfn1wa3pK
xALZ+H+Rg27BfaBRWPR1D3K9774PZ6L6wKPz1xgvcm1gqptZeh/U0JV0Mhow
ojz8ZO2mxj7YPGXynazHiMJUVkC7Ih2+dim0Xq7DCPetsnR1ZTrstT54yh5Z
pcxW++52OqzJWuY3Rs7obZ8/tpcOF7MvZG9EjltfG8gwp0PttbRNjZ8wwiM5
L3jYjw6FW+SUVZBVE7xCFj/TIbJY4tLvGowYUijgnP5Ch7LEqBNDyFmFYwer
eungft3csRNZps2JL3SADpdd2qsKkUXEj4UKz9GB89q14TzySKx2OK7UD8qz
95YGPmJEbhR/9Nar/WBx2WLHt2qMwL5GXdt5vR8kVE5FMpFvwGqfPWH98P7l
p7lW5BMzUmcOxPWD/tR75dfI4s47NY9k9UN+5/O8G8gBYMfxb+yH3aOh+rLI
Q2lkd3BrP9yUtVFag3x0xqn5Zmc/VB5skBNA3vny4ttYsh+CVJ/Yj1dhxIBM
2O3Mn/2Q8uMDfwWyxUzB/gYZBsRt0552QX5/RGPXZ3kG1C2A00lklZdlSh1K
DJji7ByzQuZzrhVn7GRAWmGfvi7y2/a+we/6DGijs+TXIiu+FEhcf4EBEpAY
21CJ8i8cEynryYDYFr1blcgLTuLBilcYsJS0IfsNcreMjOu26wwwjfaTy0W+
FbVLD5IYsCJV0zAUedrpxNi5fxngurXA0hDZF/+D91Yhx6Qa6iLPfHxwwKSO
Ab8HfI5rUFZk3tnWzoAJVaxHCfk368zeH0MMkH4VrieE7B/P4+g4zoCEwPjN
PFRc73FMxxQD2HffbJmrwIi5R1xm6QIDNtt6R35Dnj/pEhaAMUGvwaikHfmq
6IqCsfVMcMzqjW5C/vP+Sc/JjUzI2vjm2ifkBekRVT0VJjx6/E9NGfJiz/l2
Pj0mXIkwKMtGvhYp+sfbgAn+axpvpiMvab1QGjRmAiu+4Xwq5eQJv3oaE+al
DFPikXmOesrFujHB4c+Xk8HIN/gljBcvMsGv5510ADJvSZHXRR8m7FvUn/FB
5sN+1VpdZwKj1V7UA/lmddJkdRgT2trnDNyouJeG1J4YJiTWH3nggszfduWC
ZDITHu8zf3IaOez6uuSINCbwiMzbnUQW2PW2YjaDCZZ+V7fbUo77LUF/zoSB
HpGd1tTzB1J1zAqZsF9eyd4SWXBiv8uH10zIKVDON0deYR74Lr2KCT2WvDmH
kCP+bOCK1zGh+A33sBEVz/8gGtLEhFrxWikDKn7CXvNnGxNSBPN5DyILrVw6
7dTNhCL9RyKAHFWWHtXZz4R0r0y1A8jCblBsxGHCoO57Xx3KDTcEVcaZkGtt
7LCPet5PcVfqFBPUftbz70UWUf5ou3IW5avXp04TOab77M3ABSYYvzqap4G8
MoL/xTgvCcOKHs/2UHHNnC57IRIe0Wv+U6fig4bLLWIkTIeeFqEcc3dQhcBI
8GvQd92NLGoYYV20noR8a98hNWTdyksSdbIkNPvGRVO+qG3XRlckQdD8zyHK
ma/1479vIWHiYrUi5Q617YcFtpOwIWhwHWWBF5KrpHeToLzGXZmylvJy0w4t
Ep7V29Eou2aNxOjrkLAPStIop23sMDlOkHABD16k3Hz/X2F3IxL62f8GUutb
wnPrb5iSIG/oI0mtXy0+LiLZkoSWvueNlB1X+hs9P0pCiJ7zA+r9E8MdBSrt
UHx1biSVn1oes5ovp0mwGPaKp/I3E6hxc8SJhBTn1mItZJXZjQcXXUkgNn+c
ovJ94rIQD3aRBG7lYfP9yLETPyq2eJOwrifgozZyhSs9WMefhMuCxkd1kb8P
1OhaBZNwe7icVw9Z4czLP843SViWZjdS9bemp7wPiCTBYX/JK2p/vGlz25ed
QIJ50bVmaj+NmNFm36aQIGRwQ8AYWaZe903zAxJWaRjZmiIHl4trzOSScPbJ
Nhq1Xw2fv95l8p6EkvFvKSeQff/KmLSvJOF8avRLe+S8zKiXl2tJUI0RZztQ
9b13ctvDFhKUng/d/4eqVyiv8ncuCakCBid8qXotjw3yj5Bov2VbXaXqdbUz
R2qChFhhzOkacqrn0036s2j/KKowIpAd7C3kkkVZoKBSLk+d/8ReLeazNSwI
DBKefUTlm6bwsEKSBXZk+FgWsrLpL+kReRYs6G7d8hJ5UitVUkeDBe4RST8+
IgetGRTjnGJB5uHlrl/IqvRiguHIgi+VEkfmkfuyb/j0nGNB+OmwYer+09or
y/jsyQLeiAfnViP/sKflvw9jwSUV0QJVZKf8apO7L1igtrbcxRUZuxIfHF/E
ArHP/fc9kav07Iti3rCgdn/msD+ybMdvqZAqFpy6s603mrrff+8a8ehkgSXz
k+BLZNO/0yMOLbBAx7I75TfVD4S07B/zsCHgtV0EH+ofneOys3L8bJi0aUgQ
Q775ZkxVRpgNEk/9FxSQSZOIxDUYG5w0MxTNkO97ljsu/sUGzZPtBTnIYhXb
eHos2HA7SeOXO+p/E+YKpTFWbDDv3h0XiNzSv9ZVj8aGqvoC0xjk+LnF1lxb
NvQOH1DJo/qzZluGjxMbLvqY+w4iS73wASyADXiQoNM51M+V0sqvWeSwwX97
eW4I6veCW4vVeZ+yIVbMM/AuNT+8fTJU+owNQkpHvZ8iP+2KPyz7ig2mqnX/
fUZWlTgr962MDQ++jUvI1qLzF7WiIqoVrW9Jfm0l8gFfy8WaeTYomf1cIY/m
l5nzI4Emi2y4IhWTqYFceCZkvmWZDa9nbtqaIm8yKZntE+DA6OSzzb7IwrLr
f35fzQFXMTPlVuTOanJow2YOSE42DUegecp91cU2bzMOOJLHPVah+WsLn5Dl
nAUHpqVa+rcgs2YyPl+z4sDTfE03Atma3d4YbcMBC+4Y2xt5X4nmp4wzHBjo
uGDIQBawWyxr8uZATEkZq7gRIx7mxGZvfsgBQUHJSD80P54x2KPLSudAd6wR
7R7yJm5fZ9pjDiR1+xu+Rc6TV16BPeVARu5S8ixyaVq1K08xB3LHlGcCPqP7
687MDmY9B1y6Zl6Ft6B+GuTwLuUXBxg2pbvL0Hx72kbjs4gZF/IN5F8ldKHz
tMEi850FF4rzdqm8R3bkuHj/Y8UFa57DdVxkZ4970p9suCB3sNFLoxsj3MLn
XW44cGFJ1i6iD9nnddXSzBUuTJN3nqv2ovtd0kLtayYXJpI8BEfpGPG6yyWp
YoYLPAICmj1sNJ/zbt4Nc1yIjn1cKcjBiPM72C2Vf7gwlvfsggayXPiJldU8
A6CuJ6qSiByhYRlSs3IA5g/Gq1tyMeJY0r5LDXIDMDZ0JbF1ACNmrUTNOv4e
gNLz9x6ODmHE/uZCvqGUAZAMnmsLnUD3odG56STDr8CfJT5WvIgRmhqaCaVD
X8Et+/im7eI4wfp5+7/s8EGYp3Xw3duEE+N7joRLqw/BhbRHShbaOLHl244x
3i9D4Ewbh3lrnKhVutLhGTIM/s9tLO974kR8Z5eTtdIIfLD3VBeMx4nvtKoE
vtoR2H9qnXPYK5yYeRru/rZuBBrKPY6sL8SJpT+mh9z/G4EZ3jav58hiOV0L
XS0jUHS9yay9CCdU/jf2z7O+EdC6pO2iWIoTDncl9ay+j8BqvE+96R1OtHWe
H3skMwqxmKKDEfr+61FR+2S9cRR0aFllJDIZNJ0hpDAK6Vz23/416H2Ubth4
/TUKvDovFvJr0ffkleQqQ7VR6PixvluyHicOSlalfDMaBXUXJaNfTThh7Bbu
lWk8Cu5P1jPjm3FC8/f90yEmo8Bwtar4iPx/9bEnCA==
"]],
LineBox[CompressedData["
1:eJwd1Hs0VdsXB/DjFcrrnK1CVEqlIrdSXZS5lJDI8YpEXlHXjURPqUSeuckh
UpGTXqSiUiJ5/kquCuVxUUmStfZJCh0k3XV/a4w91viM+ceaY87v2No+ux38
JDkczkn6/Xdv82uWKOdjGHh16ZL/CwaFFZFdgq0Y3HaUajY3MOi4fIGl5TYM
UP/HcGAjg+I89s0Z98LAfbNPW6aJQWkynDY/fww3RIl2+q8YdMd56jqjPRi6
rokG3ZsZJFA+1lceiqH34JWiVuqQZ31/WezHUL7iiYRdC4OWrnnU5ngYw9C9
H2uXtTJIRTzvaPsRDPd+rn+UST1QkDTXOwKDHfGplW5jUIGOb1BQNAYNm7Ss
GurTb+uZ4VgMO2yqieY/DAo+u/Lh4QQMQYVfnu+m5jtkb5P8C8OqssNyZdQG
CpOl45MwkPFIN+l2Bik9Cc1VFlBrdUatp+4/9mZTWiqGjio18wjqF0aWQ5rp
GBJco93uUd8aLMjIycDQRHRj3lOfuqkBiy5g2DlaEy3bwaCgHSd6CrIwpNo0
T59PvUm7P36VEEPzs6Sx1dT6HS4Gj3MwHLTqYTdSK5ypfG1+FYOWf3iuA7Vo
0+Kwv69jmL21dIBPXS93ZpbDDQw/XpQdtaDOr5qoabuJ4VT+FpXl1InhOwM8
CzC4ftfymUa9a2WTcu8dDOfPOfw2QPuzGTAp2lVE52E5srKCenHeFbfBB3T+
prVLY6gnb1fmhJVgMFlk2GlGTbQOXeGUYVjyxe/rNzqvutZu69hyDFaRoJdB
nZdsM6BYhYFf6mZpSJ2w8f6Z1BoMdbryP6vpPgJkZpvMeIoh4oOjrBW1dXl8
l/AZBhmfH7Mq6D4XHhqM1q3/b38HOHrUcss9Ft9+QeubvnufpHnoEz1pWNGI
oYX1+PmG5uW617kZ61ow+K1Qqtn6muZPQ7ryWRuGuMQ7njE0bztfB/rzOzC4
h3+fmkPzuMDKrNCjC4OT86fbhTS/kyRvbO7pxuApvCiR85JBvaWq4wEfMTh+
VbSOpnm/atBncZBg+HNvf/qMegbFYHvRhAjDObVp8i/rGOSfU5oc/QXDWctt
ViHPGDRvelKnYAjDS7+jMrFPGCTdOHJcXYxhg3aBSFzDoJ4EnwXZoxjMLxft
dalm0OWJFSE3JzC0D+etfF/OoBPFF6cbShDYZpDSOvkxg7aHyJeVSBFozIVP
2o8YpNPbKVsrRyDhSrzW9GIG5TyPyuzmEdi/9JDn1Nt030t/uF+cSkCjWur4
rnwG7T8ToumuRiDLVvFzXi6DrDy8zzdrEbC0cFbqzGHQsso2N8FsAhmJXuLn
2QyaMY+vYTeXgP2XKMGVTJp3kWlGrS6BiMqfZtLpDGrl33eNXkxg79UHMQkp
DKq4p6+2dgmBbmn+26EkBqWEa6aXLiegM7hgzt44Bv2uMJZ6y5SA2qS4ndyD
DNIO3uP0pxkB/wUb7+aH0ny97mN0zQls1Swp093NoDfnWwXCDQRsn9/1rPRj
UOTiotOpTgTOnpLq3mlP85ukx7d3IXB/pc6qiY0Mch7MUVZyI5B/8kJnsAWD
dEsFp2I9CXyqDXYVGTPouXVwYlgAAePBkIcGcxh0/9anjasC6ftkjXHODAZl
8zynDO0m8DBmy7EBVfr/abdNCNxHoGxpe+w0WQapBSyO84ogcHTiWmMU5iGJ
F5cstaIIbA9oeFD8nofIUg3Z9mgCAt3x4up/eKhsVC7G8SQBu+qPS9ye8ZBP
fG+URRqBPu9DFYev8tDGzx7rpDIIFML+LU6ZPGRo3yxZcZ5AiYutxa8UHpJV
rzluJCTAuS5eUhfBQ/nXhcf08ml/+Xtz57vykPip+2FeFQFHoylqiT+5aKaj
xb6qGgIPnDbXxX3lIou3BrtDntJ9F0q02X/korQhSd+megLjueKplvVcZKid
ay1oJXBr69i+gnQucs8XmK9tp/NumeYlmcBFJ1aFm37rpPkqiSnRDOeiV7Z2
yxy6Cczt/FV53ZOLQsKG1XmfCQitXRRUdLjonMw7puoLgasznQLTVbmo8nSt
Ysg3Og9x5ooP0lykcu28RJOYQFNXUv//elTQ7VdmOFmShTkJTnG5QhUk0jtV
zFVjYUCjYSRUWQWpFh+4U6nBgsn8kT2TRpSRyTrv/D1aLIxc9u250KCMErYY
ZjfOYaE/XM5CP0IZLYxpj03WZ8G4qMGhrE0J+b+b78Jdx8KZP+aNCYMU0akA
FfvK9SzIzfRQKjVVREXDo9Z7rFh4tznU2FhJEUkrPDdttGXBWXU68r+hgHJ+
D52f7MrCCeJ32untFNSVXD6sEsTCA5XtTlHzJqOuSNsSQTDt33x1oscXefQ+
tOOoaigL/O+8w8JiedTtLJZVO8jCY9lNJ302yKMP6gYasyJZUPFKvnbTVw71
CrNM9dOosdGtmLBJqFegJ3X7LAsHdLTWnDCmjip5+tt5FsLWhLp1jMqgT34t
fMNsFupX+KkL9sugvoVKviZ5LDBZPTukd0ojtvBI7IbHLIgClxxVXiSJRJem
2PxdQd8/s0a44J0EEqVkqNhWszArxsspLoV6X1EGv5aFtQYeirPGOKjf6PMN
lyYWJqQkp0068gsGKt0b/HpZGAvSf+RqMQbfG03UI5VEINdcNb6a/xk4ga1i
I64IGrLVNGyyWJgsF9rylRFB6iW5Prs+DDNN81K81UXQie/KaQX3wvo8NSUz
HRGgOpsn6MJbSI0cluQYi4Azu8t928JjkKWV/P7BahFERO1t6Qm9UX69WK9i
N9B63XDKaHxZ+aN+3yPvzGk9eygzt+5FeY9bk/ixnQi6knpXPmx9V666RMOs
jZrz/9NV/i+EpCN7
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"F(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {-0.5, 5.5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}], {576., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}]}, {}},
ContentSelectable->True,
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{
3.710010241803006*^9, 3.7100102777920027`*^9, 3.71001076484037*^9,
3.710010820129405*^9, {3.710010955862033*^9, 3.710010982392049*^9},
3.710261288240065*^9, 3.7102613415046473`*^9, 3.710261377900333*^9, {
3.7102614517332983`*^9, 3.7102614675708027`*^9}, 3.71026180044483*^9, {
3.710261943803957*^9, 3.710261986103899*^9}, 3.710262638748583*^9,
3.710262812926292*^9, 3.7102629068286867`*^9, 3.7102629586836576`*^9,
3.710263017842198*^9, 3.710267822402451*^9, 3.710301414350767*^9,
3.710380743397444*^9, 3.710382206573708*^9, {3.710382262146718*^9,
3.7103822744505367`*^9}, {3.710382308405684*^9, 3.710382323449349*^9},
3.710496079537003*^9, 3.710821991307589*^9, {3.7108223026868553`*^9,
3.710822328449298*^9}, 3.710822363000587*^9, 3.710822688158695*^9}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"detJ=\"\>", "\[InvisibleSpace]", "8.5`"}],
SequenceForm["detJ=", 8.5],
Editable->False]], "Print",
CellChangeTimes->{
3.7100102418251963`*^9, 3.7100102778143797`*^9, 3.710010766638913*^9,
3.7100108217578487`*^9, {3.710010957491211*^9, 3.710010983931149*^9},
3.710261289752551*^9, 3.710261341518561*^9, 3.710261377914146*^9, {
3.7102614517471457`*^9, 3.7102614675902576`*^9}, 3.710261800462366*^9, {
3.710261943818239*^9, 3.7102619861176233`*^9}, 3.710262638762628*^9,
3.71026281293956*^9, 3.710262906846425*^9, 3.7102629587016487`*^9,
3.710263017856946*^9, 3.710267822416048*^9, 3.710301414375433*^9,
3.7103807434124002`*^9, 3.7103822065907307`*^9, {3.710382262165289*^9,
3.710382274465626*^9}, {3.7103823084214497`*^9, 3.7103823234643373`*^9},
3.710496079551712*^9, 3.71082199132274*^9, {3.710822302701261*^9,
3.7108223284725924`*^9}, 3.710822363014615*^9, 3.7108226881758213`*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of P is z0=\"\>", "\[InvisibleSpace]",
"0.7905416985585727`"}],
SequenceForm["The zero crossing of P is z0=", 0.7905416985585727],
Editable->False]], "Print",
CellChangeTimes->{
3.7100102418251963`*^9, 3.7100102778143797`*^9, 3.710010766638913*^9,
3.7100108217578487`*^9, {3.710010957491211*^9, 3.710010983931149*^9},
3.710261289752551*^9, 3.710261341518561*^9, 3.710261377914146*^9, {
3.7102614517471457`*^9, 3.7102614675902576`*^9}, 3.710261800462366*^9, {
3.710261943818239*^9, 3.7102619861176233`*^9}, 3.710262638762628*^9,
3.71026281293956*^9, 3.710262906846425*^9, 3.7102629587016487`*^9,
3.710263017856946*^9, 3.710267822416048*^9, 3.710301414375433*^9,
3.7103807434124002`*^9, 3.7103822065907307`*^9, {3.710382262165289*^9,
3.710382274465626*^9}, {3.7103823084214497`*^9, 3.7103823234643373`*^9},
3.710496079551712*^9, 3.71082199132274*^9, {3.710822302701261*^9,
3.7108223284725924`*^9}, 3.710822363014615*^9, 3.7108226881787977`*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of F is z1=\"\>", "\[InvisibleSpace]",
"0.8821214738467393`"}],
SequenceForm["The zero crossing of F is z1=", 0.8821214738467393],
Editable->False]], "Print",
CellChangeTimes->{
3.7100102418251963`*^9, 3.7100102778143797`*^9, 3.710010766638913*^9,
3.7100108217578487`*^9, {3.710010957491211*^9, 3.710010983931149*^9},
3.710261289752551*^9, 3.710261341518561*^9, 3.710261377914146*^9, {
3.7102614517471457`*^9, 3.7102614675902576`*^9}, 3.710261800462366*^9, {
3.710261943818239*^9, 3.7102619861176233`*^9}, 3.710262638762628*^9,
3.71026281293956*^9, 3.710262906846425*^9, 3.7102629587016487`*^9,
3.710263017856946*^9, 3.710267822416048*^9, 3.710301414375433*^9,
3.7103807434124002`*^9, 3.7103822065907307`*^9, {3.710382262165289*^9,
3.710382274465626*^9}, {3.7103823084214497`*^9, 3.7103823234643373`*^9},
3.710496079551712*^9, 3.71082199132274*^9, {3.710822302701261*^9,
3.7108223284725924`*^9}, 3.710822363014615*^9, 3.7108226881823893`*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The steady state of the SSN is re=\"\>", "\[InvisibleSpace]",
"0.6864124993081443`", "\[InvisibleSpace]", "\<\", ri=\"\>",
"\[InvisibleSpace]", "5.147497275115406`"}],
SequenceForm[
"The steady state of the SSN is re=", 0.6864124993081443, ", ri=",
5.147497275115406],
Editable->False]], "Print",
CellChangeTimes->{
3.7100102418251963`*^9, 3.7100102778143797`*^9, 3.710010766638913*^9,
3.7100108217578487`*^9, {3.710010957491211*^9, 3.710010983931149*^9},
3.710261289752551*^9, 3.710261341518561*^9, 3.710261377914146*^9, {
3.7102614517471457`*^9, 3.7102614675902576`*^9}, 3.710261800462366*^9, {
3.710261943818239*^9, 3.7102619861176233`*^9}, 3.710262638762628*^9,
3.71026281293956*^9, 3.710262906846425*^9, 3.7102629587016487`*^9,
3.710263017856946*^9, 3.710267822416048*^9, 3.710301414375433*^9,
3.7103807434124002`*^9, 3.7103822065907307`*^9, {3.710382262165289*^9,
3.710382274465626*^9}, {3.7103823084214497`*^9, 3.7103823234643373`*^9},
3.710496079551712*^9, 3.71082199132274*^9, {3.710822302701261*^9,
3.7108223284725924`*^9}, 3.710822363014615*^9, 3.71082268818602*^9}]
}, Open ]],
Cell[BoxData[
OverlayBox[{
GraphicsBox[{{}, {},
{GrayLevel[0], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwUl3c81d8fx6+ZFrLSN9GQliRJS16fSqisShIlRURCkpYkZTTIuFb2Htk7
I3vL3nvvPa/9u7+/7uM83u97zvvzeo9znvseG956QksikbYykEj//6XcMPBW
NDSSaAwKcnL3KME9Rkv2SgF54I3rhtODEvg5QNlOQB3nXzZM79pfgrw7Pq/1
BQywTWulqziyGHdS5ZjuC5hDYaLN0aa4CD66wVW3BexBUjZnfc1diBDv/67e
p3dA/YJFZlhfAcyte/zt5x1Q+OFN5+24AgiqGKvNNjpBcpc8I5tsAWxXHCsy
vFzhOmFWwGKTj8uXqxMVBHxA+vAujJ8tD7uOeeyw3OmL/jcqlc/7c0H5KnxG
ld4PEcdLivj+5KLKmOL8Y94Pf2iWnqU9yoW5pK3cdGMAxF9En4lNyUHLYGh2
mlcI3Mubf1W/ygZZaDBETiAal45OflnUzUApfWvK1vBobBLdfK5gXwZIrRXF
JcdioHbL0OB6SzqSr6jNB3DHQtyDl8dELh37py7v5OONQ8az4uId4mlYlmFT
23kkAZ9fBa/Mn00Fp+gPTVO9BOTmWwnqraRAmI9Rv/53Ah7YB4S8+5sC7fkl
M2ehRNz885+ZnlQKavy7fVhEk8Cu0zun9iAZEcuxPZuQgqHGzVLiIYko6D86
qm2RApYludj8F4noqgqaLchJQe7esyY1FxPBFepO/0UyFedIVwPeNCbA8raF
AOn6Hygpr1woZU2AaqSCHkUpHU+1XJ1e/IrDFvWJ6SG9LCzf0Op6QBcN0/rq
pZnQLMjb8rgeyIhCr2wSzVpfFjQe9Ys5vYpCx56/trYnsnEz64K/5kgkkrdZ
uXuFZ8NvluFLVOtvaI+wpeZ752C03C7HszUcPCH0GdcycmDIbEIv4ROOmkcL
WRUtOQiuVax58SgcEs3NRU07czGaEnPfdjgMXMV+jWOOuahUaT8kRwpDYbDQ
Iod1Hvx1vaL2SofA7NHeFY+gPGyf3zR/iS0EInvYNnjz8iD2TCiwqz0YPuR5
xiOkfLxL2XrN0TQYpp8zuC6+y4e0nb+lX1QQBB5dF3tiUIDg5LRnticDYcOj
/SpJuQhez/TrL331w+GYODF/kyLk3pX/VfTYD6WX1hZ/OBXBc36sI0TcD8w6
5HdaFUV4PX5krK3HF65xuR/ZpYrh6a8hufOvD0Kk+L69OF2Cj7w+zDHOXpBp
1rvx4HYJBLaN6Qvf9MLIs+Rt116UYMv044+yLF4QcpT7uTeqBOZWj2rl7TyR
3PqeXMlfih9V2mu3HX6hwKjJ5zhHGQamjidfiXOHNh2/xi6RMriyGrdVvHYH
k6vhPgbFMrw16urrlHCHbDpjUNv3MoQWbfe1r3BDHcPp8O905eiI1ylfmXVF
3y/HhOGZcnxP6nXbrOwCuoLrxcHVFbDRPEjrZegEbsXzuf/NVEDHXO/4zktO
EGw9kvGTrRJSjvDcxO4E5Wmm2Le3KyFLszFwJdURYXuK3OTqKxGc5t68lckR
Aun+Ce/0q/D4UClt+eufiLXwEE4yq8JtHa4D2od/4ryUY9TkjyosMkO/qNke
CtUWoVpRVQivjQvvkLDHm8GHnvITVZgdO2mhyWaHUnbez/uNqiEkb37mZ/c3
KDVzkh5YVCPtXOhSrO83dPhs/+DmUI217TK83erfMHtkzXRbHNX/D+cZj66v
4CHa9Bamq/G5MOZN3owtQhjqBoVpa6DHNGQcm2YL4bIyrWdsNQg03ZfJ+cUW
V5XT1btEalBVfuqr3W5bVO1OaP3vSg007zypzR22gWp3hMqd2zWoe3/+evIf
Gxjo/7pV+rIG6Q7dlQcf2oBy0qmS/ksNtoz2SJaI2sBy8assyDUwdbm26/02
G2zL/FTyNqgGEd66t28OWMPN8q1UYmINNjLylx/lWmO/zIu8ifwatFQ1+eX5
WSNyuy5xpL4GB60OGtt/soZYrUamZn8N7jLdG2zRska2u8p5n/ka2G9/r5xz
3RrX1RVTmhhqsdbtd0H1lDXqD8iIsnPVQi1o5noOrzU0hhEnJ1ALuZXn6Wzb
rTESfUbIVqwW7+1Y8/XWrWBicuJ3rlQtbGiaPPtnrLB+7tDhNeVacK/nvPUd
sYLtBm/wGZ1aKOj0kxP7rcBewLXf+HUtmm9ntl3us0L8+JC6m3UtFni+8hwZ
sIIiV7pnhkstKC2cenKjVpiUsGvqDqqFLAura+msFex1HnJuSqzFgwv8L9I3
rCDocPKWYF4tCFmF8vMs1ihLpft5s6YWTF4CJlr7raHXXV9m2l2LYZ10d+Vz
1mDaEsbkNVWL1WPe6SeUrBEi8u5qzkYtNLTU1JlfWuOqmqzlAHMdROysaHe4
WqPvM2/WVt46/LjDcFQ50xqWkVMrwsfrcG0t9s/akDX21ueeVRavA9O9K1uO
7rJB1hr51fsbddCLLnm9JmeDVflzkwW61P+HcO87UGiDX6+3Co6+qcMCRSs4
fbMtzvm1P2W1rUPY/RcDX2/Zoqk4Jvi0Wx1uqY7TJPrZwnT6U49qSB2C39ly
aszZguM/JT6LpDoU61brJcp9RcJlgfvB+XVQauMoao78iinn0vrJnjpsZIYa
X/rwDfYZXmycM3WYseRJbpr4huP9BgrnaeoRG+9vMKr9HXpi7CVf+OrRHhu3
ePHZDzA97GeIEKpHX9JIS9viD4TapFyuvFiPLn5bkcTvduhrUsvYdb8eLYXx
i7Ul9rCkEVqSeFaPvEbWg9YmP7HvKElM6109uHqHr/ixO0D9fVBMtHs9NP6U
RNfXOGA10HSsNrQeMcqvjw6dpQ6JcpkjS8n12DLx3vJFoCOa9owHXKmnnud7
SEXL2gmmUlmdT/vqwdCS4c284QROQ0ce+9l6HNp1yiTGzBm3sk+7Nu1ogP4M
vfZDGzL+PTb/+ly+Ad8EZzXfdrhC/7tiodODBty147GrtXTDlsT9dKn6DTgq
kuV6+7g7ZBiKzGi/N4DtlbC0qYsHBo57/Dn0qwHsYtJJL2//gpXyswXZ8AYs
GHKeluP2RG4oi5FbUQP6JEZ/30/xgkZVd2RGQwNofOVqKY7e2KAkDHf3N8Dv
Z1EKYeID8esqmoL0jSi1a9ujetgPyWN+yjlEIzqzLI4OnwmA/Y6CE8duNmKf
yJ1hndoAaIsNM7k8asTnWzJ7XU0CwWVxMv2pZSNOm7PuKCgOwkTQHXKNUyPM
XQ5PHTULRmHJ2+figY34GLjjwnaxELxiz+VjzW/ElsmxtGN/QyF7doDytq4R
cbFsFt0/wsD/YEtNb18jbMS21zNohqMu5NaXFIYmiK0TGdECvyF6vndIXboJ
URU1XXnsMdj2cFNu8d0mUG5KbNnBHkvth2OeIk+bcE+h5cwF/1g4/3spx/i1
CY00zvtu/IuD3oybgJFHE3xOzq94P4vH5Z0ZG83hTQgdjOEpZEnAjAZ9fFRp
E8qrOXuc9BJRanX4+87WJrRyBztl7UtCQISs1qfRJsjkTL+o6UzCrTky151t
zdAvi/44/CIFcTYH36/KNUNAxSq1ZDENtpHXlLTVm/F+iGl8fjIdGtXPj1cZ
NCNlkndg30wGWHcndwb+bIYkrUALmSsLQ2hJ3e7XjJ6rJtw0e7KRrbXu+Dq2
GZeszU06E7NhFC0leaO6GQ+/2rmbUXIgU6u3J6m7GTkLUj9pg3Oxl2K/wDtD
jadpszJxLw+VlxrDZthaEPkkMqe+JR8h2iuf7h9owUmd0qzL4dT363c+tcJT
LeiwOcjr8qkQQvU6238ptWDkkcit2FvFYFz+PkD3pAUZL5lYNsuVoIM3Nuv5
qxZUH13pf6ZUCvunlBeXXFsg65aj+9y+HNp2PDd+h7SAL1Jq4UneP0jEE/yc
KS1IW3oue3BLJcZXbBuGGltwejS7OG64Cvl7o2JuDbXAyjHwbGVkNbyuVttm
UFow9iz1nYtZDUz05h8JbG6F8XWJAjlV6pz9ueuCw65WKNA+uGMsXQf+xIsc
y0da0an//GPK1XqsNj0a1zzfCpGcGVXuuw2I3B/he0aNapczr2rOaMKyyPtG
pWet8BB9YOfF2gKZK7Isxu9bMcD/86WhZStcb++R/vm9FYzXv1/N4GpHr+aE
eaRnK0r2vAhsrOmAsElWcsnvVoj5lG93Uu+C+ReHiYH0VrippNQ5G3SjnPxI
gL68FS9O/LL/692D/4JF1Pe1tWKTn+O39KlePE2ic5UYa0WO51kXdv1+JBfU
/VNbbcUfN5l+AfZB0DcEM7zd1oYtVbJfbgwM4daA6UVXnja4es2Fd3WOwG9B
+lWCYBtq9joSWVNjmGDcFVUl3oZs1363lrUJiO8c6RuXbYNo/s5x4RdT+Hoo
nWfrgzbwNNgOa4hPo+HMD6XDz9uwOJrMmFk7DX6ZBz+ufmjDvtDDTFGiMzBW
Ecp/bNeGpdzxjcInM8h+urHy0bsNIuf11JSMZ8D8tuqUd1QbdoYc29JPtd//
6v8sLbMNlfGjQt3XZhDhYRzY+K8NWYYHHs/yz4ASfqV1rr0N3jbDMzor05BK
42Bnm2hDar1HTVXlNMil/ddPrLeBMBMT+BU4jROjNmm6vO3oe7RyL/nGNLQF
yz061NvBWcd9dNBvConi3tUrBu04HXze5uLrKdDKGWze9bEdLecZpVflpuD9
nPXtbd927FbbnvxgaRJ10UoqxZ3t+HicLsE9cwKXT7ZzxWt04PDUyX/79MbA
JzbhbPW4E4PCLHkLUkOwDPf4bveiE8/PNy2KMg+hj+fqZxeLTlRy0XQs1g8i
jM7LONinE0mp/f2MOoMQrr52s6ClE3EtrRGHfw5gb/ItG8sjXfB5Z7Ll3UIf
qg0Pf2Y82QUd7uDh1wV9sDyybv7tbBfuHj9yb4jchz6vcFMn6S7o7yJn85zu
Q9hnknbAky70O0pzp7zrhfDNaMlc/y4oSnwYqd3Vg+4tXwip8C4sONJ4W052
wyn/nnhpbBccc55fJBd0Y+4Mg2hNVheGLvxKbDPuRirv/QM97V04qepqOVzd
BWJsMy3tf93wV71lo3O5EzdtnmRdcuqGmNM1ur61FvBCa/PTX92wfWhh9eEP
tQ8XHt+2D+iGoUSBRj617221NQZb4rthfjJA+fZUM/5eVWMxqe3GF5MdDVLj
TRCkv/kwhKMH3y6qCf3H0IjldIXwcp4emLbs1sovbUDxS/nZGf4enJl6Z0Lr
2ADN3hs2ON0DoizyvChfA37lSsU03elB18793FKX67Hpk/jGFrceqHKfOz7p
X4u6sxeunfTtwfv+P6NCRrUImDrnfDe0B5zXD6aOSdRCQuPMoaCUHpzdqne1
vZ06PyCicLGpB50/GPe82FeDnrVDvoa7esHdmhqh/rcKme/YUefZi2KOxi+X
f5aDQ2tjyDCwF+WTx9gjb5RDX27UaevvXrjc9AxPYioHz968gctpvZD9ws4d
+KUMZgXG9nFNvXjkb8Dz93MpzrPWtNtz9uGWoGtuoncxnJYybY7u6cOOKNWA
l5rFGOkJP1nI3wf5wQ3TjCPF8Ej6ZLV2qg/TR/d3DqQUgaJ68rj+rT6cfXSx
/F1LIVKCHcyu/eyD9lAJk/2ZAjD/NBPod+1DjwyrrApDAbTfPK2y8OlDy58S
Y4/afHDdIPhTo/oweOvX6PsX+TCdmiwTKO/DyqXGSwHxeRC9oLCbfnM/BG4s
mttfy0Vc1fa0v5b9YGXX1bponYX8E4rsot/6kfo4XnXXxSw02Dvphzv243aK
Zq/P3F+syu7kI/v1o0Wh/pzfk7+QKdn7RfcvdT831oe3FTLRkXNKnmO5H8uc
XxlApGN6r2noV5oB+HkXPWegSQe9RSppg2kAkVf6jNVz03BE4mLC8M4BnGhJ
jsmVSoNJmhR31ukBrBjqdp1Q/oMtCfd6dF8MoPPZ5To7+xTsYfO60PlmAI0X
0pUH7qZA+EUHWcliANe66cIy96XgzglNaVD7EIxK3b3JyfD7rR/JETUAPn7X
QxMDSTgT9NE0a2gAdL4BfCwPEqHlEryFU2MQZ8o1uR7/igN5hjVe8OkguIlU
RS6DOOQpmN2TNBrEad0bO89fjsP+LbfDXloMwv39o/yy0Vh0mZOkavwGEWTa
f4ByJRZqT9U+/eweROn+iKy9LNH4VlB4OHR4EG0n2EfM8qKQtl+k6u/0IGrO
dPxwexMF7nYmvgmaITw4996C1B+JhpvJGbL7h3Di4fUHzwp/49aFHZTNmkPo
P5teyhcRDkt3M999z4ZwhHXTyDfdcMTND0qdezkEXcHuEPcj4WCN/evy9DN1
/eTafZffYajg1z9VFDiEtBDDmv7kUFxjLjL40jcE+dpf0W7DwSC6zfrXnwxj
/zz/ytukACwb1o99fz4M6Q/kz7ZfA5CwfnyO+9Uwfg0M6q4/CIAATyftqS/D
2Py7/yUPUwC23b20VydgGEZ8Y6aMj/zRXM6gVtkxDJdt8eu5/H5wUlN/fH9g
GDtHn3XErPlCdiRZd3h8GOtDrxa/x/sie9PTN3Rrwzii0yqixOuLkMulLmd2
j6C8NOTWwpo3jFPtq3zvjqA9sP6NTZsnBKUHGwUfjoBvl8iopKcn+uvR+Ud7
BEf2akj9VvWEyuzUeO2rEVhdX9v1pvUXIHR7KxN5BN8ql5Ll+j1AyfjN5uI5
Av9v26e/hnsg/gb9f/sDR6DMXCVraeABAd2kw+LxI2B2+Pc3edkd24J2ShlV
Uf0ZFYp9edxRKGIkt9Y4AstuPi7hQTd8zClW+ka9l2une0h+8W6Y6XirGTQx
AinlOObTsm5o2tVm0bRtFFOz5LHOb65wChO1fcIxiuqKhF7OB664ccbu58zu
Ufw1PNWuLuyKv0oSPtuOjYLJen+qdIsLgn/6pRPXRuGyVaZWTtwFZjz7dxjd
HIWN3huNJQ4X3AoP1Pa9N4p/9rq+YpNkrOeG7FjXHQVxMuc+OYyMOoXDOseN
R6FweJb8j8ofEW3hGfffjeIGxxb50qdkKC9E6qR/G0Xe6wcBksJkCH4Wyhxx
GoXP1TvP27nIoGWNZfvPcxQcjwqkjDac0eR18um1wFEYVMypbxtxRsyRhMw3
v0dhdk7GMafBGdbJouxhCaPwJguk+RY44/6V5KeN6aMQrFlISk52hkjVmb+M
+aP41Mf3iCvCGUwP/rCLlY+iuT23oMLXGR3D53Wf1I3Cmv+s2bSbMxJNM/6S
26jxb1CGHZyc8Y1OgiO/bxTut06aZv10xiOHLN3ZsVFk0263/Uldn91zKWv/
/CiOzaVYs1P9mSNyOW6tjaK/XJxJnbpfn5ik3ieGMQRn/H3ymXpeWl5BVuz2
Mezx3DfnTo3HQVGas4tzDP8N021NTHWGdnuxHgvvGJ4eoqcdKXGGuN71bAmB
MdQ3ZAsrdjiDfbGM00BoDOlk6b2r884Y+Sz3zFuM6p8gq82wg4xs1srscokx
FLziqvtyggxXb0WuVakx/PAQhfNNMvSP1jw7pjAG4zaxD9dek3E55XaO6t0x
nFiN1Mz2I4Nbsp7r28MxfMuNWmOtIGOiSln/j84YhJXaCpU3yCh40JQzZDiG
hzF+/6JFXeA1cm8n95sxtE3QHxIzcIHx61Z9aYsx6B9nH9oc6QJex46dIQ5U
e/Rv4a2nXTG3R+N5vfsY1CoqFUwtXFEa0Z1L7z8G+ciquogqV7zO73uuGTeG
vQtKH5c+ukH+pnae058xSH2Xv6/S6Qb+jkHu3JwxJE//td4i6Y6qxZG8vTVj
aI65DwZeD4R80d+l2DKGtPZPn3ycPWC2Y8LgY88YzNgZao6y/MKRY9O7OmbG
0O8wdSufyq+kVGPD7Stj+BwRd/t4qCcaJOfyxenG0cjHNCYu7gVL9UVDT/Zx
uOwp+LrtvTdURt8UlO4ex90AudsiB30g9Gb5v+UD47D76SRc2uCDVse1AhXR
cXiNh3S5UPlWtICOh+vOOCyZm3971PmjoKh1L9+DceTSpM6+lQmAcmnCwcNP
xpHR1bLYmR2At5WaJ86/GodewJ/yf1mB2FJzQfTKh3E0VI5w+UgFwauO/Zys
1TjWNsXp29QE4W9z3mV1l3E4JSipyC0HQ6HNU1rHexx+Mkf0zF1D0NXxUtYo
eBxXPwsamJwNBW3fAWXLpHE8KhY/8so+DNITn3VD6sdBIxJ72NT2N5qm1Axi
2scx/VEq77NKJPRmT71M7R/HnDKzE5twFH5Qes1K58exfy4wrmQhGntW0j/V
ro2j7bXxO4uBGESvOVu3MUyAJj/6moFhLKpoJR0mOCcQpplX+uRVHB4x8Lgs
7plA2p2GJzYbcZjZNOdBEphAo3OqUKR9PDi3BwWyiU2AbqLwv8KMBKjupE8R
U56AjH9AmYl6MkZ3taVDfQLTtlpvS7hSqPMpMVtGe4LKvVG+mxtS4LtPq1TV
dALp21Lf2ur9gTC/eKWm+QSeWh7++5JIQ64AR52+9QQMTPt1/HnT0Xcsv93c
dQJWYrH6D+cz8ErIq8fGZwIRQV9RPpEJxpMmgw4hE5h9E/rn3MxfHBHjnw5I
ngCbdNsi+Uc2DIgv9EUNE+CSPUdzZDUXG5fvb67qmIDmVxnti+F5cLgqytw8
MAFFo/gSWvV8JFzv2zm6MAGvhcjYn10FkJTL4Jlbn0CDsRqrbkwhGhTI+9YY
J8HU6lGx25b6PlOSPMaycxItXwpvF98rwde7PMLcfJN40HSmXJbKw/+pzonu
OzSJiG2fevPUyiD+MEji1JlJDPzW++Pm8g//HpldEcckWJ6/ar1SWgF1LSWZ
q9KTiL6Szy3FVIVPuvS37t6dRPrWgk179Kk87F2SXK8+iWDGhG2HqO/X1Gr7
3UrakwgPLOVZ76pBLYOSRc3zSSzJEuGBkbWYOLerX/HVJF4K8r2+YFWHLQYd
1yrNJiFTs3mZTb8eBwMCo+W+TMJ+Uvx42OMG3N8i9Oa68yQ+Uwj7U9ZNeC0x
21b8axKHndpfmqU0w8k49ZJ0wCSMGuSrr9O0IjrkQ0hB+CQcBjp82rTbUNJy
eatk3CT2FW3/wDxG5TZmJqPc1EkUvfP58sqlE6Qr/+qI7ElsnRvKOZfYhd2v
nc5lFU1Cr/oynW8SlTt+3/W5WDmJ093N7po1PbjZyUOX0TCJHOGMj6eZ+6DP
3qNzvmMSAp1/brhRedlWOrQ8tZ+6f9RWvf1TAwh8r3/yzPgkhko2qcJjCH9j
TromzU1i+kfg69NaI2jpXVg+tToJg78G+gXUubu8teNEM80Uyi6t8p0RmgBT
CPHYnWEKHsJEctTGJLiIQPLdzVO4M+OyU75iCvwtDEVc26cw3b56+MOraYiY
PF2qZ52CoLH5F6+JaYC57JgLxxTkeqReWJyfgWzYcXUl7ink3Lwc/e/hDFQv
Oziw81DXKoJq8TozeNo2k1vDN4VvgdOZ+9RmYGp6Z97xwBQIrjOE1qUZfGFN
PXTz0BSmzrdeyOObgWPEf6qsx6YwfLaKuWRpGpEdnX/tRaawi+2mZH7YNHql
9Gy/X5rCq88qNR8Zp6G48+Nuq4dTuFtsTNMePIljqWGX3nhOQThT7mKO8iik
q/k8bX2ncNY5rCdsxyg0R1zn3AOncH05+DD+jcCTxyr0z+8pfLjOn2wkNYKt
nx5tX0mfwkrEiF8qMYzRa/81f2ibwrY49yzD24PYpOkoYt81haPqaWXvuQdx
wIzph0/fFJTzmRt4OgagFr0gkTU2BXl+wc3czwZQxlYbRFqbQoAGt3vp9378
bv1u9HnPNLpCv80OD/SiaI621HnfNHhUNa55J/aid/u7A0EHp5F4iC+j0rIX
u4mnDfnHp0GjpUsbtbcX34MkxRklpiExLhMu8LgHz56vbfqqPo3S/JSH21e6
cGzDwNfedxq3UubGJpbaqHG3hd0LpOrImPHEPqkNE4+vx/OHTiPZnv5s5Ys2
xBYeLEiLnkb8NxbmE2OtELVvGxnInEa9mrOtxFALxPdcF0PbNMxZ3Cc1Vpuw
pzIFW7qm4b1zJ9OznCasWxy8Vt87jZWtytIkmyZk95HuPxudhtpbrr1F7E2Q
jEz55LY8jSA2ckTAqUbIXTj4b5J7Bq5hSPj0vR5C404NaTwzYFQ9/SpCpR6s
vqQuq70zYDcpP31DoB41tG0zuw/PYCX+36Wp3DrqfeXELXNmBudlFhrDaeqg
fo+k5XdnBm9sMummnWtg+Lp1WdFpBhM5YgPL9FVQD3tw7LnrDKzaafx3pFZC
vrlT7euvGcQfNhxZ166E4IW+jJyAGXBYJ5hdLarAyPqYuUjCDKJZtzHIOP6D
tvU6LUfdDJ7sE3z15FoZlFMsTgk3zeD4tzeCoXRluDpEqyXbNoN7JnpnPf+W
gv/6poIvfTPoyPOadxIrRfd2Vpv5Oap/iV+lvVAJ7rvs29rIOQtGyg4fmYtF
kC0MvDC7axb+JgaePTRFuLB4UJ+Fdxbsbw1kOIoK8d+9o/+kBWaB7Jfks7cL
0chz6meq2Cy4P9w788C4ALeCJNl/3Z3F9tDnY82leZBJ0Nn9wGMWL5JWs+Va
s8HJ53JA23sWMtfV/Tdis9HzLfeYof8sGgwuZe62yYbZ4z3in8JnMZipZWsv
mo2YHbX3g//M4mIoO//nw1ngMpLwGW+eRfAaV/VSWQZ6W5+FLLTPIl9yu2ni
5wzESntEb3TPwiO3JJxfPAPX+eb+7hiZRWG8sAdvTDo+VIR3nl6exYjbvLuU
dxr6BDn3mf83h+s9wj8G3FMR5375iA3vHKRv1t48ppYKc3qjkw77qXblo4Jb
eVPB3VZ6KeDoHMwsR2ldg1Nw47vF48Lzc3hPb2QSlZ6M+OHRQGa1OZjedLzq
SZsEi5BcAV/POah4etacn4kD2++Bjse+c6ApkG4TKY5DUMwWN4HAOVTqxhva
+cShOPXWpuiIOdzICHPSlo0Da1nPYMafOfSEaTz6GRkL30na8JbGOdDr8F2f
WImG8JzAI5/WOXBvkd7xICEauZTrux53zuFjuP3iq2fRGKBx/jo8MIfVHJox
3/YoCHEc0KPMz+GIB9t6WEkk/p69coyLYx5a7LRtF7IioHhRp7d55zyEnDkX
XC0i0HPpu6f37nk4t7gOfrkcAcYbtVsPHphH/KfrNBzF4ZB/oDl2SmQeO8xk
e5qbw9D+6XPUTcV5fDslWdDBFYrV0rwTdj/mwet8wdRuIhBe8qvMAQ5U/2WP
5bn0QIjXiE4kk+eh5EE33fY1EB+agyO7vOZhbjWsfORQINYHbY6IRs2j6rTb
iqNOAEgMsgda/81T51iSnNO6H/xsv9BOVc/jo5blFcNaPxDbMrvpG+ah3m8Z
9yfMD5/YhfyEOuYRqPgj00nJD7T7WfdYTszja6Aju9FjX9CjjusIywJMJ0zY
Fpa9EJS7beEiO3XNZrZiEecFSamr9bd2LuBuZsydmqdesJJLdjbjW0AVq0ZW
RbMnGO+7s1adWMALn837tQp+IaSzarLv1AKySoxnVC1/QUpzc+XSmQXcU2y9
Ikj8onLjO7sDxAI2l8i7GP71ANPb+1teKy7A70OsCk2hO8JWycPflRYg51/C
dvubO2Qs/hX7qSxAGyNR4Qru+GojYVOqsYAN9zR2i3Y3bHHdS8/7YgHB9w/p
hDC6IWLXvV6RVwv4pRwYPV5L5Vtvx1zptwvIyP5x/22AK34E0X568WkBsxkR
Dz9fccX2hL61fEfqeUcY7F+5Unmlkt2O7LKAT0xPGm1euKBp9DKPlscC3gc1
HV2Tc0EAv/95Ov8F+NzwUBDb6gKmS1UlNUELyJuw8WYeI+P5gw2VgLAF2Lw1
dTGm8tJZ1wevL8UuIOzI8PHN7mR4x/9g3JFIjZ9IDbz5kcq3lekuXSkLELFr
sb1J5eGnoyP8sekL2LFXe5HjNhn/Nv2X+DFrAaVZvZFhIEOE/9oVhbwFLGcu
Pd0lRIY78aaGt2gB0JcffclLxtr90EcTpQuQ5LGdzWcl4/HbhqnMigXsCua8
vIuBjGIXBgu7mgUsRDkIma8443i8KMuDhgWkp5ap0s45w6lC00ewZQHkKFFy
4oQzKCNOx1fbFxBlci4scNQZDzblZpR1L+DMgrRWB5W/cw9M3/DsX8CD/ypc
Xo454zCxt1VveAHt/BEnjKecYXdfQe/8OLU+vpo7jCw4Y+aN+dLm6QVUnDTp
HafyvIpLlG3z3ALOMizdsdtKRmZc285wygJGR95xtuwiY3/F1tA3qws4XKqj
0H+UDNuR82IypEXY+nqKZEuQMc6oV7CTfhEvg2eKzO6QceuAh9LgpkV0B6o2
CRmSkYri3uStixjakqo58p2MPfcXja1ZFvH1+qRu3m8yLN8I0CqzL6Klpm/k
HzVfQ+Q7jgd3LmKB/cPAnnky5OK+7J3/bxGOrT7uRbwuiP+XEJPPu4iZVzvv
dN9wAfdIjwR5/yKSd7y1tTRzQc/+Sw9OHV2Enuk4y58hF8jAaIxWaBE7lVYu
feB3RZSa7/uak4vYrTQXLqDlijfkNY8X5xaRcu/hgv2kK9pjBY9curiI3Dn9
xS8X3HD5n1oq66VFKJZEVZR9d8N2xrSGGJlF0HrGl6edc4fx/uEnH2UXsdK0
eZunmzuaJLjn5RUX4exsEoFldwS8NmWfuLuIm2YUEZUKar+RgwMy1RaBElXh
7dR+fB5bd9Lu4SJKJ9QHmFJ+4eywiKKgziIUaJfbtJI84c3wuHNFbxHfXCLc
WS96UeeHo0GZwSIk3r9qcSv1wj/VyR96povo+CAoX7vojcflv0vCrBax9f5+
zjYFPwQfsBZ+8nUR7wVCq3/89sPQOw23fXaLEJ7hZU/d4o/nRzif/CIvwjSg
aaGr1h+xFpNlyu6LuKAmRssqEYCZxhIRdq9FyDNKWO+JDMAba3PSj8BFCL2U
FpUmByK9XUVHJnQRVU4PHbyZg7AueqqC/jdVfw7fJCm7IHzpHfT8EE/Vi7f2
JId7MH4SN88Y5iyi03Zxv8ZgKGrcjvkcK1iE62baFztsw8AxycAwVLyI9eSL
Y2eEwvHLO61Go2oRoQpy0Q7fI9A+Rz63p46ar5VU0r4rv7FX1tCvuZGqR2FF
WTspEiHLBwxudVLzpTtYFPwzCsM31+uYe6n6eXCa8j2KhmB404WygUU86tgy
4nUuBnF37TZLTiwi/XhO5Q2LWGQkLgSdXqPWW3SP4IRpPDa2Vm+dIVHwfvFT
9b2NeFzW/G0cTU/B136mV5o/ElC0Q4M4tI2Cgw3d7xiTErFF93xoLwsF6fT2
nquKSZDN5mD2Y6eg3dfEXGEmCTUGJa3cuylgfCoQ13c1BZyFgZfreSmw/7us
60VJgcoe83DH/RQk7F3v/hWXio4ykddbjlLAHKXPaHYmDcOHvdhWz1LwcPnj
oJhnJgQtTN+milNw9u2/K8a2f2HQqNhlQlBwS6Qm2ME8C3NWDNHj0hSUyp3a
cM/Lxpn2To6IGxQEdZuL3pbLwTvRtPfaChQoDGgsvWjLAanX4FqnMgWRIS0e
G1vzcOX8tVhPVQoqGFJMWKLyYO14YKeKOgWPlYJ18pXysZVo6qt6QkGdsnZh
+J8CyLvF37DTpWBbX2J0wutCOEz8iL/2nHq+KTcHt0QRuLwvWeSaUCA/JVnG
NlAMnZfCzFVvKLBWFL7r3FaC1Gt8Xu1mFKSuvXlS1lkK1YXVFMoXCi5w3lC+
w/oPv8tHrzJ+pSD88Fe/YVRgNaCllt2OAnadEdtsi0r4KqROCrlQ0FaWLiDI
W42pg6EfxD0omCZraSm1V+PyqsvW694UmHcYHEoOq4FzzRePu/4UKMc+Dvr6
qRZ9YS8PPQmm4JUz4S6qW4fTHx8nGYdTcNFqZvvtR/WwvnPzikUUBVuffzmd
+6wBh2lPPPRMosB2mqYgKLsJb5v2jIf9oaBW6flQOGsLSqO3vU/OpOBAr+ge
FfNW7LZaYcrPoYD34D5PeuZ26KuNuFYXUHD9p6HEaH4HMk8283eWUMC1/M4m
TKkLzEzF8WP/KPCKz5WWe9QNjY5kYrmaqm/b4oLvjx7EJQZXbGqgwI/f/O2F
1l7Qfiff52yh7qe4fDPoZj+UHn0e2d9BwcKT5hvyswMIPmP8RriHAsnpg3mV
2UNY2P6IUWKAAjYuujHmpBFI9ymQb4xQwKfK9zMrZwzuaRL7701QUHJQkrO7
fALDDsdjtWeoetq9UTh7bwrndXgkTBYoaHmoy60vMI3vF7eWf1qm4M/TbPmS
7Gm0sS/f+7lOwf1VIbp5fuq7f2Ro0It2CeWbVA37VGZgnt34KoJxCbM56+Nk
Kh9XuhbSpW5ZgpFpXJnT/RnsfZ7kWMC8hKuS6Vd1qHxsfCWIr5ZtCRfiuZ8P
UDkpb5dzVBfXEhzFjlZYzE6DY+rThYn/lnBjeNmvt2ga2oVGJSu8S0gp+XjY
3nMaTC/l+7kOLWHyDfbfvDIN2fLNe+TOLKG6X9uh2m0K3gGUCNULS3jkp265
/nwKE28Gzz7FEl7Q/OgiS07B8WCB0mfpJUg3mL6b7Z9Eg7nFjz93lyCY3cfJ
Ej6BhycXVw6+WUKD2Jh77O0xmPq1nZt4vwRzOXnDzTvG8IMl93XyxyWIiZ7f
vVExitTxH7NSNkvYVeIuki47CtaI/aM6rkv40m7cKK8wgtz98i3hiUvQtLmh
E284hCbHU9zGqUtIfdv2T0RsCBOkXcrnM5YwPMj78fzaIHZ39laX5i1hPP7K
v5YfgzDxfFsyWrMEjgvyS+LxAxDgCE49Pr0Ee/b66Y8c/RD//G1hfm4Jx/tO
bh7o6cOtGUPRvxSqfnYLDdlxffhYdT5WnrSMl1nNV6oU+9D0oyrUkGUZ2eck
9p8j9+Ibw6pr3PFlCIvrGimc6MH4wq1Xp/WW4Ta9drLxYSfY+mVb5A2W8e2d
ulAbSyfEaqXw1HgZbM/DdkRld8Ai5vxmz3fLqLDaZx/B3wG2p/u9Sd+XMbgZ
em3zbRBrns4v+70Mpt2aGc/TW6BaNHqkP2YZ25JErsu8bsHHpH779YRl+O5+
5lZ1qgXFjs0qJzOWsa9a5GtvdDNUr+eMuZYv4/bak/6eyCaYpztwPB5fholl
4oPWwgYEhH97+356Ge8adFH2owFFbl86yPPLeHWn4bDC7QawmrwJK1pbxoPb
Rhzbe+oRIKghfpx5BZN6voLnGOtR6H1CiyK0gmEf+ZTdT2vBYlGRYG+0gpAp
bn26r1VgC385RTZZQc1h2Ud+D6vAUcN93PPNCjQPHp4IEqsCN79mSKjFCiLe
HsrNKavE3uJF92yHFVRdcFHe4VQBYdZ95jOxKxC8a8hsdrkcIucK0yiJK1iV
WXLPXimD6ONni+upK2AckbmenFSGs4lJRltzVvDOcLt49LEyECrXNfmrqftv
UHb68ZVC0e+ljPL0Cvp3C7ziFijGrRJuq/vzK3ixT1IldLgISjOZOY+XVrD0
7oTHv6giqEgyXTCkWcVnPtlDLWeKoDHkddx2xyqmGaefl9wqhJFwIVvayVWY
nU97UB6QD8ds7vY9xqv4cZ+N8VZADlQsE0s6Xq3iVMps8YG3OdgrqZjs+3YV
IRmdnncUcxBdZPNz36dVOPyu5WvYyEZpxcKlgw6rCPi8pHNKMxu07XUhgtGr
eJp53Pj6q78o8TFyHo9bheENS94jQn/hoLHNIjppFVb/nEujBjPB23flnnDm
Kk44vHkceD8TF0bjt4qWr+I7OO/slM+AyZKD0YWRVbB1c2t1yaXhQrrgg9Xx
VSh5HY4xZk0D7Yfia5nTq2Au0blErv0DBxLpAJZWITH0V9FC7Q+iNhnWX2Za
g6Nyc0zzi1QMcMqdvy6whgMZm7jNU5JxV2Qz/b3Ha9A82r/5vk8CBF/+2flM
ew1xtbuZ4vUTQJuoe+yD3hq0e+p/Wl1IQOTp0lv+xmsIOW4p7dcSD9pz3/2H
LdcQ5X722BfeeERjO94FrmFOabGBPiMWXywyb/0IXcOw/Pa+UMdY3Mt5ru3z
ew1rV11pknViQX+lwi43YQ0MVXTyLJxUu9TPti35a9R74diT08PRoJfb8c6z
bw0vZN+VvvgRiRa7HLuooTWw3dR/LSgZiZiKF/5ZY2swrmYt9F79DVXFmuLe
uTUE/5eq5W34G7G3nXcKMqyjKSY0vPtBBNRUOZMyDq5DkjJ+j1E1DPE6u6ba
tddxjTblqX1BEGQvZSdE6K1j9aYGnwk5CIP/6bx+bbCOh3OpAf80g8BTkbjO
arqOQ7vtmJrogmAtqrhd0mod29znmoSuBUKVxuZoROA6eL4/qGAa8sdcy/EJ
09B12I7Xsidl+uNnYl3cld/rkJWhe1bg7I98nf3n2uPXsbBO85j5kj+EKjKl
WXPXUcG9sfeQH5W/Pee0TLvWoRtzq+x5pw+8TDwPX+lbx8XdDNXGrj44I395
jGVoHQ1Veyv55X2gT+PwMnxyHdeFxi7+yPJGg84xy7b1dSwn3jDSiPBChOhj
38t7NjDJmXWx1O8XJJk3a7Ls28BuPomu8se/0DkYI9DGv4Giu/Rj9gd/gcNz
LeqV4AbK+POUNKI8YE7jkRF2YQN5BZpPQ6n8fbOisplZdQPcS39+8vC7obhn
36viBxuwcHM2PznvCmLxJavlow08vmyno1jkCuG93NLzTzcw9H6TT7GBK8JE
9Xqi9TcQpOspICzpir3XMj48NdqAqeuJQ3//cwWrsUZi6+sNDNt2pzwvc4Gt
dbyCy/sN5Dprv/YLdgHJk35U/uMG3p0cu7P7kwum8sL25VpT/dMCOraKu+Bp
03LG+28bEGhZH3Xa7YKuMVmV0/Yb8BXcOmi1SkYV57R9mMsGtCPF9ZtyyZA5
euXoY48NHIt0vCcbRka2hEvBbu8NNDxuXlb6SeXz24Ma9X4bmFq+abn6moxY
nXOr9kEbuKd23E/uMRmHzb67yYRtoEsob6eSPBl+Du0itJEbaJ1Mq9otTgZ3
8ImK9JgNeHNnxMceI8PhzyfdVwkbeH/AIJh3DxlMFbX0J1Koen974/CCyuMW
PQf9htI28F+Fol4SlccpC68vBPzdgPro5cOLq84w2lraoJa7gVtbVFwlqbw8
xMdjzFm4gWxjBZvf087QEDXYXlmyASP9oX/nJp3RJJMdZvuP+n3oEV+j8rri
AzbJy9UbSBNZDaGj+he/0OpcqaPGs2PjiNq8Mwjr5HdJTdTvO6Ksxk49L/UX
E5dh2waYSjyvilPjEY5RjTvcRbV7vZztp8Yblhcp29O7AV6FT4Z7+cjY27Q+
6Dm4gcN2T/NXTpDhPqb4+c7oBgLrjTZsrpDBShPIyzK5AZtLF9gb7lF5nXP+
T/HMBgTTAr5QjMkgHZW+Y7lAza/kfzS0VP3fSHhMXVjegHI/hxhDNBlTt0a/
z69tIMyfoZqjiozEBB/nRhKJUDF/+PEKlcenMqUfJdKSCIHWixxBe6j1UOOx
+pyRRCQ2q6TLv3FBUNvl0utMJOJ3KskuP4JaHwOjboe2kIgvxh++53a5gGea
/IR+G4lwev/IQ51ajyorF091bycROSziHtF3XUFmGCT9ZSER+oU0e0vcXVHF
4lDxaweJsH548VlRuytk+Ht0lTip9peXSxteuuGL0PczJ3eSiGdbAzx3F7gh
+6woA/MuEiGRHRj5+z93nJWz9iviIRE3nW4t7ax1h8ndEwZBvCQig/yL8YSY
B2IfNV34tJdE9Id1WdP7eOCw6dHG8/wkooHT3UDL7BdGsx6cJQRIRC7bwQ6r
tV+I3uzocfUwiQhP+XOi4YsnRL0X1RQFSURoEEdmSogXFgeOZt4RIhFjBT94
Ay95I01YnVdNmEQshe0jmfR641J+ftcTURJR9YG21U3cF/TMlEvPxEjE3qo4
G6U5XxTfPRZodJZEyMYcKem75wf5Uccn78VJxFbufM3HB/2hyvZwxEGSRJhH
cG6emAzAnvtON1ylSISa7og5q0EguoILIj1lSARdT24jx3QgtM8JGobIkoja
PQ8OqzIG48jnh1W/5UlE3bHFmXEqj4+VO52MUyQRH5lfazGeDMFLjaXZdCUS
IaL7t/+VcSjEIgTv5CiTCMYj8lZCPGFYnn2YXKhCItxvR7EfKw+DhU3hm+r7
VD2DOn5nIwI/op3XBrRIRNTR2sGG91FQoBSqj2mTCAu2KHo69WiwXV7Omn5K
ItycdEY1ZWLgXq9huapPImhsNS9+8IyFGh+5l8aQROzJ+2k9sicOvLpFkpte
kAh7PnFeruA4BK8e38T2ikTsSqlafZobj6dSj57ufE0ifI/UkmZVqPetA7mE
5y2J6Hi2/SrjfALiD6x8P/SBRJA+0IXESiTh7/Vi1otWJEJz240oMb5UfCKv
vLhsQyI8OHfz7BpOhWSHUK30V6r+9PtfpqX9QdkLF5dbdlT/ns2tsabpsE8v
Xrj7k1rP3+OZqh5l4BbD6t0HjiTiv9O71SWVM9Hk/vi/py4k4uTVY7tYH2TB
s8fl/XM3EnE9LYTr7NlsqAuWtBl7kIiaZK5Mr6Js9GWd8P3gTSLeypzYlk/J
wfTA6gHnYGo+TgZutEbng+vDsfZXoSRi/7aP5ryaBRBnV3VVCafm3+ArhPkK
YYsUJt4oEkH+GVsdE1uE6Pr+HFIMiWD5VeJy0qYYtc843vfGUvMjUZEepVMC
XvcX42GJ1HxmPAu/ea0MkkJ+Id+TqfG7FTsyypZDL7/ioUEqtd7K389Vqf1D
0tSxmlMZ1H7ncxpKCalEi7Xqd66/JEIn43n9DuMqkPZ8lVzKosavVCAduqsa
stcGkv/mkQgm5o/RZOsaGHdyGPkXkIgnnhkuf+Vq4fbqypEvRSRioWIy/NW+
OmRsNe7RLiERGslKsxTaevT4+3leKyMRWZ8rJ5Nm68F0tlJJ8B+J0J0P3X9z
voF6n69tZ6kkEdsmWXTjNlN5e1nVoq6GRHQPH/Ndf9kCH4ev51LqqP2aU8/n
VtmKfIHUGY8GEsHJnKpjfq0dIxkDv82aSMTVI4EXWAY6wHqb88nDFhIxa8Av
fuZOF8SGr/BebiMRfVUMmbLy3VD7aNzI30GtH1qOtOhHPbDg9HfY1PV/Pec/
szj3IuR35bWRbmq9+GZoHRjoQ/mlddp/vSRCXeXszk3qA5hpFMyI6ScRrSyD
ModXB3GR/pvQq2ES0XYkvEzZexSPf6UO3h0lEQx/un5G2Y7DVnjQ7/w4iTh8
NCo2T2cS0YWcqnsmSUR+Oa3Qqt0U6u5LspOmSQSH4ranfJLTWJ4xLu+ZIRFh
Ls/u0v6bBt9Xf6uCORLRkkQR4Dg0A0m+KomwBRLx+Kw/l/PdGeglrS9+o1Dz
zZ7drk3lbYcbx+OeL5MIpYDtlPmHM0juVtNTXKX20/jXyxLXZtD2+tuBU+sk
4vIzE7vTR2ZAw/ynjZNEQ9zOb24bo5uBQNCgC4WGhpiz/Wy10krl6fNcCq10
NMQWy0TDifhpuGu/zPHbREPc+T3m+0VjGkJZx0OOsdAQfTOWIhFZU7hvFGB4
iZeGyHry6L4W7yQ2S6llyO6lISwj2rmkKieQvJtjs8p+GsJ7iG9pymICrEVW
AQYCNMQHZyXxXwPjyNujW+8pREP8kP6xhT59DEfLTlxYkKAhpCYLj1EnCBr9
hmxoLtEQ3fdcdXmvjOCLqX/dtis0RF5kDO890gja97EbHJCmIWKvX9tfajYM
hzcLfooKNMRXuT1Tzz4MYfFgJuPvhzSEsMw1KWmvAQStvLqd/IiGsEloKSp9
PADFaiG/HE0awr4y7kXXkQFEmPmda9KhIaJUTfQz/vRDvfazPoMRDXGh8LAO
S1cf8i2u1zy0oCEGB5v6J672wqm10ZvDn4bIfyh2LPZ5FwLWvl9eC6Ah4kqD
z0dKdSGOjxjsD6IhIkSdFuj3dqFKM0w4JYyGqDk/1+cY2ontY2/y7sXSEGzG
ei6MHztgu7pr2CeLhlBnFGDdJd8Gd94KO5scGsJH5e7nri1tCCUsRYzyaIiJ
QwoB0sWtKPwy8v5SEQ3Rbu8wOiHZCrrt6cx9FdTvLfOPf3O1BeZ77ose6aAh
vp12ekk8boI9WJt3dNEQHAqc03cPN8H7Uf6H5W4agus0QaFMNCIjWLCorJ/q
365jXPOhEUvH1+4ZjNMQ83Vrl7L9G2Ai4fMxYZWG8DvjYvWWph56D7tKL+6m
JfR1TKQ+ctdgiFevlWcPLTEoaPHw/kQ1tDtmR1d4aYnr9UGhnvnVePxg0/a0
/bQEySPw6EXjaqipCSmIHaUl/pyKy5mproLsXbNaoXO0xNZIrtEayUqUcjH2
bb9AS/QZUvzoVisg0/BzbkyclmAVZKC0J1RA8k4g52+ClpDRJJ/5erACF2+X
3j0kQ0vwjvlutmf9ByEF7ja+u7TEkvWh/cz0ZYhkDhhbV6El/LiijwkUlOJo
xbG1dlVaQkC+I6HKuhQCcuD1UqclQp48TGzcWgq+G9oa3Nq0xNC7OiFbnhKw
Sif2sb6irvsUWTTuFmFaQnGcxpmWWOM4RRt0NB8LF7UcN7vQEnWWyXZ/FvOw
Kv7m9A436n73Ln1UKMgD4wW/D3s9aYngnMq8xUd54DkztR2BtMTysXMq3P65
kDrhIGSWQEsUZexjtT+dgxtCQTWfk2gJy+DPdf9tyYHi8VTT7ym0xNyuKDnO
zmyoHev6+yudliiY3iyo8C0bRoeEFf7k0RL23UEvjMuy8IuvynChlpZo5Iq8
sKKeCV/ePvb1elqirLCXsZYjE0F7KCkMTbREz4TMSe2yDMTs3kvibKMlUui2
qqecz0D+TiOHU320hGLRW+GafemYYGGNM5qjJR72+71XYf2DKyTFmREOOqK1
SMj8qWYSIm48nKjkoiMGvu/PWRNOApubwUgiNx0h/J1mfvNGInqO2/WY89AR
2/4Jtll6JcJSrbSGjZ+OkFIe1mhqS0B2smTC+VN0hILibvYDxvE4TKsUw3ea
jvDV/jIYKhUPBznN3/Rn6IjxDqUbzrvj8bDvU2DFeTpCK3xt+6/COKzvyHJ+
fJmOmPt51ENuXxwuPj9n8u0mHcGtsZV2vSoGQakyRoa36Yg3l3fdXLeKwTZ6
FX2lO3SEiAefWcyFGLT9MtXivUdHJJ2N2sEbHg2z4gSleA06IkZhenTjexTS
DgidbjGkIzxuHNv6yug3zrTsXzhiT0d0NFnPsUeEQuBJhtUZB+r/xVlaQ56H
gmPqDudVJzrCreUMfd3JUMwwfBXVcKUj7qyHnFtMD0H0yUkqttIR+h/DJ880
BkPga/okbQwd8b+KzTQey+3r43Lv676QEJWhkAohHULkr9ZKpBQqkkIJSSVJ
jmNooKSSZLhvEcmQilSmIpmTHJmVKGUIJWSewvFcz8v9+ay19tq/tdfe+/ti
m3eef2m19gEsXbL/kkgGC9PlixLbxpKA3P8tJJPFwm4Tz4HekiTozJZbvymH
hSOHu1Ov2CZBXPs1lzNFLDzHqyWTcjcRlulY9H6pZWG1oVDqQ5UEoN4MePXW
s9DnU91UzXw8jJlc45tsZGHzYa9Fxz/EQ4NDnqJoMwtt183f7rwYDyG3Vzrt
aGfh1VnTsvqM+8D+0d+ZPcTC/y7YByTgPRg/G+heOsJCAZ2ZSt6JWOialeWt
G2OhCP8u9XVpsVAqai7XN8XCLXD5VKtULFzc8uqI3AKCoj9DOr8viIFx7tXW
W4sJ2n4Ktj4wHQX7Csc+hYkRBFMLl6iCKEjvcWjkLiW4ZPiAd+PlKHDR1q+8
J0nQM1+3zUwkCjqb/8t5Kkew4WlVhILOHcAFrlkZqwluveOuMkHuQJzS12cv
5AmeCbzu9achEg76vE4uUCJoP19q8Nad4ZPlXhHV6gSHr8ptOVbKhfUGP0Lq
NQimfz5T2hbNhWAXy6CPWsx8Vz5Wf3XnglGBpv/XTUy86l2rQpUYXupOOt/x
PyZeUJSMNc0FXiExr+7NBH1frxJv7uFA4eFh14GtBC05ISnLn3BgxTW7k8Pb
CC7/t0hyluE3n+e1x8YNCU7WgmapJweaP205Om1EcNOWbI7vEQ5o8TyzmdtJ
cKmrp7K2MQfC10pbLdhN8Omi5oVEm+G5PcHmlCnBte+VzYblOWDqPWPKv4dg
oUWxgJA4B9ISThov2kdQRFNk/wkBDghUthgutiColv6hQZSHA84jO7YutWT8
12wtXj4VAeVSuXqSVgTH4tiJ3JEIWL1NUUf6EMHbfzXNhjG87HcqUkPOhtGr
y27/Kmb8LYL6S/4wk1/NATUrhpf18j2UlewIyl1Tu2zI8Pfdru/yqvYEF+R9
k/lvLgKmBM3l1B0JTgyWH4rk44ClVukKLSeCXX0mQauWMbxqqy6xyZnR3615
QY4CBxYHxottPklQY+v7pc66HHB9Jiy81YVgyvXCM8Z7OVDVdFHA0JVgO6xs
9zjFAeX5AWqnG8HQw/OL568z/Kxou8DEnaDT5rF0nlQO9JhVze7xICisdcc5
rIYDBl7/m7LwJKgT59dVMcGBxPjUUSsvgvfEtwsVreLCfIXkoI0Pwdywdt2Q
fVywGb7+y+48wVNFDqv2BXIhT3Kq2/EiwcB7fP4KhVzwPNnU6nKZoKttDOeM
biR8CDdsdgsguO/m877llyJB/XV2o0cgwX732UfGFZHQvzCi8nwQwR2KToaZ
znfAWJO33C+Y2T+OX3LXFd/5/3/bJQEhBO+sP/owbUUUODw1yw0OJ+hjPLPB
oDsK1qzKW+jKIbgtAkM3GEdDV+SaI2aRTL5pK8Jms6LB0W+aEr1LMFam5nZ8
5F1YM+5wcDSGoN65S7/yhGOg60RN2od7TPy0/GDNkBg4Zp5kfieBoPUuUt0U
EwsKFYseeSURHFIpnzNSuQc9el5/DiYTNN8mM5pafA+cFEwSVqQQLCsoZ/2e
i4Pj0xO/E9KZ/m59sjn4ezysdT2qfyWT4IuSts/HDRPgZ+d7rmM2wemFjubD
qQngXBWvp5hLUJeI97n7J8LarQtD+fKY/XVmqDV+JBF+vvj7e+9rgsfWmR3q
PZ4EJ+4bB6UVEbz7wzAdjzwA5SUvvt4qIej4t+en4I4H8Ou6rPqZNwRPGI13
uDknw0n3sU/q7wh68+8fDwp4CKcM4+RzaghWiz2fXPrnMazL4/OOqiP4RvnT
aZXkFOhff67Ku4Eg59BpOTHLVHCR2HFOr4ngcZsH/lKVT2Ddrcxy6WZG38GP
+2JupUH/Ammp+RaC6mvGfr048BRO9w0Xl3wlmH9jq0csz3NYb2ezJKmN6UeX
gOzWtufw+0P58YAOgtGu68r2OaSDa2GMkFE3o5/orcaB/RlwJszQpqqf4K6R
uHIP1yxQY6c/f/qb4Kvzv7o1ebJhyEeKdXuIIGvyhex4ZDa4OQ6m7B0jeCQ7
P0bnwwtQazk4t2GC0Vu1zkvR9yUMmZTtWTJFUMy/3LFXMQfOakdPNs0QNOKR
Dm2PyIUNaaxduXMEr7pH6kWZv4KRla5x0fMEHx613asqlQfuAtsMbVgUlixM
PS9X8BrOfe0P7xCg8IFJgHOlQxHkhXV49wlSeLTUa9+oXjHwbm+yGxei8ERj
1q6G6mIIfVa0nl+MQqnf+rd385ZCs332UrGlFKZ31p+Oe1gKsuIpsyvEKQzQ
aqDV9r2BZ5fCK9WWU6j/OLr4YzHzntK4lqErTWFEgup0d8Bb2PzTN8pAlkJP
T3F9tX3lULXnmJPVagrrxHN8hwUqYAl1yMRenkL7xMDouskKsH5lqumiSGGZ
g5Zq/tC/8EtOh9dPhbG3TylxFKiCDU3rem+oUrhT/stKbdVq8A6Sq4v4i8K3
ROIvY7saKN6yLOeeOrOes61yMw9qgW9UIO6RBoVbr+1uc75YB2aP5gMytCjc
UKzBV6ZZD5HWY6dea1OomLLw3+sT9SBf9nVT7f8onBrY6Ngd3wguXg0rWzZT
aJ34tlAj+ANkr3tHfwdmfYK1Mievf4SZ9te/+7cyelPpFt53mkCfm/5xYhuF
lR41xcmvP0HQzuR8nu0UDlse4r072Qz1c9FJAjsojLXo5vUz/QwSmSFBS4wZ
vdkmYSvLvoCd05WzMrspvGj4+fFC26/wWMrLaq0pE8/vQ22ZTBsM1rjAhj0U
3ppNODdyjeHnK0cV9PZR+HfrQcVlsR1wUdty0XYLCgX2vpzTquuEt33GY2aW
jP3G7BsCSl0gGA9fDlpRmHui+6fgk26wsNAsdThEIcsuLmP3wR8Qw6eUctqG
wpq+Q4U2Gr3QmS8d+s9hCu+l9MFfG/pA+azoP/52FAbdF1T2MxiAs/L04Zv2
FEZqFFmO7h6E3JYZA64jheOm55Kyw4eAJ2RI5b4ThWfs65STLYbBSL9bNMWZ
wm/H1JU3dAxDyETLdOZJCh+59QaXaI9AU2pNe74LhYlWTY677EZA5sibd+Wu
FI4MKM7ddBqBY2K5z+rcKBRCu56W/SOQ9i6N+9mdQn6rsFwZxn/MN+F8lweF
bsMQflVkBPTUIh1+e1LI3pBiPdE9DFe6goynvCh0+SKcn/9qGERNPCQEL1Ao
7t5uG8/w8qEFJ+aXXqLwPI/+4lDNYUh4Ydsj60/hDS35o4N8w6AmY5StcZXp
n3hSOZU5BCaDknusb1EYY2zuLiE4BBOD/Lf1b1OY5+otpFY1CPFD09VKYRRW
ZGlpfvcbhLHhll1THApJllfN4f7fEDsWbcSNZfILMYq88H4A+qclofYJhSGD
0g+nHvdB5B/+iy+fUihJ/1rldbwPcGY6/95zCi9n7i0IV+gDzmyLrksWUw8l
87CIh79Abz56I/9rClv90mxin/ZCMJFav62SwpdyNu53m37ARkrgtHIVhakO
u+sV4n5AO/XnyeIaRm+N5G86Tj9Ak/6s1F5Pocb2HvHeyR5o5b8rf6GFwhnp
eXEruR5QEZaSzvlJ4foSnS0nb3ZBpaSUoArNRv2EkbC87A74ntP2ko+fjadE
viTE3eyA2f3JR3sE2KiYESbfad8BquFqOQlCbDy0uJodINoBoQJG9hLL2EgE
XbyXe7bD/plzuZQ8G+/3/D5YFvMNXKM3OXxXYONa6viNLItvEKg9v6hkLRvd
/jtcZiT0DXLPBTmcX8dG3o/+FgevfAWp/nihUQ02Drx/LDHp0QrtrdWO7fps
9LLIt+zw+AzTPhHChQZsdAzm7vTQ/gyikgfzYrazkRVs1sH90wLb9ncJHzBm
446xPZWXLrfAw+o/edV72RiQdzupMqoZThUqLn5tx8auy2EaKt+aYOK+fwH3
IhvfSS/hipU1QuSF+pkYPzbWZ63RMw1vhI3WcrqJl9lYrtamzT7aCJ7LSl4+
C2Tj+JCheO98A4wH86S/C2Hjx6CqEqttDTDmfSlxOo6N1slO3W1tdcA5UNs+
H8/GujNJpvYv6kBTS1aWncTGP4JtcWY368BjqDBG9BEbR8zkx5x06mDU6T+O
ynM2jjVs7mheXwsj5heu2RaxMTBQTLuntgrC1avfOpSwcamxmO7Ba8x5KixN
Tr5hI/8RyenLUAXulfl+nu/YmN+bnzya8R6Gcdb7di0bK3x4IiTuV8KQqq9L
SRvjr6vQNBBVAQO09155Hhov9R/9+X6+DIbUy37w8dJ4VPd8sVtNGYxYC1/s
Z9Ho6inw8MY95n54npyaRdOoFT+oKba5DHisGlj6wjT+3tG78rj/G1jyWOXl
YRkaS5Q1hLRkSmFZg+du/ZU0Plt/Mez+aAlIzpZ0yq+iMW2+XsH13xKQ2WMl
PCBP483KmacaniWgOBXg7KtK4wmVhJVGH4pBd8c3qSg9Gos2hEYnbSsCPXel
DN8tNIYK/ppX/FMIEOthdARp1JOT6LfKKASDIQEPBQMaL7x41vZKrhBMorSr
s3fReIs1OmkqUAB2P0Mv1R+i8dh9i1cXpvMg8Pq2LgFvGn1a85aT7TnwJiYs
V8GXxlYRZ/9Zvhzged4WrH+Bxr9T1b9wql6C90dfLR9/GkWOXPON2/8SXFZl
B/beoLGRrLrV6/oC9uavUaq4S6NV43KOSEEWhNS6z32PpXH1h5pxkxtZUNlZ
XD8fR2OgntWAqGUWGPDb+mgn0ehd9rFVdTgTNlpy3z98wtQjKPf2FdVMWDFE
uV7Np5HPbeeN0IJ0sGJZ6CcU0hh+6bxralg6cJclLisopjErYha1ndJBaPOW
orEyGnWyKiWSRdJhQZCniGM1jca3bgk4fXwGPat/ZOp/ozHTmLd2+7E0WK2t
de1wO41iQ/9o1kmlgZ3xFWufThprh1YEr6h/Ai1usiSzh8ZIhTWRE/AEqgoO
7JcbZOz9+et9FVKBrz5ZafMwjXgsxftnRwoYdo3OWY3SqJ8ju4Y/LgUKBUIf
hk4y/inS9BGJFJiR/uaTNk3j2K7+K6FNj0FHfZ1ZxQyNsXayN125j8HDwGd1
1xyNb5w/b5m0eAwZByom5+dp5LU6WbJ26WP4P0FKSHo=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, False}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, {
GrayLevel[0],
Thickness[0.01]}, Automatic, Automatic},
FrameTicks->{{{{0,
FormBox["0", TraditionalForm]}, {0.69,
FormBox["0.69`", TraditionalForm]}}, None}, {{{0,
FormBox["0", TraditionalForm]}, {2,
FormBox["2", TraditionalForm]}}, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {0., 1.1529124804398063`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
GraphicsBox[{{}, {},
{GrayLevel[0.5], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwVl3k8lN8Xx2dkjL2ZYTDzjCVFyVpKZekeSymVLSUKRdEiya6yU4pvqVAo
WaKktFpClCWRtYXsypp1LDFj/T2/f2Ze93Ve995z7r3P5/05axwvWJ7iIRAI
vPjP//85+9weml9w37lNel//ygoDbPhCxRoUTZHUQYmWHi4DUmLQ4f8U7dGt
x8Y7yqcZUH4o2ddV0Q2VH11jFj3IgEMFB/iPKQYi6Y1a+eoNDEg+k9F4UPEm
kvlmplqUzAADg6Z3ZorJKLOu8MifnQyIVRvMPKCYg1RjepQcwqRA0H58cuhs
KXpqYLOye0UCrrGcvXMPVyHVmw9CEp7RYVWlyZeMpnpUUVg0XHpBHMQqJeQ9
fL8jodz2T05qYpA3mnL4E7QgzynFFlNxGtykVqorW7Qgr0S21/PVNHDW+ssf
d6IFtY/+NBASooFE8Kai06EtSPhv0flaIg28xcpkKRUtyN3Jc+7YBBW2aPcO
2Rv/QlhWeXxeDRVeX1O4vHigFU1tuD28N5QKkc/3Wjnbt6Kv0XtmawOocLzp
vGqjWyt67xu2wcKfChQsrzv9VitaXD60csydCu45u432NbUixTINt1B7Kqj9
dBFJtGpDjwfFVvPqUIFvPmpg1ak2lFBW45CgRYUumVel573bUL3x4W/qm6lw
8zTnon58GxLdXoYdV6LC2EJk81BLGxJQ/ratXpIKFXIvXloOtaEbB2i3XMWo
8GBXU2Qxpw3daW4mCa+mwv5bDJ0YRjvycvxsbspHhefyzx5tO9qOeNy2WPXM
UGB+8+UWq3PtaPft0cEkNgX2GO5f7XG5HX2Ol7x9ZJQC8QeljW9FtaOZin9b
GUMU6HUaD3ye1I42vBPnmemlgIZXaV51djsa796xXrGHAoHhMeMDRe1If+Si
j3InBWpjTyjy1rajwVGvst/tFGBmbLZf09GOCtoTxT/g8dO5q+J3jrYjd/bZ
w5R+CuRV/qg7utiOkq/d2XD6HwV4mzNI/sIdyJGR6d2L12c54KMXz+pAhS7W
YqbGVEiZNfZ+q9KBar5WHrp+jwrjfIwXjbod6LDt5Zp3+H3rSg73je3vQMl+
W31En9Dg+voilpBdB6KbLe8bPiUGzduirTac70BhtC3tSE8c1u2xi94V0IEm
12dxJ6Xp4HFErcLxvw70TT6O+JFLh4+nVxaCHnagl/6yjU8/S4Cof6Pmwxcd
iNk6YHIrSBKOXU89V/ihA9VjRVXMtVLwLMEjvaWuA+m933ZZ440UcLIM22c6
O9C1m3LUj2oM2F0oLkYb70CzibFMchL+fdT0m6gvd6D8K2VnNPDv709bXuh+
0U6UJ+ofrLyPCeoj1wrPyHQisz+9j1PvMOHKwpGpq2qdyPEDsZ/TyIQaoY0b
H+/sRH5qElfsyBhIsRZOfDLtRMFlW3JrtTBwVqlN6LLvRJKEk4PSxzF4p/uw
acGtE+W87nMXCMeA54CbACOoE/mqOG1SS8fA3A7pa93qRFMXFL7QSzB4eJ7i
f/BRJ9ojUodt/4nBcMDvV+4vOxHTTkRheQiD7TffDP1X2ok0tU1UK7gYXE0O
k8tu6ETG6Xw57WQW/MixOvKluxNJnV7zK1qMBfKlCjH9E52IX6ugTVKaBe4N
s1U8hC7kylcxn7uOBSXdVSuylC4UdKnALnEjC4TY97fpyXUhk2sHeqbUWHCE
cPaCrUYXWupx/zm0iQWZFJ0nvtCFjhbknkjVZMGMnHB3rHkX2tr2bUZvCwsM
NnVKvDnehWKWZdo68HiMfo5pg3sXchYPDUzYzIIui6Cro8FdSMM1LyVagwUq
juYlAre70KcHvvm1qizw91gzq5jahdp+GWxxw/P5HDqlavS6C303b/cIU2SB
+N3yUyc+dSGFsF1m0vIscEyPfRjY1IXGulXHTPD6Xr099TPpdxeaTbeiMqVY
sFyuJfJ+sgs9L9Tcfo/Ggv0/yLuaid1I5+rjO3XCLBiayXpHke9G+k7nk/8j
sEBWa/xuhGM3KnR8vqA9gEFoVkLUfxe7kZan2Vh3NwZ9rF1hccHdKEKnDPNr
xeDpqgceGcnd6Otpt/s3azHQaNprUdnWjUgaixYxbzCQy7O8FqrUg5RWbeHP
D8TjFjlGZak9iCUxaagohYHFtVOl+nd+I5499XOXzJjw4ZIY+pHUi75XJpnz
vJKC140ihSWh/chl8NtFU0NJOBmXIUg/PojcNFMXtaboAL+v9C+f+oteOUdQ
eBPFIeNWShHsHUH5154X9J0Tgy2Vq1gSh8bQZ9HHbiPbaFBZ1S4nazeGWh/t
6TuiSYPDNW8VNpwaQ0Ol74Kq1Gjg3+Ckru09huZFPig+VaBBSWu5gX3cGLIN
DlH1FaOB8XjYmcyfYyimKa9zH67ntpK8+VqHx5Hxm8tf655QYYTRUYTsx9E9
7weuDulUuMJ693GP8zj6OeS+cSqZCo/WnKyx9RlHYwzJBWY8FfqUKzoD48eR
zYnoIf9wKrhBOG9V8ziyfDqV63qCCiFneC2trSeQQLOY6joWrr8Pq/N+2k+g
7DVRQ/JSVChouolZOU8g1sjyXXlxXJ92MPrNvSfQJsuF9+uEqSDo1rW34coE
kioR27KenwoKaek5B8InkL3RnocbealwTFDNz+TuBOKvU9DdskgB353THV8S
J1Amn8NFbQ4F7ngU6BunTaCP1T9i9XE9z8kMyKzMmkBcr9JNJrieV7cZCBm9
nkB+xo7r7HA97xPldy8rmEDiJaP7EnA9JxjW/YCPEygtxuYd4PqL+d7ZUVo1
gdanp+z5+ocCWtnWyXoNE0h46XMHER9bdLNWFTdPoLFhcvS6Pgq4iv1x0e6a
QARL13npEQpEGj+pLeifQO+Mr7p94lIg/bLrpm1jE0j/S+AGPrz+kpeb4nNn
JtB1LZ0/0ogKbb2z85qLEygrKfj8uhAqzAt1qbcS2ciXKzEn1kMF/kxwvE9i
o0t/89RbHXB+Q3qstQAbERLva64miMG6NlKVhAgbRYS8Hi4uFAMk+lU5TpyN
asx+t3w+SIf9T1XtraTY6EFIaHMsJgG2BjExYiw2GuWzPfPupwSc7pgq+ybL
RjpXajPjAiXBx+fQv9tr2eikrW/sProUhFMK1lusZ6Of4ebl4YlScPsZ05ai
zEbo+Vb+otW43zEKiG5QY6NEjXNSOT4MeN7VXXJzMxsVum3ez2xiQKGfweQB
LTb6/XbWJl6OCV9oGWtFtNmo227N1mvOTGh+Tj5cq8dGecdNd8o+ZkLv7rOR
UfpspNfJHHRsYwK7p7bQZBcbsVd5dagLYrB8SX1MYC8bbcswFjLagoEw/Y5s
9X42Oi26qGRogwHz5YxFpDkbxZhO6xT5Y7Bhr3W4sRUbCVoU0DbEY7C1930e
3xE2er/eQn42BwODANbfyqNslJAT/SO8Atd7ySAswoGNZnXloza0YGD/+vcB
Iyc2OntyRkplEAPXfUbBq1zYSHYlmvVtBoNL/Zlvys6yEbmhhH4Y16drQQL9
IW5spCjbbT4mwIJYhqukvgcbeeQsvKmisiDtbf1egg8bnVI/v4+C69+rA5uu
lPqzEUvRkzHOwvV+8G5OYABev9+AWrgcC2pDZnv0QvB6i6ojp3A9bcVsxJbC
2WjoYKfkYZwPA7lFu4oj8flb26Sq8fGMmYzf5Wg2Gux6eMcJH/MMBz/TjsHr
cc0111nLAkp4bwf3Lhs9OemkdnINC2Rkdq9+f4+NhEjoJFuGBcoFT/X9ktho
Cc2GsTEWGDfJJkU+YqNbcrJf5fF8nYbjZ+6ns9HjnAPZ33F+Ba0SNc16wkbO
koQp2moWJLEinrzPZiMsZr3aBF5//tZFQs1LNtKcTjPy5mXBd1NP27a3bLTm
1i+518sYCIWcEFkoYqPtQmRTzykM1if+chb6yEbyxQnlQqMYGL41+4hVsFHB
ar1Dgf0YXO7X89StZSNzuxwl4V8YjOxltgZ0sJF+x6MA22IMstuj3MOkJ1F2
oKtown4MlFfcHt18NIlUQsZaND2YcMG3fd78zhQa3Va56sGoFOx564LZJUwj
4oFlw/cOkhCcWab4KGkGjdxjsyRx/V6sKVf/L/of6uRtQUqvxUHkbd9Sxe1Z
pKjnK9F7Rgwca7Orn0bMIYGssu8JJjTIWHtV49T1OXQu0HHGajcNhi4dv7fm
vzmEyYuJUw1ocF6Jfioxdg5l9xaYRe+ggd/VQEJ0+hzyXBv/+uYGGtwCi20X
Ps0hukLNSBkfDYrfzT7eujSHLAMuJw+WU2FFqEloisBB0v5/1cpKqWDglO2R
w8tBov+o+Q+LqFBFPQ7rhTnokFn2C+u3VPjmVt0uhXHQvQ8vVVvSqPB3wwPa
4nYOumv0cjcv7uclHuoHl3lxkK9U+X66PhVcPDVEG/04yKdbaS5PF9fvvbIP
Oq9w0FhsbrHNdpwns4v5nHAOOsqSvp+mjvPCrGBCLY6D2n7aROrLUIGt8CRA
N4GDJD6L844y8PwW44RMHnJQnuz7+/foOE+eeq4/lcFBH9NThaZw/d/Ao+6Q
lMtBrRNqlHcLFPD/JT329D0Hmb+4uM9ljgI1OcKX8z5w0NeyuWRsGtfniAX+
ik8ctDFk+t73cVx/jw7HN1VyULJN/b/0YQp82NS6rruag65t8ZSoGqCAKP+X
N6N1HPRi660vb3G/frwrD+abOOhhbJwXwvX89buMenIzB/W9/hrXiMd5omKP
0ds4SKYyTT8DX8/qRNiwfBcHndBZ36Q8T4GMbR5+Gn84CLsk++ko3n/Mipzg
2znAQcQNVzWb91DBuM8sdt8wB5UzH1CP4/y8X7hT3macg34sv03fQKbB3xjV
V85THNSkKutekUwDbRfWTq9ZDnLXffODYSsGUXpCtSHzHGT3R9H6lZo4dIjN
29xa5qD/2NWar0XooDo8NPiAh4silW1ZVUN0CPzY4v2Mj4vozL+XnuRKQEP8
51UFgly0QGoVGHCTBLnzubcrRbko2vvBx3GaFHgYPpb9TuOirKsvN4WlSUE5
4+6LHgkuunv4nnuILAPE2SE640wu0qnNTZCLZoDzZ/fqBRkucihyIUcNMyD/
gYO1wFouCr2cF/ZGlwn8nqb9Euu5qPyS4WPDcCbY7NXzXKfMRdapVn+flDHh
mawKcbM6Fy2aGvqJcpmw8I95C2lyUQm7c8pnAwb7awWkD2zjovAy3rBCC9xf
p3Ge2epw0TzNSOiuNwbjfoPbTyMu6oT++ymxGIBZ82dvQy46WWHacP4lBrcV
Kq3CjLlo8EaijednDP4svP0Ts4+LpE/ndDHbMNjyLc092YyLbsuPbv40jEHE
09vL2Qfx/XeMGxZwMGgODI5+b43PzxdN34Pr0/pDF5hVR7mo9aFZwxsRFvgp
2z/94cBFO/t0D2vQWVBNPKD1x4mLrl//GjrDZAHzl07FhAsXaVtMX1SVZcG5
nI2WS+e4qDlC/SEvrtfF4YweQXd8fkPilke4/ooe5XeT8uIix5K6rzK4Pjts
mltQ8OOiMLnC6lQ87pPSsWP8MhcFM9eHn8DnR68u880L4iLRnuHjF3EepAU+
yQ0M4yLs0f3eXtxPF4xFT+++hu/fOTNcjedTf8xj0+ooLhIx0sjbLMmCvq/W
F1puclHMnVPuKrhez2vrvXh0B4+f6v1ULorz4Jn8iEs8Fwnef+PFK8gCRQa/
kkYiF2Xv2SvAxc9DN3LMmfOQi/hl9xlnr2BwxrngT2QGF0XdTP1+Fudfmbxp
W9Y7LmKQeiqwDgx+3daU8ijgokfTWktf8P5onMA4rF3MRbqVDdLODRhg3b1N
NeX4+zNc+yqgDAOvJP/qkW/4ecyay597ioGieEaB6iQXDamL/TPzwmBs1tJ7
69l51CyV3/78CRNWB9e/vem+gLLnrOwtCQy4/VGqU9pjEY203hzRvyQJ1psF
eG0cl1DjxX/xfWsl4I0Lg93pvIwImjcEHn0WB4v6hlZR2xVEGolexR8rBht8
NrZoryNASgfffLofDUZK7baDIgEE1IUXuZ40yBG4nbBrAwGYP/5TtrhAgy0P
546aqxBA78dP6ipnGuhXVPSc2kIA7ZkN014HaWBLcxiOMSLA87UZn2Nwvx6d
c3dp4CQB6Asy6Zn9VDDjfLYfdSaAKSGtbM1vKtAM5ksnTxOgXM2AL7kD14uf
x0MXXQlQJPGWk/CdChmLqmSaNwGsvExCH33C/aPJF4peBAGknykO9TykwuTA
4tq7GQQ4uCxJ1LHG9TxAudP7Cb5+xqG1CgepoCtmG38kiwCuRvM6FDMqRKJ8
fpkXBHgMMWZ/d1NB5v7FsafvCBAql8DN1KKCkVpKZlQeAdJFC77c30yFsxX1
Dm4FBIjhvxAdpUaFXLbyN81iAiTllLA9Famwf+9AXkk5AaJiExXNJajg0S3u
nlpJgHVH1GP30qhwz9tQKbyKADfTYmYMRanwJzUlae9XAmQI/IjW4cP97fYG
K5U6AlAHDSu281BBrX5JZHUDAbJrk8a0lnEezNsG//hGgBeVsnStWQokx1zf
kf+DADWvH8ptm6JAhWLBVEIzAb5b//6ni/NguHgg+8ovAqBvxubHcP2mHKSf
cmj7/331iX3BeaD111DGoIMAa0c+lP7G9f5okEfLui4C6Ga4RFvgPAimp8aQ
ewgQAixZJTyemd2wd/g3AbgjvzeJ4f1Crf4yT10vAbI28hFicB5NtagUv+wn
QE7EdhMtASpIuR31vjNIAAn+sGNdqlTQ472h5v2XAAdiY6yDXKjgmFgwaD1C
AIrGXO3pYvw+NAZTtMcIwCkKDYzdhL+3z3Rb6QkCiJ6IDLD4QoMfx4zECJME
eDLpNHzhihjMT3nU/pkigDNBo8XTSBxkr6dGVM4QYPnbr4sbxelgJNu48+ks
ASLCH6XI9dDhbO7y3A0OAcTuDKasSpGAmH2qr8/PE+Cuc3jVJjNJyPt99Kz5
IgHOz1q9EBqVhA7fG2s1lwnwywhT7vWRAqLo+w46gQh/TnbYrZ6UAsXHg3Ec
IhHs5OgKpscYsF9bwqx9FRHCTz7OOVPIAI9GI/4SEhGMf77SFBZhwn1nz08p
ZCIslL/PyjnEhJLF1EthAkTgP3O4Ji4O9/t3GjWdhYggw+9f+LMO54nSyuge
ESK4jG0j2qwwQa1UNVN5NREIjZYCQxsxsDp0zEGUSoRnt6Y11HFeXBq5ITVJ
w9c7Uvas3AODlJD3Td/FiZA9FYLWx2BQKTl0I0+CCH1C05e+ZmEw/ELCKEGK
CIuOTWTxjxhQjHYtXWYSYaub8PiR7xhotXnm2bOIcDTXhzXUi8Ex97QL+jJE
iNms1M2H+1OB3UeL98sRwWT5Qkk77l/zMHGBI/JEWE2ZCziB+12nydpDTuuI
IGUeF9mM+31KVUSamyIRDkUqnPfA/fOHBzsn/DcQQW9ZV8wF1++zHnM6ERuJ
QM0+wPMb13eJPa8iY1SIMBHTb8aP86Bc+szPJDUijOVKKxJxXrhPr5F/okGE
pRuioqN4nFXd5vZmMxH+HTjnMIDzojr5btGHLUTIDzz3VhD39z5e+/mrtYjw
RjpN+iLu79eakA792E6EkLQAO3Xc3zfKlqR2axOhW3sv0wbnRcA/n/FhXSKI
RnbvJeC82PhVXWd2JxHsvVXmtuC8aEkZukbUJ8KqONshEl5vuE/qD2FDPN/I
dI3gVSzoXCPmttaYCL/netIezWEQ4zebYm5GBM+P8a53OjGYU/jAl+1ABLM4
/pq8DAweL3gfzDuBn6eB5q8nyXj/1aSW8smJCEG9vGqJ9zB4diVlxy8XIgwX
3iaFX8f7se9hriR3IjRG8ZqcP49BRbDJN4dgIugr8j2L24rBnfaWh+KpRKgr
2XFfu4oJaUtRBktpRBi/RCpq+ciE17Iw2P+YCAMiuU4+hUxodHqqkf+UCMLC
+3YVvGCCyKhfuc0rIrT0bESmsUyIXGT8TS7F30tmT3HZCSYESh/botSF1ydw
yO7rEgPOOvTU6GE8cOtnhpOxNgMmd5qPEe/ygOLn78VuXyXBkGA+NSy+Ctan
2JkLHJKAbW3ys0o3V4GnhaeqszAd/sVFdPxH5YXQaP+jtz6IgdMLs4LoO7xQ
7qWWT7tOg3XyhUJusbwAvs7kgnAa9MWvczCL5wW5N/529sE0OBnMJdESeeHs
Ux1mji8NTh1MP3gvlRe+Bvk02OB8cuHOjqe+4oU0ef3p34Y0OLcrWSG/nhcy
znX5vF2hgkohv//9Rl5obnMU9l+gwqiaZ63/N16IKFFNQXNUcJXa46nbjO8n
+/RTwzgVzo9MfvzUyQtnPmX1L3RS4cLtXcdqR3lhBRsICMP1zLNz9M5vQRIU
mBlbml6iQuHt3/4jwiR4X1b+os2bCjy7m4//EyVBGOeq8umLVIjJKVUTECPB
HOd99NXTVMgJulOjgZEgufxjZ+NhKgyv2c4TrEwCojfPpSRNKmxuVvl7XZUE
koXnWnbg/Yf/jTWNd9VJ8CQmwrJ1I86TacHkJ5okKJp8koLJU0GhonNHgw6+
Xlxe7AsKXo/fN7lWPRJ4TL9pscL7j3cqVeReRIKACkxriYz3K3Gvfs4akqBm
Nc3IYoUCN/ZmFBN2kyDXYfX0Iu7/m5YS0gX3kECr/khxFs6j485hF2X2k8Dw
uImsEM6fp0y/IxtMSbAWTv3p+kuBiXpXtNmcBCO6paul/s+fsBOKupYk6DnY
YI9wvgRuOyyy24oEoYqGxsY4fypHTGbMDuP1zp2YK++jgHAKarc5QgLHX24W
28fwfsRqS5mTLQkOu1nze+H5JfErZZ0/hq8fLhgwJIfztVg6xteeBL8WZDpf
HqHCxos035DjJLAw//OjIocKFxXI9lGOJIgwElLpVaJBQeuCUdxJEmh42Ufs
qKUB4SZb+ZEzCdyNvpxNjhEDY4N+WtZpvJ6F7iNNZ8Wh+Vl9T7ErCUryr969
t04CZBzKqz67kaBW75eT85gEnBIryGl0J8ENoYxz0amS8LzqeVybBwlIUWFS
xiAFM5dTr/R5keDR448n62qkQFcj3mncBz/vU1aWmwwZENZ3w4Tjh+dLmK7P
z2ZAzf2gTTyXSXDZr7Q1go8JtANeUsIBJNj0KXY+COeJLfHMCj2IBOcP/PI1
TGRCaq7dgGwIfv+eK5bKzUwYOmNZpxSGv8cfGyNtBTHQkDF+pxlBggeaH3o/
b8PA95tOkt41Eux7bhCh74BByVWNUOPrJHgl/bEgIAQDPh2FMxZRJPB8kbRM
f4TBgQmG+dH/SLCcW2MXU4DB7ITALYNbJKjPKMkTqMP5w+bWKd0mwYb1XJ7M
LgxMJv8KU++SoPrkGueXYxjMTLbu48SSYMXat9NlHoPkqeob3fEk2MrqshIk
sWDP9Pvqz/dJsGBZEfMV7z+mprP4cxJJ8O2QGbFdnAUPZhKM4x6QoPiZtYoT
7vd3/7t+9UoyCUxet6XewPWd/c+/0imFBOJj93d44fqfOHuGd18aCVBtqQ3C
eWE0Z2O4+TG+v3xVBj/Ok/G5vaGMTBJceV3AGsbj9zk7PhGekoBgk2S8gPPE
gKtEGMoigWlqxCsLfL1RLgM1ZOPnoaM/RcD7nfh5gcC8FyT4tK20jcliASxw
ix++JIG+348PL3HeDS/8XQh/jb/PWYHj9Xj+sYut2q5v8XrP6B8Pp7Bg51K1
/8FcEjiEBPF0CbFgaOl9gXY+fv5RsrcH+PD+YyVBS6CIBC5J7ftUFjEYWLnu
zS4mgfen/9Quz+J8IVx611KC3//InbAHbAz6iLabM8tIEPSuY+/FPgyieZlq
hjUkOChZ92C+Buc7SfD8xloSdCRWpvpXYNBDms+m1uP7dXkzJz/g/SK5Tamn
iQQDKtaW315h0CGQqBDQSoL8kZMV1+MxUF7NlM4fwvePsvTY4YhBDYMprEzm
g3t7+V99msf9TH53Hr8AH2TBzXDfGSYsHso4MSDIB3ZrvRvVxpmgekcjP1WU
Dx6qkOtSfzMhRtDYUUqCD2ZCX5olfGHCoQXPApICH8jYTqjVxzOhp6PuZI8B
HzSe4Ofs38KE2UchH+IC+aBq3kEk2pMBY2R/CwUCGUSG8oLk+iThaqRhn6A/
Gcazg1UiIySgPOl2geJlMphct9ZOCJIAwsvuaIMAMohes/mV7S8B/j8vb70U
QgbmZ63yn+clwFX+3dW/18lwMahtj+5hCbAoXqf0JZEMYe+dCg6ulwAWm+QW
UUyGnxWbzLNq6HBklZVBagkZAk+ZJ4xU0CFOIk3iw0cy9BWnnFIvpYOo3s7S
mQoyzB5EV4ve0oF4w4dyso4M3a0nOvof0GFg7eAbgy4yvBrNDgu9QIe127Ze
s+8hw9yMS2PHGTocNwk7eukPGXqFeRK3n6RDq7ss75sBMjAe6KfNHKFD7Qfr
Q2smyBDE5L8SaEAH/qYMJb1JMpgu1T3u06XDrr7ppSPTZPjw0sp4/zY6lAjG
ZMbMkUFwjM6RVaHDgnTXpedcMmSqXCdFK9Jh+yYVsy8LZDidoRbFlaODl9Gl
tX1LZHj7Oi3yNEaH19Zf5lZWyKD5PGTpF50O/wMSaTB1
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 4.1000000000000005`},
DisplayFunction->Identity,
Frame->{{False, True}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, Automatic, Automatic, {
GrayLevel[0.5],
Thickness[0.01]}},
FrameTicks->{{None, {{5.15,
FormBox["5.15`", TraditionalForm]}, {6,
FormBox["6", TraditionalForm]}}}, {None, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {4.214728392015991, 7.051017594689758}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]}]], "Output",
CellChangeTimes->{
3.710010241803006*^9, 3.7100102777920027`*^9, 3.71001076484037*^9,
3.710010820129405*^9, {3.710010955862033*^9, 3.710010982392049*^9},
3.710261288240065*^9, 3.7102613415046473`*^9, 3.710261377900333*^9, {
3.7102614517332983`*^9, 3.7102614675708027`*^9}, 3.71026180044483*^9, {
3.710261943803957*^9, 3.710261986103899*^9}, 3.710262638748583*^9,
3.710262812926292*^9, 3.7102629068286867`*^9, 3.7102629586836576`*^9,
3.710263017842198*^9, 3.710267822402451*^9, 3.710301414350767*^9,
3.710380743397444*^9, 3.710382206573708*^9, {3.710382262146718*^9,
3.7103822744505367`*^9}, {3.710382308405684*^9, 3.710382323449349*^9},
3.710496079537003*^9, 3.710821991307589*^9, {3.7108223026868553`*^9,
3.710822328449298*^9}, 3.710822363000587*^9, 3.7108226895216837`*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {
{GrayLevel[0],
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.6631237556772783, 5.059450813334131}, {0.68541099386381,
5.05827743801483}, {0.699827209167197, 5.06764643081042}, {
0.71475601887573, 5.086023826420054}, {0.7284885614034877,
5.112929097533294}, {0.7383014588904864, 5.142651405652801}, {
0.744939306828797, 5.176448235560368}, {0.7477502951848498,
5.211265696941825}, {0.7460826139250745, 5.2440498994830005`}, {
0.7305464793822267, 5.292269296777347}, {0.7176674540788954,
5.304257907375546}, {0.7027186323077941, 5.307668587214951}, {
0.6874570826151684, 5.303564237772302}}]},
{Arrowheads[{{0.062499999999999924`, 1.}}],
ArrowBox[{{0.6697094199832774, 5.291081329669611}, {0.6540699140067214,
5.279746042545659}, {0.6221038266337331, 5.240778343296033}, {
0.6068277553704865, 5.216946436816766}, {0.5926722640884666,
5.192105361379456}, {0.5796373527876736, 5.166255116984101}, {
0.5677230214681073, 5.1393957036307025`}, {0.5553586743211116,
5.106630120059311}, {0.545401916548393, 5.073733625162852}, {
0.538255794382286, 5.040849370685529}, {0.5343233540551254,
5.008120508371544}, {0.5343289268145883, 5.002789156159335}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.5343516643182804, 4.981036621994629}, {0.5343572773776949,
4.975666715590901}, {0.5391102461607777, 4.943607669713602}, {
0.5456411683575092, 4.921525741110058}, {0.5556068870389465,
4.900003419024698}, {0.5697471307542351, 4.879512067179381}, {
0.5877491967138815, 4.861969831440761}, {0.6112577925618348,
4.847780940366533}, {0.6412516806019564, 4.8399424357443115`}, {
0.6753776079902166, 4.842859433444956}, {0.7152503264025558,
4.862313810013366}, {0.7366594613413127, 4.880876448320528}, {
0.7535265180609187, 4.901081028922247}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.766069396959668, 4.918807747313854}, {0.7755425336605265,
4.933488691576033}, {0.7920135920877625, 4.965495142645348}, {
0.8075094467531096, 5.002271243182795}, {0.8217357509741533,
5.043161283309515}, {0.8341374918168081, 5.087852898843798}, {
0.8443681893483246, 5.135759049046215}, {0.8524462963882944,
5.185812009201332}, {0.8574751494168074, 5.229071912711141}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{0.8593849886269922, 5.250735621402616}, {0.8620449784873218,
5.287615670058291}, {0.8633941730439991, 5.336664772789712}, {
0.8626645883874939, 5.383589786612091}, {0.8600829634789584,
5.427889135349538}, {0.8558915764787538, 5.468469370415515}, {
0.8503202741878744, 5.504710541152004}, {0.8435771485284242,
5.536821318275912}, {0.8358702914225069, 5.565010372504138}, {
0.8324562740984252, 5.573813246817854}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.8245908052086941, 5.594093968173995}, {0.8184547275241755,
5.609915540096024}, {0.7991834060774337, 5.640538954417818}, {
0.7788690113294876, 5.659425021479962}, {0.737598739685867,
5.674589202634545}, {0.6965021515103618, 5.6651211809285735`}, {
0.6714570893903369, 5.653551413741027}, {0.6470255370440054,
5.638839509974118}, {0.6231515100211439, 5.619881727382336}, {
0.6000029616724225, 5.599989292702203}, {0.5775059370622941,
5.577035562972703}, {0.5706431817605429, 5.569758390684547}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.555720468589284, 5.5539316638298315`}, {
0.5348842502159058, 5.531198191332223}, {0.5147299156368474,
5.508456347734149}, {0.4945590294354606, 5.485714128031941}, {
0.4751309912759737, 5.463065417884092}, {0.45644580115838695`,
5.440510217290606}, {0.4385034590827003, 5.418048526251478}, {
0.4212614975376102, 5.3956795757894565`}, {0.40467744901181324`,
5.373402596927287}, {0.38875131350530956`, 5.351217589664969}, {
0.37348309101809907`, 5.3291245540025045`}, {0.35344517936394393`,
5.298488570574921}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.34170829847905393`, 5.280177094906493}, {
0.3183519437540281, 5.2416600509999345`}, {0.2973393008626949,
5.204225784366195}, {0.27798553871891307`, 5.167059836476425}, {
0.2601924575139879, 5.130159997059176}, {0.24386185743922428`,
5.093524055842991}, {0.2288955386859277, 5.057149802556426}, {
0.21519530144540316`, 5.021035026928026}, {0.20286382781689571`,
4.985752280920672}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.1961830335990262, 4.965051257698566}, {
0.19120027226789085`, 4.949575067559921}, {0.18332565047859656`,
4.9229366045160425`}, {0.17621240782426206`, 4.896441479205276}, {
0.1698691440735575, 4.870088937154309}, {0.1643044589951529,
4.84387822388983}, {0.1595269523577184, 4.817808584938527}, {
0.15554522392992404`, 4.79187926582709}, {0.15236787348043995`,
4.766089512082205}, {0.1500035007779362, 4.740438569230561}, {
0.14820382513442126`, 4.699683657360054}, {0.14929540987346918`,
4.659279130346709}, {0.15101696428470038`, 4.644154024332054}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.15347697670787067`, 4.622541028277396}, {
0.15385475487764108`, 4.619221972643417}, {0.16270754091975093`,
4.579509700530939}, {0.17716318616619614`, 4.540138846248483}, {
0.19948469863210827`, 4.501106220163758}, {0.23295957318852978`,
4.462409168591042}, {0.2644328181895766, 4.437236189545729}, {
0.30646930570063374`, 4.412205213208954}, {0.33235694307849684`,
4.399742850693337}, {0.35668831554655606`, 4.389942037534814}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.3771757794575606, 4.382658415627479}, {0.4003726808201234,
4.374923626795274}, {0.44587499105147715`, 4.362715880143613}, {
0.472766282669435, 4.356779065306058}, {0.5029240087950241,
4.350990926329513}, {0.5370932830647366, 4.346701355363108}, {
0.5762279939761547, 4.346015624268837}, {0.6210210614504957,
4.350094780267612}, {0.6721654054089766, 4.360099870580346}, {
0.6969176941802088, 4.367401882416586}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.7171367204151157, 4.375380142959478}, {0.7299373023971312,
4.380682931593374}, {0.7611789735022303, 4.398252020183276}, {
0.7939343172316686, 4.422421211121558}, {0.8279293503390731,
4.454612100295208}, {0.845226387339384, 4.474203682799405}, {
0.8626581090525756, 4.496373563196808}, {0.8801272720821478,
4.521257999445072}, {0.8975089206271083, 4.548965022928385}, {
0.9147127393920755, 4.5796379482477665`}, {0.9310471599991721,
4.612220750831979}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.9401128886308433, 4.631993159988408}, {0.9423919018484443,
4.636993856338638}, {0.9528350043068582, 4.661748150250315}, {
0.9629777204569069, 4.687682971739255}, {0.97282005029859,
4.714798320805457}, {0.9823619938319079, 4.743094197448923}, {
0.9916035510568602, 4.77257060166965}, {1.0005447219734471`,
4.803227533467641}, {1.0091855065816684`, 4.835064992842894}, {
1.0174548166576227`, 4.8678031384887195`}, {1.0252815639774082`,
4.9011621290984255`}, {1.0326657485410253`, 4.935141964672015}, {
1.0343871980342971`, 4.943722570995768}}]},
{Arrowheads[{{0.06249999999999998, 1.}}],
ArrowBox[{{1.0386659567740688`, 4.965050146648608}, {
1.0396073703484734`, 4.969742645209486}, {1.0461064293997528`,
5.0049641707108385`}, {1.0521629256948635`, 5.040806541176072}, {
1.0577768592338055`, 5.077269756605189}, {1.0629482300165773`,
5.114353816998177}, {1.0676961439357378`, 5.151705195624797}, {
1.0720397068838414`, 5.188970365754782}, {1.0759789188608886`,
5.226149327388132}, {1.079513779866879, 5.263242080524847}, {
1.0816364809564765`, 5.288335062739615}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{1.0833656843381037`, 5.310018460473807}, {
1.0853704489656892`, 5.337168961308373}, {1.08769225705851,
5.374003088955184}, {1.0896097141802732`, 5.410751008105359}, {
1.091297209626226, 5.4512344257245555`}, {1.0925810427353921`,
5.491401159164176}, {1.093484575440508, 5.531113303457881}, {
1.0940311696743121`, 5.570232953639362}, {1.0942441873695408`,
5.608622204742297}, {1.0941731644601396`, 5.636039195743972}}]},
{Arrowheads[{{0.062499999999999944`, 1.}}],
ArrowBox[{{1.0940244816874485`, 5.657791063655819}, {
1.0937629408752225`, 5.68265788984725}, {1.09311540055115,
5.718028513916627}, {1.0922244591343615`, 5.752368478010618}, {
1.0911091994155535`, 5.7858685773524074`}, {1.0897914730420366`,
5.818506918807259}, {1.0882931316611226`, 5.8502616092404445`}, {
1.0866360269201223`, 5.8811107555172315`}, {1.0848420104663468`,
5.911032464502889}, {1.0829329339471063`, 5.94000484306269}, {
1.080930649009713, 5.968005998061891}, {1.0797175915529185`,
5.983700572647755}}]},
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{1.0779789702385094`, 6.005383426024089}, {
1.0766488517517943`, 6.021334979209109}, {1.0743781284310316`,
6.046753698203717}, {1.0720378467429224`, 6.0713595568759455`}, {
1.0671995825462282`, 6.118185655444139}, {1.0622360077248425`,
6.161919199295425}, {1.0571805231575553`, 6.202744592846521}, {
1.0520273596178193`, 6.240891086248402}, {1.0468197105107593`,
6.276531872484218}, {1.0416007692414988`, 6.309840144537113}, {
1.0383776866931762`, 6.329163822010841}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{1.0347066834646954`, 6.3506040654785485`}, {
1.0308931389801343`, 6.372055345570348}, {1.0255521549749353`,
6.400113988492791}, {1.0202197250533918`, 6.426139993019111}, {
1.0096156406991241`, 6.473039116886102}, {0.9991159991551839,
6.513697747174012}, {0.98872263989649, 6.548820108132345}, {
0.9784374023979594, 6.579110424010604}, {0.9664515364416089,
6.609689800062339}, {0.9546107080399473, 6.635723080029101}, {
0.9429149171929752, 6.65721026391089}, {0.9402271896076722,
6.661152260406214}}]},
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{0.9272389986075876, 6.6785350786592135`}, {
0.908683809768237, 6.698253290082484}, {0.8865556854306251,
6.711886946189501}, {0.8439029793411769, 6.716542536875447}, {
0.8107166749860454, 6.706635389626586}, {0.7788350307216068,
6.689095201932557}, {0.7482077040474608, 6.6665917194039075`}, {
0.7187843524632074, 6.641794687651188}, {0.6905185426019671,
6.615731427592321}, {0.6633638410968606, 6.58942926014523}, {
0.6587525436065946, 6.584768550254094}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{0.6434533584814822, 6.569305426569395}, {0.6362792826425568,
6.562054476854522}, {0.610256876781623, 6.534792775772859}, {
0.5852966235140586, 6.507644156900236}, {0.5613985228398641,
6.480608620236657}, {0.5384806003784833, 6.453685330902605}, {
0.5164608817493597, 6.4268734540185655`}, {0.4953393669524936,
6.400172989584537}, {0.47511605598788487`, 6.373583937600522}, {
0.45572172380887416`, 6.347105365204605}, {0.437087145368802,
6.320736339534875}, {0.43549764673370595`, 6.318401244973839}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.42325736741328984`, 6.300419342356514}, {
0.41921232066766845`, 6.294476860591333}, {0.4020972497054735,
6.268326928373976}, {0.3827225199079072, 6.2373847863051095`}, {
0.36434282358079706`, 6.206595925007235}, {0.346895954616926,
6.175959416271144}, {0.3303197069090771, 6.145474331887627}, {
0.31455187435003373`, 6.115139743647481}, {0.29953025083257867`,
6.084954723341496}, {0.28519263024949526`, 6.054918342760464}, {
0.27147680649356676`, 6.025029673695179}, {0.26686202177906704`,
6.014547842820436}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.25810770237016445`, 5.994634753445634}, {
0.2459292624662255, 5.965693609445178}, {0.23408301142563145`,
5.936245118554794}, {0.22281038585726393`, 5.906942015470944}, {
0.21207784437875452`, 5.87778357043123}, {0.20185184560773467`,
5.848769053673243}, {0.19209884816183614`, 5.81989773543458}, {
0.18278531065869053`, 5.791168885952835}, {0.17390565395534344`,
5.762581836219604}, {0.16546290267481398`, 5.73413593592001}, {
0.1574364210836942, 5.705830483331958}, {0.15215081014154397`,
5.686321121579553}}]},
{Arrowheads[{{0.062499999999999944`, 1.}}],
ArrowBox[{{0.14660151121984744`, 5.665288669531078}, {
0.14254972403605154`, 5.649638114402084}, {0.13564823711271232`,
5.621749794616065}, {0.12908047694515049`, 5.593999115653192}, {
0.12282580779995803`, 5.566385375791368}, {0.1168745770904201,
5.53890793192184}, {0.11122051165957364`, 5.511566158970731}, {
0.10584804491863818`, 5.484359382268256}, {0.1007416102788335,
5.457286927144628}, {0.09588564115137913, 5.4303481189300635`}, {
0.0912645709474945, 5.403542282954779}, {0.08686283307839948,
5.376868744548985}, {0.08266486095531349, 5.350326829042902}, {
0.08195836824318596, 5.345615087406548}}]},
{Arrowheads[{{0.062499999999999924`, 1.}}],
ArrowBox[{{0.07873278475999321, 5.324103024028672}, {
0.07716835826165129, 5.3136695498502124`}, {0.07205503601522395,
5.277263550420278}, {0.06729548580630984, 5.241107089491237}, {
0.06286029922518718, 5.205198425801233}, {0.058720067862134476`,
5.16953581808841}, {0.05484538330743011, 5.134117525090911}, {
0.05120683715135234, 5.098941805546877}, {0.04777502098417954,
5.06400691819445}, {0.044582276726775956`, 5.029311328337761}, {
0.04210760290210371, 4.999930894053844}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.040411853672421255`, 4.978244665857435}, {
0.039067121751881956`, 4.960631981776565}, {0.036742894520104416`,
4.926644933224637}, {0.03470635644924851, 4.892890773260211}, {
0.032956599282170713`, 4.859367855959575}, {0.03149271476172746,
4.826074535399021}, {0.03031379463077522, 4.793009165654837}, {
0.029404805945060265`, 4.740574450501835}, {0.030158865557797298`,
4.688713365001444}, {0.03219311554307131, 4.652317472604315}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.03382254458747269, 4.630634800408841}, {
0.03898358456659368, 4.586685524535229}, {0.048723892730297313`,
4.536506441579844}, {0.06417764570998487, 4.486876343057478}, {
0.07477116317231515, 4.462264898270211}, {0.08727577461630276,
4.437789189798886}, {0.10568176393515005`, 4.409252281892531}, {
0.12932411682899558`, 4.3808988760556}, {0.1537643495103062,
4.3580417219757255`}, {0.1701020693691896, 4.3459540031633495`}}]},
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.18780723835413282`, 4.333345552644789}, {
0.2135950480270411, 4.318090847327846}, {0.2493594539409804,
4.3009462138608905`}, {0.28319334570039956`, 4.287732149590299}, {
0.32421384574760553`, 4.274558683609555}, {0.36283308269915676`,
4.264328303627857}, {0.4092075506503334, 4.254122408166482}, {
0.4532741825798693, 4.246317487988733}, {0.4785069835191578,
4.242616520190387}, {0.4979102460076536, 4.240087653232087}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.5195713102183604, 4.238236293969974}, {0.5573492930467119,
4.23599257524706}, {0.5866334253515044, 4.236486351652851}, {
0.6182814729910776, 4.2383284141087225`}, {0.6524987561022957,
4.244080746989232}, {0.6894905948220236, 4.2563053346689355`}, {
0.7292569891502669, 4.275002177147835}, {0.7717979390870147,
4.300171274425928}, {0.7940646952724048, 4.3159469434826665`}, {
0.8169367360875842, 4.334868725975205}, {0.8194219291804142,
4.337265014906601}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.8350808390006497, 4.352363750046424}, {0.8402920475735002,
4.357388535226434}, {0.8640086157711, 4.383958284559249}, {
0.887911272874218, 4.414955398744624}, {0.911824851076689,
4.450757302553546}, {0.9338486316775085, 4.488714697788165}, {
0.9552657776645186, 4.531263689893901}, {0.976076289037725,
4.578404278870767}, {0.9862540567441498, 4.60369642218587}, {
0.9962801657971155, 4.630136464718736}, {0.9971686249717812,
4.632631080382229}}]},
{Arrowheads[{{0.02474176090450419, 1.}}],
ArrowBox[{{1.0044667644223118`, 4.653122796272837}, {
1.0060651375708891`, 4.65761070838658}, {1.015519493439736,
4.686005455106617}, {1.0246432334036502`, 4.715320704878835}, {
1.0334363574626315`, 4.745556457703229}, {1.04189886561668,
4.776712713579802}}]}},
{GrayLevel[0],
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{0.6046524486184166, 7.2}, {0.5983280611475902,
7.192543179593463}, {0.5748419188756299, 7.163831269618011}, {
0.5522416385951907, 7.135233517581794}, {0.530527220306273,
7.106749923484817}, {0.5096986640088763, 7.078380487327078}, {
0.48969131621452844`, 7.050124304885098}, {0.4704405234347566,
7.021980471935395}, {0.45194628566956097`, 6.99394898847797}, {
0.4342086029189415, 6.966029854512822}, {0.4165021984484508,
6.938111171695898}, {0.41466782163814586`, 6.935112833416555}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.4033156803426501, 6.916557452860288}, {0.3994897924322785,
6.910303936074804}, {0.38320085059987075`, 6.882608596900663}, {
0.3675469757628889, 6.85502380642011}, {0.3515137755739323,
6.823319098021509}, {0.33620353228701105`, 6.791761690931337}, {
0.3215340530739688, 6.760349565425833}, {0.30753273554419114`,
6.729083394746252}, {0.29350441000432925`, 6.697816553755333}, {
0.28009023012756334`, 6.666694326967658}, {0.2672901959138936,
6.63571671438323}, {0.26218036948617707`, 6.622787721202303}}]},
{Arrowheads[{{0.06250000000000004, 1.}}],
ArrowBox[{{0.2542183613537263, 6.602544947806201}, {0.2434787701576341,
6.5741939940755705`}, {0.23235978997862805`, 6.543646210855254}, {
0.22174736682630164`, 6.513240366341099}, {0.21164150070065496`,
6.482976460533107}, {0.20199870398930433`, 6.452853183479721}, {
0.19277548907986614`, 6.422869225229391}, {0.18397185597234028`,
6.393024585782115}, {0.17558780466672683`, 6.363319265137892}, {
0.16612082172786508`, 6.3280496477497055`}, {0.1572048121873658,
6.29297627864802}, {0.1568151951737818, 6.291359268906259}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{0.1517197638579376, 6.270211932447823}, {
0.14880088221877097`, 6.258097830955792}, {0.14087013799562254`,
6.223412977795975}, {0.13337368569146246`, 6.188920392291523}, {
0.1262726314798327, 6.154618747565393}, {0.11952808153427513`,
6.120506716740537}, {0.11310114202833177`, 6.086582972939912}, {
0.1069940519866143, 6.052846800864567}, {0.10122170669560196`,
6.019297673393429}, {0.09576419672163818, 5.985934545916265}, {
0.09060161263106623, 5.952756373822844}, {0.09017511953822242,
5.9498772679791}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.0869876136598901, 5.928359529578971}, {
0.08571404499022954, 5.91976211250293}, {0.08108158436547147,
5.886950717346296}, {0.07668432132313537, 5.854321143742708}, {
0.07250234642956459, 5.821872347081934}, {0.06853469340188471,
5.789603380373686}, {0.06478622461900044, 5.757513326664582}, {
0.061245773639923826`, 5.725601186399748}, {0.057902174023666965`,
5.693865960024311}, {0.054744259329241915`, 5.662306647983399}, {
0.051760863115660735`, 5.630922250722139}, {0.04935485860650277,
5.604294100279525}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{0.047471960413266394`, 5.582623233897365}, {
0.046272960367078335`, 5.568674202319076}, {0.04375188496651553,
5.537808645538414}, {0.04137396385918557, 5.507114221019957}, {
0.039130690919368674`, 5.47658997234924}, {0.03701356002134502,
5.446234943111797}, {0.03501406503939483, 5.416048176893167}, {
0.033123699847798324`, 5.386028717278884}, {0.03133395832083568,
5.356175607854483}, {0.029636334332787125`, 5.326487892205503}, {
0.0276627014170274, 5.289993936311152}, {0.025994975452885753`,
5.257060535607788}}]}}}}, {{}, {},
{GrayLevel[0.5], Thickness[0.02], Opacity[1.], FaceForm[Opacity[0.3]],
LineBox[CompressedData["
1:eJwdl3k81N/3xxWlUsy83/YZRUIS2Zeic0oq2klESUrW8iFbIjO2iuzJmoqU
JRFSliiyJdlSqZA9+y6l5ff+/uafeTwfd+69r/u655w5V8LKydB6KQcHx/cl
HBz/+1b5/08lcPz/RxT594tb20hXQpWGwRfdvyLoVZg6kipSCRPPg1qv/hZB
lzOlnuoclTBs2c2k/RTBHDCbftlQAV60fmL9tAgKGgmwztlXgC/f+eB9fSJY
ECGR0pDxCn65F8QX1IqgSdQZoz54CWoXles7I0WQoxUW5daVAJQHd15jiqDC
Q4Ojat8LYal5dH1XrjAmXthVaGaXD0G6p3xIfWGcyCDlT2rmwl5PTxnbz0J4
Nu3UMj6nLEjrskofcBXC3Hr9vw7fHsDM02GBhhVCqJJrcLpOMhVuSbzojbgr
iDQ5z+/tqnchT/aO5z8UxPw/zX+EaImwDuzEpL8IYM3aGyMHOm/BvD2PcKGP
AKKPU7H5mWjwadx4/q6kACZsWZFmqhYBy52bDoVW8uPJEe+44+dDgCHhO+ns
wI96DirarOMh8JN9auMPO34Mi9up+1QvBPyN8y572/JjZaqBocHaEHCxeuh6
1ZofCeF1R9c1BUOEa2xO8il+vGxUPeigHgwhrJY9LUbU78ddj+1Zcx0kz7+d
OaDNjwMRQa2fu4NgR8fWN7fW8GPyCfwT1xwEGuTGJNnV/PjzYEiZ1asgeP6D
91rpKn6MfvieW+ReEJx4W5fdw82PFSUvf9BOB4FgUJai4lJ+9NtwMEG5NxCE
Ih2JpnkS60aezGdMBkBxyk4tyW8kpuyQbZ7sDgB7xcHdRZ0kbh3aY6XXGgBT
QgcuHOogcc+s8hPhwgB4y3tklfdnEjX8eh3PewdA//lF9w/vSRTWCP46zRMA
TTZ+EhF1JJZpKc9ya/qDWFtWtmA+iQqhThf3bPaHRyf/MGqfkOg962sUL+4P
cvzsu5dySSyxSFvnttIfFKRERr9mk7g5ovUl+dUPnidZhd5PJ/Hc/RNJmwL9
4Hcj/YdGMomDD/N253j5wcfnbTXDSSQ+zByMN/jPD6T2FTy+nUhiuBPNqNrc
D4ZCSso440ls48xp+6ziBzU+dYNN0SQeSbBb8uo7G57bJ55wuk7ilWMR7W1d
bEhSMguTvEbtJ3zafflHalyd+eFjEInt1zdcLK1iw2Hp+w8xgESPVYZ5gffZ
kFGdYEj6knhnm9KgXxIbyjMNVGt9SFx7advb5JtsSF0/LefjTSLXVC5TNZAN
KQsSJwcvkfhmmCHaZcMGS/uv1aWu1H53OaW/WrKBzhQ3dblI4isVt9Ffx9kw
Unzon4wLienmbvvu7GfD/knH8GgnEtdds64MU2EDhLgXOtiTGMgpLJAmT+n5
MTkvYUdi0majc99k2PDgyb4Dn2xI7J7oyahhsiFye9I2PWtqvVfHQ8+uYEOV
CHutuCWJqnrXrhtwsqHQOUujxILEqeUqWyz/sqCGM8D+2EkS+Yo1qplzLBhw
0RQLNSNxoV+h6/UkC3Yk025vPE7i+qqvk8mjLDC5G67+2oREAyL2wEgfCw5X
eRUuHiWxqRhfWnSzgKXemxRrRGJNbvjF5Z0sEBIdSVIxJNElx2qw5zML4m5G
FDYeJrF5e+Or2Y8s0G1sHnI4RGLq7qhH2m0saJ15pL7iIIkPHtseKWlhwV85
8dv395MYa8Fn5tzEgiv3ZMV27KPOs133v1PvWLDySk1hhz4Vz2qvdILessBs
5Ied114SbeR2Ow68YcFGskhdaA+Jl1aEp7HqWLB53UqxAj0S5QtMo41rWSCm
NcA8sovEnYKWXdY1LCgIPqg+vpNEV0ErlbxqFmTqoF3IDhL9khha2yh+drno
6UYkcVOEfsISiqMuPGdUbydxY3s6x3KK52Bb4hkdEredmhfQpzhOBFWXaJMo
vmrCv55iFamqgeStJMa8OjQbSu135UZtnrYWiSbn22iRlB7lS3vjPmuQKDWn
7d9G6eUW0I31VCexFHXnzOtZ8PR6YY6gGomfNdJoUg3Ufhz3ugtUSNSuWOer
1MgC3/sc8kbKJN6tcRpmN7OAJ7k1ckqRxMothr8F37PAUEiYFrGFxDjNbY5T
H1igv+3tQwUFyv98Hl6Cup8SjXHThs1UfpXzpV/qYIGDlrekoxyJ31rKv4j3
s8D+33uuzI0kProyzWE1xAJZsSSGvgyJclzn1MbGqPuYqdn3XYpEWj+zt+8H
C1Z77V6QlqTm9w0MGv5hwb2AGNdqCRKVuf8RvFQ8av3aseqcOIlqv6VnLvCx
wbA9i50mRuL+iy9UBAXZsCvJ+owek8TnxjlP1oixgeHjZtEvSuKJtDzvSTk2
mO2LuCslTOLfQgPjDipflKNiB6sEqfN67/MT02ZDc8bYnnMCVP6Gff2ZcIAN
WX+vHH1IUPkt7TvbfowN32ILOfbSSbQw+xXvROVnd5Fa9Xc+Ei1Te21SXNlw
3Zjz9qY1JFoLnL67/R4bnIQzLuVwk5i3S5z/8iM28Gt81rddTmILp5zIyuds
qCniUpRYRqKYV/YTZhMbJjhxe/RSyt+dCoLqXH5w0kTayvMPgWajdF6S8IPw
nT+7lX4TuFBovH+PuB8sVhR5jPwicJbW4Plcxw+0kv70WSwQuCNme16rtx+c
8Lep3j1DoAfN8ywr1A+qun3mOKYJnPml8yA42Q9Iwn1rySSBlQdW8Za88oOL
K5YvVxwnsHtrb/+91f7wffPlVNEhAl/FcphpP/WHd+ec52c6Cdzv7q0g+dYf
zAtm/XI6CFTbufqTa68/NJjvlHL4SmBzZKLmCTIAyC71rJ52Ahtu9xFHPQPg
X5V5act7An+5OlzMjAqAiKkVP8JaCewQvlDlkh0Atq9d9+xrofQWir490RcA
d4L8ZF83UuvJfunLMQkEVtSB6cI3BPIe0nPLcQuEG7SazxfrCHwmER6w8WYg
JF+f+aRYS2DO/VH+kJZAIBNOCWZVEeg6/ytX3jgI+J3NY+6+JLBVKepttctV
cPuWmBJeSKDIkb28q5KugugTXk6VpwR+6boqO1F1FbQOf/P+kE/gfxzRofcZ
1yAhPq5U7AmBgjo2Lr3vrkF3oaxjdhaBVx7cKB0zDgZxUim4+S6Byl2vbi1c
D4Yfofm+7ncIZOdLsUvLgiHhpEcYI5nA25Fr37ptCgHPlJIf1okEqraZrf+8
6gYIGnP+XIwhcO56WWLjZCiYb54t2BxC4BM1D0M5pTCQzsnRab1OYLVepbmZ
SxhobwnvunSNwO+m5Ye1foSBalvehZpAAs9YcWbFLIuAq17Hi8+wCPw3rPGw
XCESDgiGLLvnRuDPDR+bZ40j4bt41jp9VwIv9rB9U3wi4f1Us+GUC4GZL8TQ
4V0knE7czLXzPwLtW+QjGt2iQJ7RG9VnT6Bd8GRTy9doWHz5wkLBktIjsFFP
kecmqFt16XZaEHikcOdJYutNeJfEtSPsJIHSXJpL7OJvwgVOI/9xMwKrnCqa
fC1ioD+xUSbXmMCYXYwKQ85Y2KVcO66xj8CrynL1/ltjgfejsdGQPoECeVa7
97vEgueT+saEvZR/4ltT03tjQVPZjvZXj4qfkuQLeQ1xMBSxLbcKCdR0OtGh
/jIBGK/LbY+rE7h0Xbyyz5JE0OHm2rdajcDOx6/j/tNNhBFNAb1yFQLfGdtk
na1LhPmEWJaUEoGRq1n+2R1JYPVulH9GjsDTJQYN4rJ3QO3hiSdREgT2pYoG
lcmlwB8d9+ze1QRyB4a4VxqnwFYl3Uc5PASWzP/6LcdKAZmW2PLLqwisabMz
k/uQAm33WyT5VxAYVzdu9DsoFfQNbHv0OCn/9kwcyP19H+YDutWzf9KR9mRN
rZl8GvCcCPTxWqDjhzta2R4WaVDBnfhpzw86anSpFa+uSANvO8G3PbN0LDmq
tuNl2ANoV5BJF5mk49NW3mU7IB2cl7FUQgboGMm5wjnSIx3WNtx+ebyfjp40
0SHr3HQweyBktbGPju3+uhN3JDPARVy0p6qbjqo8bZNetEwo1VD9sKSDjqW8
fRZTXI/gqE1oqE8rHd3sf+7xUcqFdN8TWwJe0jFX283AySwX9u0+9HpbOR15
l17588Y/F3j6//w384KOpi21a15/zIWKhqv0MyV0DHv2obQr4AncNVzrpFtI
xzVcunIds3lglfQhYcUjOhrLpMwtkcqHVtOizFeZdPQ4kR2dZpwPX4K1W7wy
6Lh5781LTs/zYZu3mO3YAzoKPP2jrxVQAOJvRXJa79Fx0zhfnbB6IfwzuJJ+
P5aOS7bHWoxfKISyykSlU7foKNNwRskivRAinLa3iMTQUejR0CF+sWeQFL3a
LDyKjnVKqrok73PI9UryvxxKx/2BVmf1acVUvePVMfWnY/njtesqjYoh4WG+
Dr8fHQ+6BcouxhaDdGaFcROLju7f1nM/WV8CO0SE3+69Qkf7+GYH1o5SuKzn
3Lz1Eh33/fkbt/thGbhetNKRdKKj2aaDtDvTZXBiuZfw/HnKD9dtkzXby+H8
sV7uOkc6VqzLlIltL4dXeWmSTvZ0zOL0+fLyxkvg+1dxsNSajhIVxsHPel7B
pV3yLmYn6LhB1yI0k68CBsxKIxXM6aj0fNRQQqcCFvWvVi01o6NY4jbvlPgK
MNeut8syoePGCqvwLccrYfv2/vt/DOmoWPCz0nf2NRRZKval6dPxim/QqZeb
qmCpVfvuy3vp+O7e9cys01Ww0in9xeE9dOyQsVAJa64CV+38wcVddPx5xXp1
e1E1+McZyxshHTNfc99h59RCmcFtn2UadNTUEGD9nKqFvUJc67+q0dFG5WXv
UbU6WNC6/DlPlfKvJ2ZbbVkdtAjFXLVUplittlqy4w1oGR1pKZWn/NhMmm7d
3wD7uV5svLSBjvoy+nYptxvgfsRIxzFJOq6qnluuNdkAPDMHHqiup+POmMfF
q+PfQYxUxn+T6+i4dcZek/6rEfKfxozYMujYt3Ak/NOmJog+B1v3iNKxvmzT
qpPHmyCwmkiSEqGjcPNRnZvPmyCcrRTfI0hHqzvBy7eymuGqg9ylkwQd50dy
GHIFzXCY8c9Sm05HeTHJ7fPfm8HBdNqcQaPjbhOORUXjFnB0UA5pX0PHgJvv
HDs0W8EtbO7dsZV03GI6XsCp0gbzHY7DRzmoeBAK2HTfow16qu5xqv2jYePN
o4ejX7TBJ+6eLQJ/aVhhVBISeOADdIb7vmpbpCFvKNEzeuUj1Djx1Jn8oOEW
PKqh3PgRQgY8vDTnaZh5qaFvvcQnyErr3y4yR80XoR2BN5+gfK6c48s0De1U
D4wLq3wGqZz9tqfGadiXx/XbLuozKOuuycMxGub+3Xd1ZOYz1V//5V0/SkNG
w53frS++wCAtn6d/iIayBw+8Pyf9FcQsd3VUf6ehww3XOb/IrxBl0quSMUhD
YaGylS+cOuDUqlYN534a9lQvcNJ7O8A5sXmLaR8Nb38JCzM73gmZK1oP7+yl
4b9SNf7nLZ3gJulQo9hDw4frVffrH+qC9bDz94ZuGpb45iZvaeyCpLd6T8S/
UfM5+F/tlv0Ga0NsBqS6aPisikytdKSYwSuk0UnDLuWDEhJ53+CU2X1ekw4a
Sp29kRT77xvop5Td9/xKw70zfGauh7qBUFTzLvhCwyC74bHme93w19/5JI1i
vUUisX6+G8ijfUujP9Nwf8o59DnYA+MhBet2UTxs5biRM6MHPJQrXm6m+Idi
WP2l5b1Ad1u1yoTisERhnz/neuGi6OP+dxSv6v+1NvNNLxRMhsfdo9aPfHsq
IkGpDywqHFmdlB7xMW7N74l9oLjFtfEWpf/C+1XGmSv7wf3NvdkO6ry22ek8
c179cH3bdGcd5demM47xnyb6wfGjHsdFym/1ACV7S9sByPJw8ZwdoaEJS9Eg
sm8Arg+KuzlO0bDU6N1x27ODYHjGnvabipe5Fz2t7YODQErHGddQ8ea4Idni
3YXvkKuo6TW3go4KPtOlEj+/A7FDxTuX/F+9b/W5FzQEE78Odm4Qp+PkCOev
lULDwMqNOcJWoPIn5ovkssxhIN2urpzfTtXrhdK+jTAChsczv+YfocbN7/6d
axsB7uhZ1ZFzdNTL5HD/eH4UhKWiKt9Q9dLUm1WwfvkYNBNr//rEU/svlgUK
J4/BgSCPc3LP6Oh412b9oOo4TIntTJn+SOW/julIdt04iJ2WfTG8SMdnHul+
bPMJKJ+y1xeXJNAv0T3MeWgCJm6deR99gEDi24u4PVqTcO8OM1vzMoEXXLlo
v7wmQf5Cv/Qs1c/J+plOnC2ahM+Fohdvd1H//1L2phtnJ8FmNkniL/U+0Cov
/Tq9aQpKumwNWqn356fUpHH/k1Pw8eW0YeN16n1nRF7NDpkCW3trlaRq6j3s
WjN49OkUxJ0G/k4uflTteuPq8nkKfIhpAfVd/Ngy2VdIW5wCbpVuQi+AH+0u
rUo3EJoGzzpdxcev+TFc2NpDf8s0yNz8IiqyTACN0tJ/7NCdhqLI8I8qegIo
+eH1kLPRNCRNfmYUBAigFTodFrOchoHrfPKmldS4suZkiN00PJBxOzjIIYg7
uhMFuP+bhkv+z94q6QhiSvFwzseL01Cecf45zVMQY49G1exym4b79d+srZ8I
Yq3+I6Mo12lgcPQWCw8Joqm+uimHyzQcyeVzEl0nhCHkTdM356eB5ya/uqWR
ECbD6eUyttOgYrdurC9QCMUzJCT3np6Gsz7Y9LBQCMcPe9wwOz4Nj3b3lGT1
C2H9z0zjoMPTwH33VdA8IYwcays3T+yehg9BPccitgvjYGyfeYH2NDzJctf0
txVGQ4dKuymlabDYFHLtc4QwXn57zbRMehq+aJqnpjwTRhkNzjQTvmmIuhL+
rohDBN8HC8sJcE3D7YTSPT3iIlhbo87KXJiCmZurBDtABFVKXQJ8u6dA2++X
jZuXCN6u1zFpaJuC3oO7dTfeEsFdB4gKvjdTsLi2SeBTrgjeOmNn6p83BSEH
zq851iuCnZ+2QMmDKahvkBLWWBTBCVrusbmEKWD9KPy2lRBFltnyH+7+U7BW
Zuj0Wx1RTM6xsaw/OgX+sj6/JkJEUXrvpnQV/SmYG1siW3FbFFcH/8tN1ZmC
Yv8rj6cei+KYtvRUgvQUvPy+gWA1imKi1/q16xlTYCCXMTXUKYpiwld/5PJR
+lvHFWvGRNHenyuxf2ESljq77J1YyUDNpl6zkLFJSG0RN9QVYmBU4bM8zZ5J
qD38TkFsAwN3n54SyKyfhE+Nj1NdtBko+VdPbDB5EiQKf3Lz2jLw7XlDvrro
SQjLOqex6MzA2Xo+57xrk6BevHYm+DID6S9KnRJdJmExluPj7VAGXresXJpo
MwmDmlH3pW8x8HhNxtS9E1S+fTmmdzKZgSfu2DZW7Z6EV8W0zZ3ZDOThdino
2TYJy5HriPxTBs6nlnUvV5qEPxyR/1RKGbi1NnOJNYMaL8h5/l8dA3lPmSRP
fJuAO9XuO7q/MVBIDDuS6ql8/73nkfQAA9/Fe5wyLZwAvpPJJiojDPzwOJX7
V8gEtJmvU8+YZWA0PV70m/sE7LzaGivwk4Funu0G709PwEyDdeqhPwyUuuzc
MaAxAf6uvJnKy5ho9Orf5mWSE6ALZ+07VzBR+biWqxLvBCh84PE8uZqJYvGH
X+f3jUPlv/bMzwQTPdfEFq9sGocN8Q47vggwUW94v//5knH4tV5ibYEwE382
CttYRI3Ddbq5/IwYE+0O9xqoeY+Dm6V5fKg4E6PjR7czz43D+v3p9/6uZ+LW
plgN8vA4BF+ND9ojxUTLY4dkRbeOAxS0+9rJMHF5mM8KpQ3j0HKRrLKWZaLN
3I06E95xcOauCtWRY+KHEb3K9z1jENDxXDFAgYl900T/poYx0JBP2TC3hYkZ
qhPFEc/GwPR22JCeEhNPb7mgtTxlDFbW3An2UGbi9H4V45AbYzDyx5EzRIWa
v31hqbjHGAzMfd7GVmXi31OeGq9Pj0Hmv3BRczUmcvI4DXrsH4NeB+UgEXUm
SljFcW/ToNZTzjj7gmLSoPLGmvVj0C5rf2OPBhO/9DU7TKweA0OTG1XPKbZT
fRj/7ccoeB9P/kjXZGL2Vmme7p5RsGhUCDaiWMFF5elkwyjca7ubeoXi4dja
G3xFoxA76/IlmuI064kgnfuj0D2x2Pk/nlh4EucVPgoCIVbmvhSbO4k+q/Ya
hfrrDX+OUdx2Su2jxLlRiP5U7Myg+EKy9HjIkVEI98o72kDpOV+0dopLZxQu
3T2ic57iM5YH225sHAXuEdmKReo8vTsHwiX5R2H819tLlyhePSgqWPdvBFR/
xC0MUH7wm2md9BkZAanDytW7KO47FGeGH0dgkii2jqb8M/IL4yQqR8Dn4mGz
VspfS+K2fHfCCCg9kDgoS/lfOsiO7wwagWdH+PSQup+ztNSgYZcRONFYedlA
kYkLC/eK5feNAPV2t91K3W/EVf/Rsxoj0K7k9kdcnonB5ZlumZIjsPKjVeRv
Kh5yxI6etfw9DNkbsvEmFS/1nwKj3B8PQ3ps7Y9DG5hYzrh2cl3iMKj9cBr6
TsVf4FiA/IerwzCoJlJ0SYKJxr+n88+fHoaR/PWbAtYy8X7HRdAVGAa3may6
XVR8H0kcjfL1HYLZK/EduauYGPksVtvs/BDcEp46O0XlD0fFpqYd5kOw5sPr
FQrcTOyXWRehoTEE1x4zzydxMjHR8M/F0onv0CEqZWv4m4G5A7K9kme+Q+/X
pZ56Y1R9eSZrK2c0CJ6v2WuY7xiY9Y3uvuNYP+SsTKWvCmfgA+c+a6G9/fB8
gVRQo+qRTj7Xi3mtfjie8djOMoSB+7brX2sW6wcp7uPbn11l4ODmO33z/X2w
ULzn5DkWA9t2yexe9OiDmyYvnN5Q9e53uHP0y5ReOPAs9lPGUQYahrIeLtB7
QJv+fXeVKAMXs68XoUInlOn9HvuULIoPV4/ozbPbQSd/j+omeVF863VOXv1e
G+w5NPk9vFwEHe98jJoRaAFd6w/l6QYiWFV8p5wv6R08inbldesSRt+ArzvL
guugyH0wCs4LI0vn4sjfyCp4EcbiceUSxshlvs9bd1dAiT7HsP0dIRTlQPvD
wWWQ4OZ9Ml9FCOW235iZaymCqlonjYEmQeRbzqcufe0pfBjjeJJjI4jhsla3
tDjzwFNGQkx7qSCq3junJMl6DMcVCW2NNAHULDDuiHXPgLWxl6cFdwpgeXaF
Qpp/GkiP9NyXGuTH8o2s9CHtFPhzILvII5wftx1MUw72SQa+RM+ueSV+5H0p
P7fJLhm2TXxYcVuRH503jx9uP5oMjj4m+rpb+NHde4OOxeZk+Hq7ijdiMz9q
Tnp7rvp6G1RpzbmbZPhRwsHgcJ/Obais/LX3LJMf7fVt+AN5koArz7rs+3Kq
fwrKvN+4kAih+SvrIpfxY4Jug6fMQCKspacMb6X6q+p/x3j/vUyE9sYHLqFL
+HFxtvn0IY9EUDRMilH5TSJPEU+M50ACSFxlSQdMkTiiuaxLuzEeGKO/bNW/
ktjsWvzeoDQeRlkmFcWfSWz3K9/hkBEPVpWrNaGdxLvdtb96/eMhcJm7594P
JH6lj5U904qHLw+EDpxoInH81dklSzPi4O+bVt3rr0k0iSsaFIyNBfVPjqYL
jyg++GYgLygWsPWrJiuLxGTPJQPW7rFw7JOV2opMEldbyCXQj8VCYWK6n/BD
Eh/vd2kKEIyFS3rfzm+9R+KNjLXDy5NuwfAhuUD/GBK7s090yobegrvXOKTX
3CQxlGBw2ly5BeKH3vTciiKR92RZkeLpW2C7SSU3M5zEvRHDuis23oLAZ+sS
Wql+1fF5Cwen6C2Im7YQtbhGIpf6vhciq29BEI9f4fcgSk/ZGqWkyRgQCXDY
+defxONhO21W9MZAdLG88nU/qv+9pZAQ2RYDp7zrdfjZlL7LSis1a2Ogu2Cn
9R1fEl2+Zc4sFseAz6HI9E1XSPw/omau6Q==
"]]}}},
AspectRatio->1,
DisplayFunction->Identity,
Epilog->{
PointSize[0.05],
PointBox[{{0.6864124993081443, 5.147497275115406}, {0.15, 6.5}},
VertexColors -> {
RGBColor[1, 0, 0],
GrayLevel[0.5]}]},
Frame->True,
FrameTicks->{{None, None}, {None, None}},
GridLines->{{{0.6864124993081443,
RGBColor[1, 0, 0]}, {0.15,
GrayLevel[0.5]}}, {{5.147497275115406,
RGBColor[1, 0, 0]}, {6.5,
GrayLevel[0.5]}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "TransparentPolygonMesh" -> True},
PlotRange->{{-0.05257638144718597, 1.252576381447186}, {3.947423618552814,
7.252576381447186}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.710010241803006*^9, 3.7100102777920027`*^9, 3.71001076484037*^9,
3.710010820129405*^9, {3.710010955862033*^9, 3.710010982392049*^9},
3.710261288240065*^9, 3.7102613415046473`*^9, 3.710261377900333*^9, {
3.7102614517332983`*^9, 3.7102614675708027`*^9}, 3.71026180044483*^9, {
3.710261943803957*^9, 3.710261986103899*^9}, 3.710262638748583*^9,
3.710262812926292*^9, 3.7102629068286867`*^9, 3.7102629586836576`*^9,
3.710263017842198*^9, 3.710267822402451*^9, 3.710301414350767*^9,
3.710380743397444*^9, 3.710382206573708*^9, {3.710382262146718*^9,
3.7103822744505367`*^9}, {3.710382308405684*^9, 3.710382323449349*^9},
3.710496079537003*^9, 3.710821991307589*^9, {3.7108223026868553`*^9,
3.710822328449298*^9}, 3.710822363000587*^9, 3.710822689650872*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.68707421881784*^9, 3.687074220957375*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"+",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\
}]}]}]}]}]}]}]}]}]}]}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"Hopf", " ", "bifurcation"}], ",", " ",
RowBox[{"detJ", ">", "0"}], ",", " ",
RowBox[{"Trace", ">", "0"}], ",", " ",
RowBox[{
"trajectory", " ", "starts", " ", "inside", " ", "of", " ", "limit", " ",
"cycle"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "+"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}\
]}]}]}]}]}]}]}]}]}]}]}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"ge", ",", "cplus", ",", "func1", ",", "func2", ",", "plot1", ",",
"plot2", ",", "plot3", ",", "plot4", ",", "Ge", ",", "Gi", ",", "P", ",",
"F", ",", "z0", ",", "Z", ",", "s", ",", "re1", ",", "ri1", ",", "x",
",", "y", ",", "t", ",", "z"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"**", "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "********)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"SSN", " ", "parameters"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**"}], "********)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ge", "=", "5"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"cplus", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "*", "Jii", "*", "ge"}], "+",
"gi"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Characteristic", " ", "function", " ", "for", " ", "detJ"}],
">", "0"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*", "z"}], "+",
"cplus"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"-",
RowBox[{"Jei", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"P", "[", "z", "]"}], ")"}], "^", "n"}], ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[LessEqual]", "0"}]}], "}"}]}],
"}"}], "]"}]}], "-", "z", "+", "ge"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<P(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"F", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "5.5"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<F(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"GraphicsRow", "[",
RowBox[{"{",
RowBox[{"plot1", ",", "plot2"}], "}"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<detJ=\>\"", ",", "detJ"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"z0", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";", " ",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossing", " ", "of", " ", "P"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of P is z0=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"z0", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Z", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossings", " ", "of", " ", "F"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of F is z1=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Steady", " ", "states", " ", "in", " ", "the", " ", "phase", " ",
"plane"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"re1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ri1", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], "+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*",
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "+", "cplus"}], ")"}],
"^", "n"}]}], ";",
RowBox[{"(*",
RowBox[{"steady", " ", "state"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
"\"\<The steady state of the SSN is re=\>\"", ",", " ", "re1", ",",
" ", "\"\<, ri=\>\"", ",", " ", "ri1"}], "]"}]}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "6.3"}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.6"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"func1", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"func2", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "0.69"}], "}"}], ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2"}], "}"}], ",", "None"}], "}"}]}], "}"}]}],
",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "False"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}], ",",
"Automatic", ",", "Automatic"}], "}"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot4", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func2", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"None", ",",
RowBox[{"{",
RowBox[{"5.15", ",", "6"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"None", ",", "None"}], "}"}]}], "}"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"False", ",", "False", ",", "False", ",", "True"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic", ",", "Automatic", ",",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], "}"}]}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Overlay", "[",
RowBox[{"{",
RowBox[{"plot3", ",", "plot4"}], "}"}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Export", "[",
RowBox[{
"\"\<Desktop/MultiplicityPlos_16_11_2_N/Figures/Figures_Components/\
HopfSolAfterOutside_rE_rI.eps\>\"", ",", "%"}], "]"}], "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Right", " ", "side", " ", "of", " ", "the", " ", "SSN", " ",
"equations"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], "]"}]}]}], ")"}], "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"Gi", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "y"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], "]"}]}]}], ")"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"splot", "=",
RowBox[{"StreamPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"Gi", "[",
RowBox[{"x", ",", "y"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "1.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "4", ",", "7.2"}], "}"}], ",",
RowBox[{"StreamStyle", "\[Rule]", "Black"}], ",",
RowBox[{"StreamScale", "\[Rule]", "0.25"}], ",",
RowBox[{"StreamPoints", "\[Rule]", "2"}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "ri1"}], "}"}], ",",
RowBox[{"{",
RowBox[{".6", ",", "6.3"}], "}"}]}], "}"}], ",",
RowBox[{"VertexColors", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Gray"}], "}"}]}]}], "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{".6", ",", "Gray"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"ri1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{"6.3", ",", "Gray"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]", "None"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"splot", ",",
RowBox[{"ParametricPlot", "[",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"First", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "t", "]"}], ",",
RowBox[{"y", "[", "t", "]"}]}], "}"}], "/.",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.6"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "6.3"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "0.85"}], "}"}]}], "]"}]}], "]"}],
",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "0.85"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.02", "]"}]}], "}"}]}]}], "]"}],
"]"}]}], "]"}], "\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.6856848204543133`*^9, 3.68568483384557*^9}, {
3.685684880908835*^9, 3.685684899006865*^9}, {3.685684931781047*^9,
3.6856849337679243`*^9}, {3.685685083802603*^9, 3.68568508503967*^9}, {
3.685771377114172*^9, 3.685771382113614*^9}, {3.685771627331427*^9,
3.6857716305289583`*^9}, 3.685772416740843*^9, 3.6857799836081877`*^9, {
3.685780040893523*^9, 3.685780041043501*^9}, {3.685780120173635*^9,
3.68578015308589*^9}, {3.685780398685937*^9, 3.68578041502792*^9}, {
3.6857807537037163`*^9, 3.685780756382949*^9}, {3.685780794622719*^9,
3.6857807996664762`*^9}, {3.6857808513162317`*^9, 3.685780854528585*^9}, {
3.685780944441146*^9, 3.685780944669958*^9}, {3.6857809830414963`*^9,
3.685780983595418*^9}, {3.68578115288843*^9, 3.6857811534031897`*^9}, {
3.6857848521142178`*^9, 3.685784859394333*^9}, {3.685784976492682*^9,
3.6857850475582*^9}, {3.6857850877194147`*^9, 3.685785117422106*^9}, {
3.685787041652264*^9, 3.685787071453473*^9}, {3.687075027818873*^9,
3.687075040846651*^9}, 3.68707709747544*^9, {3.687077138025371*^9,
3.687077138238183*^9}, {3.687090554911992*^9, 3.6870905607956247`*^9}, {
3.687091839933627*^9, 3.687091840052376*^9}, {3.687092192939761*^9,
3.6870921946613197`*^9}, {3.710268304824473*^9, 3.710268307832065*^9}, {
3.710268410116724*^9, 3.7102684152558193`*^9}, {3.710268498808804*^9,
3.710268509243264*^9}, {3.710301446845138*^9, 3.7103014500901413`*^9}, {
3.710380785202952*^9, 3.71038084884823*^9}, {3.710380878881074*^9,
3.71038090865703*^9}, {3.7103809628794947`*^9, 3.710380985594214*^9}, {
3.7103810360179853`*^9, 3.7103810390500517`*^9}, {3.71038110147044*^9,
3.710381174726797*^9}, {3.710381251827491*^9, 3.710381252171406*^9}, {
3.710381928466905*^9, 3.710381929653895*^9}, {3.710382065110262*^9,
3.710382072204726*^9}, 3.710382338221697*^9, {3.710495933235094*^9,
3.710495960349269*^9}, {3.7104959984122467`*^9, 3.7104960313537493`*^9}, {
3.710822372701776*^9, 3.710822396651857*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVyHs81Xccx/Hjstw5v/PjtGNdkJTkkmhj8fluU1FRzmEJyaKmRbRkqAe5
NZUasVzSSgepmUtUmjjfOOvUIhyOjjsHJ5fDDzl5VC6zP96P1+P5NjwSyj6q
SKPRXJf3f3cfHWnBo56OoykLV+rkJH5b8v2RPpYNjAd1bvh52UwN0dUKlhMU
Ldx8ZrhsCzvdgpssD3hnGz57fpbE9s1by66xAmGfUfbySWJ8o972Cisc+BOF
I9VTJE6Iuxx5iZUIHiGSkopxEgeGU6yLrAxwnz+4OWuAxKoZLnlT0/ngv7LL
aOcrEj9utt61a00pjESwa9Mektgrobuz/nIlGFvsziRvkTi0/LR51uwTIEN/
7OhJJPFMavsLBQUePFrICXL+icQvnj3nNW2vg8DfmxdKdpP4eJSL1kEZHzri
O6N9NpL4mZr1UnGIAHSi2QK5MokLufxF/fX/gtsNyYaQTgZGzJo7nJIGyPMk
YwNLGNhc0F31fFMT6Pp6vubHMHAb4kzem2yGj9KAhKIdDBysfkIoshLCfmt3
b7E6A78SH6jRvtoK8Y4vIZtPYM5Or4GhoTZ4uK4u4nokgbfdvnzgtnE7KPgk
O3zaROD+xfS2oNg3YLRlIUW5iY6HXZq4zHoxpF/a8E/YKTouy+6LajHsBIks
sdxAiY4LkpUumkZ3wWKBQMTV18HyAO+xY9Xd8CRGM3ZxszbWcLrALl/ZC3P6
j5qnmVr4HH1Yc8C3D3RdFMI4SxpYs9aM9sa1H6QpX3jndahjh4h9C/Uf+8HB
rsnUJlEN5+ancNflDsAnn0tBHpaq2M/TplFtjwS09D0OFeevwA9FR9Nr30ug
Sm8gGq/4DNs1lClKrw/Ch9NdHZbBSthgxzF5utMQXH/gG+OaroBtbWzTKqVD
sKZ13m11zBKvb+bKS27SMJj4u6raVH7iyba6J7GspTB0KySr32eOZzJuPqbQ
KoWGLajHSvcdj298RhgW9xbCGouc2/1kvN/aRAFs4xFIjdZ1LqmR8CgOTlPk
j4Bqt3C88W4L74Gn3nd2p0bh/IMpq4raCuA2JtyUMMbAytT+K0eiC+YEvmcZ
dWNAv9O22nLVGPSn8eT0k+OgOWRrsD35Hbxv+ZoVry0DZbVt9gadHyAswwhH
PZWBY9Y5piyOhlY2GtGH/Cbg2qHHXdo0ZcQRFc+vWpwAyeHBcKs0FTRzOC+4
+/4kqP6QmVuTrYF4/qVJ2nspmLKIifZL0kF/NwXv6XWjQCioNrbL1EGPHDcR
Je4URCb2DDLv6aDiVQW5rgcocH41ktfVoINyxDkVKUcoUDEIZexQp6Mz+y8M
qEdRsNXEsM6BTUdm6JCDSiEFv6aFNHgN0pFJqb7SmyIKDp4Mq/xFRkdGa8Qv
Cv+kIF/KNsuS09Hn82yPneUUCLydnveoEGhFlfOJpKcUNJo+qTy7mUADljbZ
Sq0USNePXlOMIFD3H9N+rSIKGDHno+xjCSTWKjXmiilI2GYxfTqZQK/HTcu+
7aXAO8o7YzyHQE/vrhXEjS57bftfEzwCVTF7UtxlFCiwaYbWLwlUkZTDNqQo
cNvlaxIpJND9AL1ePEuBntmXI6rDBCoQCrmpcxRsnJnP50wS6PY3qcf9P1LA
NI+fvTVHoNwyV0urBQqsnMfaJ2gMlLlWQ760REF1qddeB3UG+g/HMmKJ
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"P(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {-4.989999979591837, 4.5099994591836845`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {192., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}], InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV13k4VWsXAHBjiJK9U0iGciNNEipk7Qw3Y+SkqBShS1FEhlDJLBGiqJCh
lJKpQTdThItMGY9z9hlkDKU+RIbv3X+c5zy/Z+0/3r3W+75rbcWzl6xd+Hh4
eKbQj/o3dRlprxq10fvl9HhpeRknhguOnWVJawCPZuj9V8jrRLviSqQNQSzI
Tf0M8s79a3MfSR+FKgObcxVLOKHdtqcwUdoZNDK2tAYt4kTVgxrN29I+0Fx8
L29uHidCQ275x0iHwWTheOqvaZxw9vkuHS19F1xVd3iOfsMJ4bsmj39M5YB3
y6aVe7tx4m2b+qFDcq/gsp5b2YaPOGEbyqDX3CoFT57qvQ8LcOJSkfeO+/8r
A3dx6cv1qTjx8053Ay9vJRh4jvq+icCJhuq6ylbdjyDi1cqKuYwTbgEmq+zG
a0HoiXuB9RmcqBZRX37hUQ/zx6TqFy1w4kl27ZLMX40QKqO2dlIHJ4h15Vm0
gma4MN25qmsbTuyoZ7yrU22FZ5do57tlcaKToE0+m2yDUmnxrZGrcMJ95YWO
LrUOaA8YKNvLgxNNvcfLV8d9gRm2bvr3nxhB+9uW8/VrJyS3/FRQGsYIrcxb
xzOVuiHB9l46jYkR7KWkTtfrPcDWdohc3YkRYuNtt/zCeoD/3xsfJr9gxL6+
VQYR0T2gu6J+RSvynZLIouykHpjc2UOPRyZcA+PIpz1gphAegiE/bj9rfLSt
B8q0sc8bOjDibM7uD6DYCwNi9UF6bRgxaNKava6mF0xkTA58asYIpVvK8QkN
vSA4cf9FHrJz8/WrYi29YOCFa8Uicw+rHeHr6wXVkox7NGSSlrA0MdkLQ3Jv
kweaMKLXnmb3SaYPDuRN3RRGbvTqWe1zuQ/i8HWm5/7DCJGSXfOTfn1wa3pK
xALZ+H+Rg27BfaBRWPR1D3K9774PZ6L6wKPz1xgvcm1gqptZeh/U0JV0Mhow
ojz8ZO2mxj7YPGXynazHiMJUVkC7Ih2+dim0Xq7DCPetsnR1ZTrstT54yh5Z
pcxW++52OqzJWuY3Rs7obZ8/tpcOF7MvZG9EjltfG8gwp0PttbRNjZ8wwiM5
L3jYjw6FW+SUVZBVE7xCFj/TIbJY4tLvGowYUijgnP5Ch7LEqBNDyFmFYwer
eungft3csRNZps2JL3SADpdd2qsKkUXEj4UKz9GB89q14TzySKx2OK7UD8qz
95YGPmJEbhR/9Nar/WBx2WLHt2qMwL5GXdt5vR8kVE5FMpFvwGqfPWH98P7l
p7lW5BMzUmcOxPWD/tR75dfI4s47NY9k9UN+5/O8G8gBYMfxb+yH3aOh+rLI
Q2lkd3BrP9yUtVFag3x0xqn5Zmc/VB5skBNA3vny4ttYsh+CVJ/Yj1dhxIBM
2O3Mn/2Q8uMDfwWyxUzB/gYZBsRt0552QX5/RGPXZ3kG1C2A00lklZdlSh1K
DJji7ByzQuZzrhVn7GRAWmGfvi7y2/a+we/6DGijs+TXIiu+FEhcf4EBEpAY
21CJ8i8cEynryYDYFr1blcgLTuLBilcYsJS0IfsNcreMjOu26wwwjfaTy0W+
FbVLD5IYsCJV0zAUedrpxNi5fxngurXA0hDZF/+D91Yhx6Qa6iLPfHxwwKSO
Ab8HfI5rUFZk3tnWzoAJVaxHCfk368zeH0MMkH4VrieE7B/P4+g4zoCEwPjN
PFRc73FMxxQD2HffbJmrwIi5R1xm6QIDNtt6R35Dnj/pEhaAMUGvwaikHfmq
6IqCsfVMcMzqjW5C/vP+Sc/JjUzI2vjm2ifkBekRVT0VJjx6/E9NGfJiz/l2
Pj0mXIkwKMtGvhYp+sfbgAn+axpvpiMvab1QGjRmAiu+4Xwq5eQJv3oaE+al
DFPikXmOesrFujHB4c+Xk8HIN/gljBcvMsGv5510ADJvSZHXRR8m7FvUn/FB
5sN+1VpdZwKj1V7UA/lmddJkdRgT2trnDNyouJeG1J4YJiTWH3nggszfduWC
ZDITHu8zf3IaOez6uuSINCbwiMzbnUQW2PW2YjaDCZZ+V7fbUo77LUF/zoSB
HpGd1tTzB1J1zAqZsF9eyd4SWXBiv8uH10zIKVDON0deYR74Lr2KCT2WvDmH
kCP+bOCK1zGh+A33sBEVz/8gGtLEhFrxWikDKn7CXvNnGxNSBPN5DyILrVw6
7dTNhCL9RyKAHFWWHtXZz4R0r0y1A8jCblBsxGHCoO57Xx3KDTcEVcaZkGtt
7LCPet5PcVfqFBPUftbz70UWUf5ou3IW5avXp04TOab77M3ABSYYvzqap4G8
MoL/xTgvCcOKHs/2UHHNnC57IRIe0Wv+U6fig4bLLWIkTIeeFqEcc3dQhcBI
8GvQd92NLGoYYV20noR8a98hNWTdyksSdbIkNPvGRVO+qG3XRlckQdD8zyHK
ma/1479vIWHiYrUi5Q617YcFtpOwIWhwHWWBF5KrpHeToLzGXZmylvJy0w4t
Ep7V29Eou2aNxOjrkLAPStIop23sMDlOkHABD16k3Hz/X2F3IxL62f8GUutb
wnPrb5iSIG/oI0mtXy0+LiLZkoSWvueNlB1X+hs9P0pCiJ7zA+r9E8MdBSrt
UHx1biSVn1oes5ovp0mwGPaKp/I3E6hxc8SJhBTn1mItZJXZjQcXXUkgNn+c
ovJ94rIQD3aRBG7lYfP9yLETPyq2eJOwrifgozZyhSs9WMefhMuCxkd1kb8P
1OhaBZNwe7icVw9Z4czLP843SViWZjdS9bemp7wPiCTBYX/JK2p/vGlz25ed
QIJ50bVmaj+NmNFm36aQIGRwQ8AYWaZe903zAxJWaRjZmiIHl4trzOSScPbJ
Nhq1Xw2fv95l8p6EkvFvKSeQff/KmLSvJOF8avRLe+S8zKiXl2tJUI0RZztQ
9b13ctvDFhKUng/d/4eqVyiv8ncuCakCBid8qXotjw3yj5Bov2VbXaXqdbUz
R2qChFhhzOkacqrn0036s2j/KKowIpAd7C3kkkVZoKBSLk+d/8ReLeazNSwI
DBKefUTlm6bwsEKSBXZk+FgWsrLpL+kReRYs6G7d8hJ5UitVUkeDBe4RST8+
IgetGRTjnGJB5uHlrl/IqvRiguHIgi+VEkfmkfuyb/j0nGNB+OmwYer+09or
y/jsyQLeiAfnViP/sKflvw9jwSUV0QJVZKf8apO7L1igtrbcxRUZuxIfHF/E
ArHP/fc9kav07Iti3rCgdn/msD+ybMdvqZAqFpy6s603mrrff+8a8ehkgSXz
k+BLZNO/0yMOLbBAx7I75TfVD4S07B/zsCHgtV0EH+ofneOys3L8bJi0aUgQ
Q775ZkxVRpgNEk/9FxSQSZOIxDUYG5w0MxTNkO97ljsu/sUGzZPtBTnIYhXb
eHos2HA7SeOXO+p/E+YKpTFWbDDv3h0XiNzSv9ZVj8aGqvoC0xjk+LnF1lxb
NvQOH1DJo/qzZluGjxMbLvqY+w4iS73wASyADXiQoNM51M+V0sqvWeSwwX97
eW4I6veCW4vVeZ+yIVbMM/AuNT+8fTJU+owNQkpHvZ8iP+2KPyz7ig2mqnX/
fUZWlTgr962MDQ++jUvI1qLzF7WiIqoVrW9Jfm0l8gFfy8WaeTYomf1cIY/m
l5nzI4Emi2y4IhWTqYFceCZkvmWZDa9nbtqaIm8yKZntE+DA6OSzzb7IwrLr
f35fzQFXMTPlVuTOanJow2YOSE42DUegecp91cU2bzMOOJLHPVah+WsLn5Dl
nAUHpqVa+rcgs2YyPl+z4sDTfE03Atma3d4YbcMBC+4Y2xt5X4nmp4wzHBjo
uGDIQBawWyxr8uZATEkZq7gRIx7mxGZvfsgBQUHJSD80P54x2KPLSudAd6wR
7R7yJm5fZ9pjDiR1+xu+Rc6TV16BPeVARu5S8ixyaVq1K08xB3LHlGcCPqP7
687MDmY9B1y6Zl6Ft6B+GuTwLuUXBxg2pbvL0Hx72kbjs4gZF/IN5F8ldKHz
tMEi850FF4rzdqm8R3bkuHj/Y8UFa57DdVxkZ4970p9suCB3sNFLoxsj3MLn
XW44cGFJ1i6iD9nnddXSzBUuTJN3nqv2ovtd0kLtayYXJpI8BEfpGPG6yyWp
YoYLPAICmj1sNJ/zbt4Nc1yIjn1cKcjBiPM72C2Vf7gwlvfsggayXPiJldU8
A6CuJ6qSiByhYRlSs3IA5g/Gq1tyMeJY0r5LDXIDMDZ0JbF1ACNmrUTNOv4e
gNLz9x6ODmHE/uZCvqGUAZAMnmsLnUD3odG56STDr8CfJT5WvIgRmhqaCaVD
X8Et+/im7eI4wfp5+7/s8EGYp3Xw3duEE+N7joRLqw/BhbRHShbaOLHl244x
3i9D4Ewbh3lrnKhVutLhGTIM/s9tLO974kR8Z5eTtdIIfLD3VBeMx4nvtKoE
vtoR2H9qnXPYK5yYeRru/rZuBBrKPY6sL8SJpT+mh9z/G4EZ3jav58hiOV0L
XS0jUHS9yay9CCdU/jf2z7O+EdC6pO2iWIoTDncl9ay+j8BqvE+96R1OtHWe
H3skMwqxmKKDEfr+61FR+2S9cRR0aFllJDIZNJ0hpDAK6Vz23/416H2Ubth4
/TUKvDovFvJr0ffkleQqQ7VR6PixvluyHicOSlalfDMaBXUXJaNfTThh7Bbu
lWk8Cu5P1jPjm3FC8/f90yEmo8Bwtar4iPx/9bEnCA==
"]],
LineBox[CompressedData["
1:eJwd1Hs0VdsXB/DjFcrrnK1CVEqlIrdSXZS5lJDI8YpEXlHXjURPqUSeuckh
UpGTXqSiUiJ5/kquCuVxUUmStfZJCh0k3XV/a4w91viM+ceaY87v2No+ux38
JDkczkn6/Xdv82uWKOdjGHh16ZL/CwaFFZFdgq0Y3HaUajY3MOi4fIGl5TYM
UP/HcGAjg+I89s0Z98LAfbNPW6aJQWkynDY/fww3RIl2+q8YdMd56jqjPRi6
rokG3ZsZJFA+1lceiqH34JWiVuqQZ31/WezHUL7iiYRdC4OWrnnU5ngYw9C9
H2uXtTJIRTzvaPsRDPd+rn+UST1QkDTXOwKDHfGplW5jUIGOb1BQNAYNm7Ss
GurTb+uZ4VgMO2yqieY/DAo+u/Lh4QQMQYVfnu+m5jtkb5P8C8OqssNyZdQG
CpOl45MwkPFIN+l2Bik9Cc1VFlBrdUatp+4/9mZTWiqGjio18wjqF0aWQ5rp
GBJco93uUd8aLMjIycDQRHRj3lOfuqkBiy5g2DlaEy3bwaCgHSd6CrIwpNo0
T59PvUm7P36VEEPzs6Sx1dT6HS4Gj3MwHLTqYTdSK5ypfG1+FYOWf3iuA7Vo
0+Kwv69jmL21dIBPXS93ZpbDDQw/XpQdtaDOr5qoabuJ4VT+FpXl1InhOwM8
CzC4ftfymUa9a2WTcu8dDOfPOfw2QPuzGTAp2lVE52E5srKCenHeFbfBB3T+
prVLY6gnb1fmhJVgMFlk2GlGTbQOXeGUYVjyxe/rNzqvutZu69hyDFaRoJdB
nZdsM6BYhYFf6mZpSJ2w8f6Z1BoMdbryP6vpPgJkZpvMeIoh4oOjrBW1dXl8
l/AZBhmfH7Mq6D4XHhqM1q3/b38HOHrUcss9Ft9+QeubvnufpHnoEz1pWNGI
oYX1+PmG5uW617kZ61ow+K1Qqtn6muZPQ7ryWRuGuMQ7njE0bztfB/rzOzC4
h3+fmkPzuMDKrNCjC4OT86fbhTS/kyRvbO7pxuApvCiR85JBvaWq4wEfMTh+
VbSOpnm/atBncZBg+HNvf/qMegbFYHvRhAjDObVp8i/rGOSfU5oc/QXDWctt
ViHPGDRvelKnYAjDS7+jMrFPGCTdOHJcXYxhg3aBSFzDoJ4EnwXZoxjMLxft
dalm0OWJFSE3JzC0D+etfF/OoBPFF6cbShDYZpDSOvkxg7aHyJeVSBFozIVP
2o8YpNPbKVsrRyDhSrzW9GIG5TyPyuzmEdi/9JDn1Nt030t/uF+cSkCjWur4
rnwG7T8ToumuRiDLVvFzXi6DrDy8zzdrEbC0cFbqzGHQsso2N8FsAhmJXuLn
2QyaMY+vYTeXgP2XKMGVTJp3kWlGrS6BiMqfZtLpDGrl33eNXkxg79UHMQkp
DKq4p6+2dgmBbmn+26EkBqWEa6aXLiegM7hgzt44Bv2uMJZ6y5SA2qS4ndyD
DNIO3uP0pxkB/wUb7+aH0ny97mN0zQls1Swp093NoDfnWwXCDQRsn9/1rPRj
UOTiotOpTgTOnpLq3mlP85ukx7d3IXB/pc6qiY0Mch7MUVZyI5B/8kJnsAWD
dEsFp2I9CXyqDXYVGTPouXVwYlgAAePBkIcGcxh0/9anjasC6ftkjXHODAZl
8zynDO0m8DBmy7EBVfr/abdNCNxHoGxpe+w0WQapBSyO84ogcHTiWmMU5iGJ
F5cstaIIbA9oeFD8nofIUg3Z9mgCAt3x4up/eKhsVC7G8SQBu+qPS9ye8ZBP
fG+URRqBPu9DFYev8tDGzx7rpDIIFML+LU6ZPGRo3yxZcZ5AiYutxa8UHpJV
rzluJCTAuS5eUhfBQ/nXhcf08ml/+Xtz57vykPip+2FeFQFHoylqiT+5aKaj
xb6qGgIPnDbXxX3lIou3BrtDntJ9F0q02X/korQhSd+megLjueKplvVcZKid
ay1oJXBr69i+gnQucs8XmK9tp/NumeYlmcBFJ1aFm37rpPkqiSnRDOeiV7Z2
yxy6Cczt/FV53ZOLQsKG1XmfCQitXRRUdLjonMw7puoLgasznQLTVbmo8nSt
Ysg3Og9x5ooP0lykcu28RJOYQFNXUv//elTQ7VdmOFmShTkJTnG5QhUk0jtV
zFVjYUCjYSRUWQWpFh+4U6nBgsn8kT2TRpSRyTrv/D1aLIxc9u250KCMErYY
ZjfOYaE/XM5CP0IZLYxpj03WZ8G4qMGhrE0J+b+b78Jdx8KZP+aNCYMU0akA
FfvK9SzIzfRQKjVVREXDo9Z7rFh4tznU2FhJEUkrPDdttGXBWXU68r+hgHJ+
D52f7MrCCeJ32untFNSVXD6sEsTCA5XtTlHzJqOuSNsSQTDt33x1oscXefQ+
tOOoaigL/O+8w8JiedTtLJZVO8jCY9lNJ302yKMP6gYasyJZUPFKvnbTVw71
CrNM9dOosdGtmLBJqFegJ3X7LAsHdLTWnDCmjip5+tt5FsLWhLp1jMqgT34t
fMNsFupX+KkL9sugvoVKviZ5LDBZPTukd0ojtvBI7IbHLIgClxxVXiSJRJem
2PxdQd8/s0a44J0EEqVkqNhWszArxsspLoV6X1EGv5aFtQYeirPGOKjf6PMN
lyYWJqQkp0068gsGKt0b/HpZGAvSf+RqMQbfG03UI5VEINdcNb6a/xk4ga1i
I64IGrLVNGyyWJgsF9rylRFB6iW5Prs+DDNN81K81UXQie/KaQX3wvo8NSUz
HRGgOpsn6MJbSI0cluQYi4Azu8t928JjkKWV/P7BahFERO1t6Qm9UX69WK9i
N9B63XDKaHxZ+aN+3yPvzGk9eygzt+5FeY9bk/ixnQi6knpXPmx9V666RMOs
jZrz/9NV/i+EpCN7
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"F(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 1}, {-0.5, 5.5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}], {576., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}]}, {}},
ContentSelectable->True,
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{
3.685684836182143*^9, 3.685684899373105*^9, 3.685684934519516*^9,
3.6856850869151773`*^9, 3.685771388558601*^9, 3.685771635524642*^9,
3.685772417972056*^9, 3.685779984653523*^9, 3.685780050584177*^9,
3.685780155491983*^9, 3.685780417010921*^9, 3.685780763047028*^9,
3.6857808051056337`*^9, 3.685780855285448*^9, 3.6857809456693573`*^9,
3.685781069874989*^9, 3.685781154708826*^9, 3.6857848637369833`*^9,
3.685785051208489*^9, 3.68578511975957*^9, 3.685787073486369*^9,
3.687077174632674*^9, 3.687090609016458*^9, 3.687091867557672*^9,
3.687092196121331*^9, 3.7103811547228518`*^9, 3.710381943604562*^9,
3.7103819767627563`*^9, 3.710382077031267*^9, 3.710382339772437*^9,
3.7104959611295357`*^9, {3.7104960082026043`*^9, 3.710496033550729*^9},
3.710821998314497*^9, 3.710822401440489*^9, 3.710822692524308*^9}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"detJ=\"\>", "\[InvisibleSpace]", "8.5`"}],
SequenceForm["detJ=", 8.5],
Editable->False]], "Print",
CellChangeTimes->{
3.7103811547461433`*^9, 3.710381943620426*^9, 3.710381976779187*^9,
3.710382077046041*^9, 3.710382339786929*^9, 3.710495961152125*^9, {
3.710496008216673*^9, 3.7104960335648937`*^9}, 3.7108219983379517`*^9,
3.710822401454267*^9, 3.710822692542842*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of P is z0=\"\>", "\[InvisibleSpace]",
"0.7905416985585727`"}],
SequenceForm["The zero crossing of P is z0=", 0.7905416985585727],
Editable->False]], "Print",
CellChangeTimes->{
3.7103811547461433`*^9, 3.710381943620426*^9, 3.710381976779187*^9,
3.710382077046041*^9, 3.710382339786929*^9, 3.710495961152125*^9, {
3.710496008216673*^9, 3.7104960335648937`*^9}, 3.7108219983379517`*^9,
3.710822401454267*^9, 3.710822692546631*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of F is z1=\"\>", "\[InvisibleSpace]",
"0.8821214738467393`"}],
SequenceForm["The zero crossing of F is z1=", 0.8821214738467393],
Editable->False]], "Print",
CellChangeTimes->{
3.7103811547461433`*^9, 3.710381943620426*^9, 3.710381976779187*^9,
3.710382077046041*^9, 3.710382339786929*^9, 3.710495961152125*^9, {
3.710496008216673*^9, 3.7104960335648937`*^9}, 3.7108219983379517`*^9,
3.710822401454267*^9, 3.710822692550129*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The steady state of the SSN is re=\"\>", "\[InvisibleSpace]",
"0.6864124993081443`", "\[InvisibleSpace]", "\<\", ri=\"\>",
"\[InvisibleSpace]", "5.147497275115406`"}],
SequenceForm[
"The steady state of the SSN is re=", 0.6864124993081443, ", ri=",
5.147497275115406],
Editable->False]], "Print",
CellChangeTimes->{
3.7103811547461433`*^9, 3.710381943620426*^9, 3.710381976779187*^9,
3.710382077046041*^9, 3.710382339786929*^9, 3.710495961152125*^9, {
3.710496008216673*^9, 3.7104960335648937`*^9}, 3.7108219983379517`*^9,
3.710822401454267*^9, 3.710822692554487*^9}]
}, Open ]],
Cell[BoxData[
OverlayBox[{
GraphicsBox[{{}, {},
{GrayLevel[0], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwUl3c81f8Xx6+ZksgoUSqKioREUV4XpaWSSiWkEipJQqSEFH2Rda3svcre
e8+y9957x7X53d9fn8fn8X6f8T7n/T7nPA8/faP8nJpAIDDTEQj//y5f1/dT
emMgE2C+9lrs9AAe0luz1fDfRED3s+PC9AMIdIaKI78G0vjx2K2tH0X3/N/r
8etDHnEuHlb9uJd+g0GN3wJmYgFBz5v74P8irPYO/w88kR1WeOjai3A/rktq
tM44zP7a1uJVLyy+9Qf9WHSGB9dQz+bFXgg9MHz0r8UV446x27nne2C35lKd
7euB72k0UZ6V3ZCTq0u+xe+PJlb7fAmfTuwT9N5tvTcAIYXPPx550Inl7yKS
qrSBGMtv/RrH0Ylaw2U3h8VAsBdsxHu6dsDiot2NuZZgkBKkpO3c2tE+EpGf
6RuOmwyhxZnxrSAJj4Tf4I9Fn5FeidmtJlTSdqQxRsUilUaG8+6+JhA6qssr
BOPgaGJCnz7QiFT5R4vBnPHY5P95fu+HRvDOyu09yJMA9WJzItPvBqxeYX20
93gSIhQsH6efqAeHuMMzk5dJ6Nqj8NVpvQ4iB+n1mmKSYMZJIndU10F7ceWj
m3AyspgZtmqM6lAf1OfPLJ4C2yvTVHSltYheje/fhjQoS8xKP1ypRsnQiQlt
yzQQ9dVKwqKr0Vsb+q+kIA3lgWsvM9WqsSfCi9bmYjoSjUy3iRf9hfUdS37C
tQwkT/cYiXj/geqvWy+X72bhe+b249E6ldihMT03+jIPXJdMir5Zl8KkqW5l
PiIPBitRfVw3SjGgmEK1MZiH4ViX8JOcpeg+kGtndyof/LLmppVxJUjd+dXL
NyofmX0n9AsHi6E9zppe7FcAnwFTmxStIuwPp82+ml2A/8RZ62MlilD/hJxX
3V6APoHQSxzbiyDT1lbWurcQ/+2+W3w0rhB7ygNbJl0KsZWoLCBFKERpmPAS
+7ciWD8XmXuQko+PTw6teYcWIb2K612CYz7EDrBu8RQVYctEZreudj78SYv0
xwnFOPztkewkZz5MvmTvufChGA21fB5vafPA/+SaxHP9EjSaUs0oVmbDdr+2
cYpKGfYe403t+5uOY3EJEkFGZZCWzw09TkpHpezGkoNrGeRnEgnLqunYpUP6
oFVdBpqmgyf5xtPgkVD4mU2hHOKNak4uu9IQrnDwv7dnKhA1wcNepJ+CK20v
r6vfqYBzCq/mwPkUjL9K3Xn1bQVyVA0q3zOmQNjlhtOh3xVwLf+vczkqGakd
5qSaI5VYOClwHJNJKDFo9T/JXgXuQff7SzaJ0KY5orlPrAq3XE/G9TxMBIPH
m8N0SlUoSuL2ETqVCMUs+tBO+yp8GKe5PNeegEa6M1H2NH9AuvbPlEMyAYM/
XZLG5v/A6fnkjVdU8fh2ssuoieUvrjcYXC9Nj8Ox/GMSBcJ/UaOT6mD0Jg56
Q3npXi//Qkt4RJapJxYLp6ZzLvf/BVHP6a102W/QlFwrD6urRkJ7F5dsdgw4
laQKuearwXKVVHXaLAZCHceznVhr4Nd+8B+nZAxU5hjize7UwJjeI784JRqR
B8o8bzTVgC1dTHEsNwrZkakuhYs12F94/F/alyiM7mso4WasxZ/Eb2lOV6Ow
EVqY5yxYC73M4UcvWiPBnxWU9EGvFtLPXIqEaCIRb+ktkvKxFl/YUyx+10ZA
SsHl94xDLaaUpw3uB0TgVp1lhNbvWnBYRB2VIkag3cP0SEBOLW7qx336yBoB
LTWDoLa/tXjhc1Z9bSgcpiOPfW5O18JDIVm1xDkc1L/vc37frMVPcxr2/brh
cDC85V60qw7/VPselRLDEbQh43T2VB0+iu3eFCKHQahIYuc71OGr1jMOcn0Y
Uu2Ev/++VYfzD9J5hBLCUMnG84XXoA4RZ8y0V9+G4W4bB0Hdsg57eYo/Bd4N
Q7c/0ydP5zrwfJQerTkbBl0tutW6wDoYaYZbOfOE4d/xDZOdCXXYxp16dJwu
DBYzC/8UCupQvsYdPzgdCoaUSQOrujpcEzgsY9cWCtcPg1NZfXWglUlN6ioJ
xX5i50vyXB0YnfrYp5NCEU7XOCJCXQ9/hcjnhSGhEKmq0nrFWg8FJfHoZ+6h
yHQu6gvjrccHAd7LHXahuKSSpdErVg9BZRrz0xahqOVO6uCSr8eOwh1+Jsah
UO2LfnDvTj0qdV/RxumHYjA8uMnpWT2ujpVsH3kRCn29n8qV7+rh8pvX77hO
KJZFXWtobepB/+D9J2vtUFgvfVcEqR5e5QZ6G5T1nTlWFWah9bCyyxEKfxUK
T2szheTkeuRoNK7YvQ0F75W3RdPF9XCKvDCaaBaKX0wviMeb6vG+UPKwqE0o
JBo0c54N1cM7cKSGxSUU+V4PpPwX68GswZz1ODAU1zSU0lrpGvBFPNJXKDEU
TXxXxNn2NMD6dhTxW2koNMeQcIO/AXcMmUzMu0IxHispbCfRAIZkk0rupVAY
GZ2KKVRowE/86HzPFobNcwLHNlQacO+yhVqgWBjstnjCJHUaQB1xYiuMkl+2
kj28hu8bcKzuyfOfZmFInBrV8PzWANdTfA/++odBaU+WT7Z7A+wOpy78Lg3D
jIxja19oAzpNJz2vz4Xhh85jjm3JDRgqY7qbyhMOIWdRZaGiBnwTmX65dTMc
Vek0TrfrG7DI8UnwrHU4GHZEMvjONuBFT5VH3lw4wsU+XCrYougL5+YTF47A
pUeK1sO7GrHxLWOq/3UErH/NromcbMQRt1M1xKUIHGoqPKtyvhGGtVkdXLKR
yNsgGZtfb0SSJsP8lx+RWL95bqbkRSMiCm5MPRGPws/3jEITpo3gCQuX2OYY
hXOBXbosdo1I6D7U7TsWBZM5q37V8EYcTtaio4+LBjvX3YOWKY0oEpb7j4Uz
Bkly/GphxY1Qz9ePM/8ag1m3yqaZ/kYQTd6uTr/+hR/Zvqwc843ge9JVLzn2
CyeH9G9JUTVh5H1o7NMXv/FSgq3C5mATdHxTBadMYzHY+ih7n1oTjOMYlv/T
i4c1lfCKzKsmsI8VjtflxePwCYKE1ocmkDUuTJ3ckwAN89C4WK8mLF46Rmf7
JwHrISaTDRFNuLYnsjNdKBE+f64cX0ltguZ/16d1nBPRemAqWL6pCc06vqTk
p0kwUcjr0R1sQtyBC5+c65LA8cZl/49/TfBSJXHrXEyGcv4Zj9bdzXCYsrdw
kUjB36cW31/fbEYwu4AR7+006NkrlbqqN+MpV+ll5sE07EjmpUnXa0bka3PC
pY/puEJX9pHavhniH1l8NXMyMHzSO0PgZzNmfi27pWln4qvKK7JiVDNcWkVz
pPZkoTCC2cCzrBkvt03ZVNtlQ7O271d2czNiGFx3vFbMwdZy0ljfEGX/p5x9
d/fm4vy1B8+EaFugrntn8lpxHlInA1UKiC1w0vSX8y0swI/dJacEb7fg278x
1tXbhdCWGGNwf9KCx7KXpB1HKP3cUjRL17oF8VfPNufyF2M69B6p3rUFLNrv
VY/WFaO0wuz1+ZAWGM05at75UgJjtsKDLMUtyNNMmlollEHx7PCyWWMLTnI4
vLX/W4Yj6jvqBwZbILe1eJY9tByN4co2aXStMJAUDGh7W4lfVSbqh/e0os3o
/WbkyyrYzP6UsOdvReWnoJWfBn8gLjUwqnG5FV9SmJYZI6ux8/G2wvL7rah7
TNM01lGDwS+CPmK6rahO9Ddqda6l9KNbRr6mrdia+frc7EId3P6+u0H/vRXv
TWlZMhfq8HLek9/AuxXzB/0dfqbVQ25v9lZbVCt81BNZZWwbMK9Jm/i7shUM
Ahx5YsqU+fLrMfu9Ha1gdXiknqVEyXO0opbVRCuck8IfOjxtwYcagwsTa62Y
jVb5u0Gxo7xA2nNvZxs4dhncbKhow4l9GTO5+9vAeWxj6O7RDlDLdJUfO9mG
q/fJAYaBnWh/ShXseqEND/wMPo+jGwm2R83Xb7QhXteamEbbC7tfV+9qa7Rh
clZbvIeqD5p1r0/W6rdh9y6BuHvc/ThLdqGX+tyGGfoZnnf3BsDCndoT4tSG
qqQbF+OTBzGK9nSmwDbIBovnzp4fRr7Wpsv7+DacM9p168jsCAxiFS5er2sD
o4bN3YLSCVxpeHkgpa8NWutHLc/+mcKh5R9knvk20B5jtRbImcHy/qQaO+p2
tEr4PpbJnEWNbEvkPGs76LqPKAi8mEO49pqVGl87VI7odhkOzMHC/uCj0tPt
kHDerGcVnIdKvLy4yMV25B9zl5+/Mg/hJh2mn3fb4TZpEqhD+adftR+med4O
HTVWvqrT8+jmic97bdyODzsyvWjZ5inzfKNXy9d2GMeWfjKbmMMP3eW3sh7t
4JM/2/8jfw7ajvuvx4RT/Bt9Fy1HmoNMIvEIR1o7DtLtvBalM4epNbvm0ZZ2
MBm6nbzFPIdfvNEBko86UFZGnTb6aQarYuYtd191wIEnPJrq1AyuyCsyG5p3
4D+Glpu9vdMYeDZt8cunA6wKn2aHFabBFSamcbizAyIzMz8HuafwXSBrP6N6
J4zWmPsYRsfRLOlw99jrTsh++Uv2Dx3HkSvqDpc+dYLduudf15Nx5OturX32
64Td84c7lbrHsBwl37HQ1YnMGyxvWrpHoS30x7tbowtxdx/XcWwMI/m8X92a
fhdCzjSUfywaBvUN/e37PndR6vwAs9F/w/B7zWJ2J6AL29gLx5i4htEYe/dB
eU8X6EVc95RjCHKiXXsSNbshccz9lFDoAA5KTLt9fdoDzbKSBwzlvbCO8rZ3
fNsDn2dHM/4E9mJw/6Uv7pY9aJgZaZ4060Ukja9hmH8PDPevL50/2QuRuqu3
S9p7oKv44QijSA8OpSrbWh/vRQT1oN/OtU7UvTn2hV60F/ZTCdXX0zphfXzT
4r+zvVAUkNE4btSJQd8oE9fLvYg7GDGXMdOByC8E7eDnvTjM16i0fbodIrdj
LxYG9aLYz1jwJH0b+nbYEBWiemE8pHPrV1UrXIsfnq+M74XYEotUsksrFiTp
xOvzenEndt344cFWpPOo8fV39eJBhgRLC6UOEie3U1Nz9UHr0yd3d58m3LZ9
nifr2gcN1foUrch68EBru+7PPtCI6JH2m9Vjkvz0zo/gPtBSVV9VvFYPO23N
kfbEPvTZHPu5a7oOuZceMRs1UPYHz5ltStVBiPb243D2frjlv9nJ2VCD1axb
UX/29+OOo8Z5Q+salL+7+W/+SD8Y5IRnvMRq8Gzgui3O9MOUVrBI3r0aPwsV
4lrv9SNWMVWv+dlfbLM6v7XDsx9pzx2uEo9UofGs9FXRgH6o8mk1m/ZUInj2
nNv9iH6sTD0peOxTCRlNSYHQtH5o/4l0F+WohBHEbl1o7cfT2z56ySwV6N8Q
CHizbwCinALc9UfLkPOBDY0+A1C96tfUnFMEdq2t0TchA9Bdis/gcSqC3o0J
V8aYAVCfM+Vp0qTw4aGiYbnMAaxN+lp9pyvCxxLDHwmtA/ioHKC8eKcQUiz1
XT84BjEl6hW2SVMA15Uc2xMHBvGxzGk+oyMf4/1RoqVHBvHb5YFTY1I+vFOs
vm6cHoTMCetrR57nY1lV9KSe8iBYDHQdBL3ykBbm/PGq0yAIytk3aO/lYJfT
R/4hj0EU0dgEeTPnQNtUt9bSfxD8Rlr3Gih8uOc68Uj670Hs0H8+eVI+Gyaz
M1X8fwYhUn+IqCKdBXHpW9y024fgqkHIP3YlAwm1TJm51kMQirCnMqtMQfEp
JTbx/4ZQ/vSv35hnCpp/uOpFuQzBvWjqv5rnKVhX3HuQFDgEHXtHLFFTeLHi
kM2L3CE4N/jresslo7vg9E321SFK/vnc5ZsTMXfIJOI71TBe1RU0/IhOBK1l
OmGLYRjnD/C/wedEHJe5kDS2l/JuH+VK/z2eCKNMBc68M8PYLuQVaf0lATuS
Hva/eDuM67ltKc5X4nGA1Ve6x3QYCiYRFeW88RB52026azkMZ9r33fGrcbh3
6tllOA0j5PtYH1k7DoExer/Yfw8j9W1urMnlWEiGfjbJGx3Gtu1qE4v8v6Dl
HraDQ3MEKx63X2zeiwRpniVRSHcEDBf5tQs4I1F06+PDiwYjaPfkleHpjADv
jjuR7yxHIFzhbxugFYFeC4JCfeAIONsfXvf+GI5Huo+snPpGcLGYRlCkLBT/
lZQeixgbwTn+L7tGXCk8witWmzs3gvyh6suHH4eCs4vh4DTVKOyJ1iZcKyFo
vp2arcg7ilOzVZmbYiFQlt69vP3ZKD5HC4fa5gTB2utjwOFXo0gbEOodcA5C
wuKIwrl3o5D1PvQ2XisILPG57rpfRsFV79rtzhSE6iN6p8tCKPsbzWoMtQJx
dVeZvs3gKCpH086bXPeH6SuxPb6To/AV7TuoveWHyHK/nKSFUYAUXXA02Q/0
X4x2DtCOQXr1dQbXIT8ULx2Olj06hg69PIX91L4g9n0c2nw+hqejb4oD5ryx
+qZp0v71GNasjvrtS/dG0ubJBU7jMXioBF+x/OwN/v091KdtxrC+R45LcLc3
dt6XPaQTPAYBhbgSf6IXSoe8BRaixpClVrkswOyFz0bzwlYJY6hkr62o7fbE
vEvIBZ/8MUwNpLf4W3mi7Q/doxpK37iW+pvA2OwB10caT9WGx6B9+Sv161gP
KI6nvhibGoOnodNdETsP5G/TNaXZGANPoED7FjzwwSP/szPtOOr2K5Ye5PHA
6aP7bA/sHEeMoGFB2YY7wuUq3SW5xxGlronWAnfK/MHrV8w7Dv9aa2+VcHfs
0zQPvX1iHMseDLx2Du6on26I6RYdh6Qwl4ipkTscPgklvTo3jk62Xi4xDXco
7PyauUwcx/wddemCq+7Y+tlV8PXKOBa/nnAXlXRH+nGJClalcRhkXIEzvzsM
03/UBtwfx8O5lefje90hdHmkRejxOKJFLM/cYHTHUBN6MrTHofrhQHsJwR3+
Wl7DCvrjeFzHZvlkmYQH/2anGozH8aU5IfDkPAms1lcXNT+Ng/yu/MC5aRL+
sASvT9mMwyro7Da3SRK+BazSmDuMg6clQvfaFAkQvsPIQBpHuUPWDf1ZEpaz
Y1jdfcbxscF8lolMQuJ1Wi7ekHFIK0ykntskQa9d7XBc9DjO9iebUG93B/+L
lGPnE8dRaHyWzmyPO3qXmEQqMsZxvKZJMpZyPu9v2pIqBeM4lv2TL+mcO5Q5
8mQGysdhdiFM/uctd+wM3atgUEvxVzjE0kTXHaViBjc2WsYxe1qlUNXGHZ8L
yu/+1zOOjJnPsw9D3HFW6bDa3pFxhPNvl7ctccd8t9mz0GnKefYMui2Nu+PX
6/qXouRxKObxi+azeeD5+gnD3I1xcNiU65Ap96F1X6dl684JVEyzXKMKodyn
SHG75+wT8JE8fJ+m3QPXJR2d5rkncM9Wxfkvuydy78r47xScgFDLQzUuD0+Y
DniEeYtNwNv4AXVNpyfEDGd+8UtNAHvrpeMFvBDmFJhFvDqBrvYLTk8rvfBx
P+9ug9sT4A126Kc94Q3lqBDtgIcTsApVzmR38sZmYfjuzRcTuN+yk5395U80
3jqmc9KQst5vlHKn9yeiO6Oy1T5MQP375MtANR+okH/pZP03gY/npUwYdX0h
9EU4Z9x1AjcKI4W/LvmCmiWelctnAnVXLSzyHf0QdzwpxzRmAhuk9N0yNf74
lirOFpk0AblggtXohwCoyafqtmRNIFE2I4FlbyAY1DPYJP5M4JLqrqO7mwPR
PSb14nnjBOgqacripIOQbJKdS+qcAH9XTIt9WBCeOOe9+Dc5gT1mjhEW34Jx
9oBsHu/iBBhtdTnbNoKxK7qQXXljAlIWqb4rZiHILCrJi2eaRFDIubrDVqFw
VrrM0csxCQ1pve9mO8Og3VX+kplnEtGs2Zxn/MLAtlTFoS88CR6yn8f3mnDo
nah/JXhrEktXusqGP0ZBLu1Oger9Sez8uGFBOhsNzotNe/57TNE3t/v2+bVo
lKi3Foy+mYTsm+g9xh6/4Dv+cC+n6SQsDpjv/P7mNwzfd+hdtpzExkOdkACl
WPC4dO8Nd57ERWH++U2OeCwc0Hzd5DUJPbn79oZu8aiM7iukDZqE6/3y1984
EvC+ePD1s4RJ8DNc7750LBG1S+NFh+ongfz2z7GOyQi30dun1D6J67auUcFn
UvBx97T+5/5J2AVcr5kYSMFxwbl93fOTiOjVSPe8mwZCuuEbprVJPHT1fO66
Nx3NFxeKz9NQ5m7Vx7dZ+9NhrbH0xodtCo9KS2e3O2XiwYRpSSVlLu/fp1Iq
b5gFYdNVrlW+KejuZ2L/rpGNDpeNkgfiU/BoeL9MfzcX4iU0+/fcm4LVziuv
czQLUFLWceig+hTaWySFW1cLoFKZdPTY8ynI17p5f/cphFnNs1NSxlM4RSez
6/x8EXbUS4vLf5rCFrui7t6oYvg2sp1T/DqFGmnb60TdEuS2FclpuE8ha/rZ
vUCqMtzq9Lms4zeFg9Yzx3Z0laG3+52iQdgUGjefCJ4oKgf1IJ+KdcoU1Csc
PEISK+E2vKZqnzOFYvOBpqycKhwZa3hMKpkCtS4hhKnlDy5Pf3kR3jSFzZrr
9wjnatA6+0g/rmsKAkPnDh2Vq8XLf6ffpQ9NQeHVHqL7XC3WFhlNC6amYBcT
0pYUUweH5YGPlYtTeH5blsn6bT0OrGVZNWxMga+ffPPIxQbEbrh966Sbhusz
T8/RI42opb7oPM0xjSf+sZ3Me5vxhG6/+9KBaWi1X+o4JdSC+W0L3gT+aRRw
NCduo3C7zY4//tuFp/Fesnf60U8KJzOFhrBKTGPPOpO4yUo7wpk/RnLLTIOG
Vk1DwbQTZ1nv/j5C4Sz+4LC/9tzdqGAXSjx5cxqJt000VkZ7oLqXNk1ChWKP
Lut55L9eTOzrzILGNDI0g9xPM/dT6kty/hXtaYh5dAR/uD6AXQcdSm7rT2Mi
04G4+WsQAYe1KlVNpkHPuOmfIDkMkSPna55ZTMM3LkkhaGoEhfzsjXrfKOel
KWqI+zOGQcHiLguPaVTIGC3MUOJsLOzbb+s/jeCJx64Sf2dAL2o04hw+jdvC
3qx0pbPwOq046R07DX/mBcs50zkclzgyF5w6jUbH21RsS3PIPLu+GJM7jXuz
bUNrsvNQlG5cTS6dRm+OOuebp/PouvBrK6d6Gv89kDOufjYPfaINbVnzNIbj
j97xUprHlpza9truaWhcsPzZLTIP50viu9qGp/GiyVP5+I558F7ZydY/PY3X
HGq+iz1zSLo2uHeCPA1Oz1hppeQ5LN+9KMi8dwbazGHJkvRzsHpBq3z//gyI
qZU+vh9m4OtXkdqkMYMD+aZ7pUVnkF73g/uu9gwGyi8F24xOY/rcviEl4xlQ
+TT/Zn04DbUdwqbX3GZw8IR5/4zsFCRi7vtfqJnBb6fLOlqiE7jds58mu3kG
vTt8Awnz49Bj69eR6p6B4oSBv0jSOELM9UQlp2ZAK9/5XUFyHAzhxKdedLNY
/px/5qjCGExM7i268M3i181sK+dPI7BhSRe4LTBL4Q3bs9UKI3CJ5lJlEZxF
w6/tHvYsI/jV3ZP7Q2wWrl8FAyzDhjGg8NLOXnYWGud16MSbhqC09zP318ez
aEnZyKq4NgjB9EhZU59ZFN+sXfxk24fLdQd97AJmcZznqanIoz48G/dY8AqZ
hbbJ1znlU33w2f81IiNmFmJUX64NtPaC0eoJ01rWLP7sk+xio3DvxFWutk+d
s1CtvXHEfYzC5c9cxH70ziJoNOzPml8X+D4yOPgPzsKfI9X68J0uPIoly+RN
zmJYIFA7OK8TVawNoYSNWfiKTEtcDupATIe9wZcDc3jSajv142sbyhaoK90O
z0FoaFFx16U2DDB94As9Ooe0texwEbo2cBN1m4tPzmH6VRDhgW0r7EMvnqeX
mUNWaZsOnVsLXr3e2PZdYw6BmzOi30qbILilH/AjYA6yMguVcqR67EzojHwY
MoefyeN0r3TrMf30WuKRiDlIuywVrJ6vR3zp0ZLM2DmcyrmwoThSB/EfnePD
OXOo8O1EMLGOwjnXJNA5h9Za1xeydLU4UJOGHb1zUCorLhvOrcGm5dGrTQNz
UOnguLzxrgb5gwS1VxNzuDWwdlu6txoXf6VZea7OQYaW68ff/L+4IX307wzn
PEaYD34YDayC8JRrc+b+eQxY+1xIfVwFlgBC79dD8yg/yvHvwMEq1FN3znMf
mwfDyCv9lIBKSv125bwiOY/Go+Q7nREV0HhI0Aq8N48POx1tuuvL8OZ9x6qS
6zy+MnXfXv6vGBqR6oKvPeYh87E0z0SlGDfbeh59/zmP3V8Ulc15iyEkPZhd
EDyPDBep27uzizC+OWkhljSPqz9sD9xYLIT2t01q9kaKfO23HdMWlP6RZnla
pHUeAs+qR84oF+DSKLWWYuc83semb84cLcCRa9tKbAbnQexftkitzkcfE4vt
4sI8rCfybukfzYea+2HGFo5/GAsxXBP8mwPF0hDpf/v+YYT6/sstyxxILx3V
Y+b5B99LdH7uZ3LA9fDE38v8/8Cb6VhIHZSNlv2nndIl/qHlwjxiLLOgHHqR
7ef9f9gfdYDZ5UkGriTpcKt7/8PXJ1r91X4p4Djozqft9w8FxBbzHzop6P+v
UPBNEEX+u8/tZlFKv3564LxV1D8ManSbrpQlI253g1pYxj/UnEs7+mI1CXsM
ZPyn2v6h3ipY+o9JIgY6XoWTu/5BadvRc8ZXEhF/2Tt2q+8fpNhX3F25EnHt
4ELu7vF/mLMoWjyan4BP1VE9Z1b/QSHx8DZnlgQMCnEctuBawKCfZ/y//+KQ
4CV33JZnAeeVBNMqpONgQWsg6sy7ADGrPY7aU7Hg7KyUDT6xgLaFo9RTyrG4
bm/5tFRqAa/P2zst8f9G4thEyK5HC+iTn9utNhcNy/BC/gCfBZQTQlI+00SA
NWa4+2nAAhw1HU56/w1HaNwOT/6QBTitT6+IeIWjPF15W2z0ApiCk+lahMPB
UtU/kp2xgI/xyoe6noQhYIY6qr1lAW/I8UaNXSEQWeB/4t+xAJ3v3NaKcSEo
XL6272nPAj4X9zqLWoVgmMrt+9jwAh707+yX4Q+BMDvfy+XFBaR9Gwm4bhyM
3LPygnvYFyFVaDN3nz8IShd0Btr2LqLHZyDi5GYg+mXtffy4FzGhMHntCWU+
pb/ewHiUbxF60m03emwDcVP92eRpsUWkiLDwyHQHoMvqy+/bSouwFMxhXfLx
g/63iOccdxehfcV+OFLFDwT7qgNt9xcR6vxsHw2rH46Q2H5oPl4EA4/9csJ/
vtALD9F/o7+IxEgmP04bH6xXFp1ydFhE5Ff50mIvb/jeXN8V7LwIvrjRrJGH
3jhfLz6dSlpESPNH0Q1ub3xqC/vV60tZl4uT4QzxwuaI7XHx34vYN5qXX5jj
Cf9X+QxXExahrG5md8rWEzIzyyPqKYsIlOvZVXrbE5/JL8JtcxahKsNX7DLu
AQKdIl/H30XYGr75GSnogUA7G+rZukW8i7S5pLnlDuLOnD7a5kV41N5vcGx0
hxWbcKBw9yKq7n1oe//FHbye2p/l+xexo398/pq6Owq5AjQeDC+i4cS8eMFZ
d1Dzshywnl7ESQXOzvIFEoLDrqx7zC/ilmDaolETCXLHrTpiyJT46Zq/XU4j
of9XRmb+6iJi2dZSNH1J+CIy7920uYgHln6CWdYkHEk+YTZOTQa7TQaZ4xUJ
xZLPHmzRkzF49b6X5T0StLJ8JNkZySipepi2Q44EWjTuOc5MRgZN6GqRCAmh
hTvJF9jIKJrg3J59mISLCpealPeS8cvU+j9qDhIGKz4l63CTweXs3h2xg4Sv
N1LdPh4kI8atai2HmgT+umlDFz4yqD5zMd/fcEPpXQHlcAEycm+YXvq66gbt
1seiWYJkWK61V6lS/unVvFhqT5Eh+sSlZmzdDeE9tTODp8kwOZpw5hJFn8Kz
7TUrkmTomDiWWVHsDQ/Lxu46T8aSnrRfMsUf25cfHPmIZHDz1lbP85FwbDpR
7+xFMvJjNY1unyGh/O3E9RtXyKDPZAsfukqC7iKf4FNFMp4erZMoeUICg5na
jvdKlH+TaXmGTyRErpPG7O+SIeN4U73Mh4Qrln/LAx+QcfJaIyt3LgmjNPSR
KWpkvHR8usA9SMJ3WxnbSk0yiGrtLv1M7jjB+F67R4uMSxX50nbS7qj8EXdp
QZeMb5mZrMdfu2OHxyFanrdksOZW6NZ0uiN638MBMWMyzLlume7ipvCwn0vh
ZTMyjJzKm7LUPTB5qDJI7RMZ204vsy6GesAhlNrqrRUZzCfa0DHrAaFj0prf
vpJh17fy1FnWE39i3sHnOxn3D41ZS3h6gilpcKPYhQyfW/oNXbe9YFjD5khy
J6MrveeGbLwXWifk9mt5k2F4jvHHazZvBB8JkqIJIkND1NsqeNQbDLK1FfWh
lPjd0bg0qfoTr9W3HgRHkuGwp0rBqv4nznqov5eNJ0NB41EnT70P/BId6Hcn
k/HmqOy8oSqFj2uy3HvTyLgcaeYWMeqLv9u4kj/nkfFqRKnkxl5/PDVrns2p
JoPAJ0Qr8CQQ5e50lo71ZLhxdnHw5gXiZKI4s3ozGRWDUeF5h4KwPO56cr2L
jNtSv/muzwRBfVthdlUfGVeGdtq9VgtGId/cdZ8hSvzeS170+xsMR7VbL6Wm
yKitmG4KyA7BvKnFyvY5Mi5W2b6OlwrFA/ffdm0LZPzsdoq9lhMK3mrGCNN1
ij+bD7ujasOQjvKBVMYluH4XPMgtHokDakuG35iXcGj+1G3b9khYm/JTq7At
QeL+gkDKtyjcSLA5tMi1BNXv+yw5KPU/8W9SXDHPEnQDG778iosB53i/DIl3
Cbsv82pVGf1CP6+s+ukTSzhh0lVtxRaLKzCYpBZeQoukwJQTpd/8fhRgXi+6
BH6V8n6WmjiYkja8355bQkd9dk9OYzyY6DOb464s4cKp528W+hJhyDv2/LPi
Eh4ItukUGCShVYZz8abSEhZ1t1la0SYj+L0J2/T9JSiaZ/r7SaeAgRQWnPNo
Cdp2puxPe1LwOr5R1PHxEkjvSJ4Tdqk4OyamJKSzhIxyAzeZ6TT40T3tWXu5
hNHkRV/76HRK/XLRr9JfgtkH1sag1xn4qzrj8NJkCYM3D9/T3J6Fp39iKiK/
LoHly7ZHboG5COP7JvL8+xI+2aZlWHvmYfSDpudhxyXse5I5PXQ9H6+Pczz/
SVpCAU+BIv+jAsRbzlSpeC3h6Hifa/F4AeZbKsTYfJfgfHSWzG5ZCNNvFgSH
kCVIPty1nzGnCFldD3SuRCzhrkvbqvrzYmyKn66mjaHY1+B9nM9eApuBEZ9P
iUswyfXN1vyvFGVShdRSqUv4KL3PyeF2GXa4+r4gZywhXUiYHHq4HE7E25Jv
CpbQ6Xv7+0J3Beo9Bf0FS5bgu6t5t/nfSrDP0NGNli9R5k5bWeeyKvz0y6zX
rF1CJe1m3p++v+haIJ070LgE472t1t00NTik+CawrWUJX6CRHctVi/BVPn3l
niW8+yyV2vO8DmO3Nxt3DSzBdOzS18p99RCKapWuGl7CzxtxJlqt9dAnJAXb
jlPuQ1xERXRwAxLuO26/OL2Eqsy/BtlmjViI1TEgzC+heYzA2afRBAl6uZbs
xSUMZOxqdrrTjOxkcuiZjSVMp8zYORu2YouxjnGesIzB9+YVPEFtkHsWYxhL
uww/IQnqupF22GR+bXvJsIw0kqpY/dVOlO3WJArsXEbMzpL8kcou7HghFTHA
vIynd79csn/TA8V89l2BbMtgdOz+8tm/F057Z4zU9i4j9Ljr2RjfPtTrV3Rw
ci9jgTBqmpDSD47SELkmnmU0iejPiE8N4MEBiygX3mUwOJQNZygMwcfoActN
/mX4qqwMkYuH0V0l9n7HiWVwpf4hBOuO4jAfU3fpyWVsr6J39hYeh9aHkYtf
RJfRMXZ+/QfTJMLrCmJwZhm7nbZk1v5NYeyYL+v62WVc52U/xVE+AyFLE7P0
88uI+GhA25wyC/0WpV4j4jLeFElFkZ/MIUFY8LLoxWU4134KKaVwxsJXutip
y8sIi0g7KyA2D8muHvbo68s41dXYy65GmfvFM821by3DrYvGzkJnHjn2pH7e
O8vgvT62rq0+D8KA/tUelWXErkVdu35pHvJSV+N9VJfxLWG6LO7IPL658O19
oLEMi3ffe29vzYGR2DpY+3wZ/T+ozVspXLTHT9ay0GgZrjfuoW/nHHTeieyq
NV1G+JHsQyN9s0i/etC36+My2u7tUXmYRuFE8nrass0y1tMOmVs8m0XArfQZ
YXeK/m2082pWMzhGfeqxT8oyWGcZD9hxT8Gs9cBUZMYynnn2lh6vn0Rl7E7z
1JxlHGz9+tjm+yT0Ho171JUs4y2jwD711QkkJIdVb2tehsf409qXg+OQ0tkv
Y0RehsCmZYtJ6yjsLzD+sVpdhqF5Zniz9yg62VYfOm0uY7LCQqnx0Sgs8luM
o+lXcJf2JyGkbwRF+9x+9+5ZwfmzbfLPFoah+Gf7gRuSK/AY5OERODOEx6JL
a0dNV+D0djxRnKsfJoGd56bNV1DJE/vOd6YPDsyF71M/r8DG5bSebkkf0qcc
/inYrqBrcE7zuGEfWKJ5J3Q8VnCgKGfiTG0vCnlvtkclU9a3cotfS/eg1eU0
p2H6Csw8c7/OznVjmrBPRSp7BU/ZVM4eiuoGd89AXWXRCppPuJ2w3NcNIx+z
ion6FbxQrri5h7oL/Oxh6SfnViC6ZqB6da4d57/8R15cWMFiywnmwYR2KM+/
Ec9dXoEj4fMc27t2fK6Vir9JWAXv2cMNJ5fa0OpQG/GGeRWKT8KPHKFvw390
6x4JJ1fhwfxGdPlCC6bIysZnXq5CNVnyTtHORrAOKbbf1F+FrmllSXhbAyQa
FKBruAqNeMb/dkY0wDJOarvPB4p8duyfh/INYNXl9SPYr6L23MPRZqt6SLTN
FVfFrCJgMU75JkcdVMsmjg/FreLCQbeRgrFafE4Z+rGZtIq0pTr10NxalLu0
PRDNpvgXIxuT8KIWqtcKJj3+rGKoz+5d0PcaWGQ5sz+dWkXmfRYLg/1/ERz1
n5n53CrKEi/JSdX/QZmnTTdpcRVt46fFCuz+gMXINLJsg+K/Stn1raUqBAtp
nj+5aw13WwKfbe+pRKnfKa1l4TW8zPWZzv9bDmbL6qQfBmtYkB9iluItAWvU
u1mS0Rr6aLx77k4Vg72e86SP6Rpe9asfXUgvBueRZ+ERlmvQjxwvyrxdjEPl
S175zmtQEWu0l/9eBBGWwxbz8WsQlG+RlWAuhNi50szl5DXEWOivUPcXQPzp
q6XN9DXs4ZUoJ6YU4GxyigFjwRrsqS7uZFQvAPHBtWdH6tZwuy/RKzshH0qB
766ozK3h8fiBj+pduVCu4PyqtrgG6wCPtf3Oubg7n1PwdGUNeVUfnP3kc/Hg
IoP0G6p1hLsV9Lf/yoHmqO9Ju93rlPde5sZulw0DkVLWTNF1VAZGmy89zoRL
PmfXAcN1nG4rXy/+nooH1skV3cbrOHVubw3vvVQcuqiUGmC2jl+q7k/WDqUi
tszW6bDVOuxsvrlyZqagspose9R5HUsenUlDc8mg7moMF4pdh1PDg7c9Jkmo
8Ddwm0pYxzHyFverq0lw1txpGZuyjgOJFVma+5PAMyj/UCRnHQFlnqe/FSVC
eiKRUfzPOmJd+5oC9yTCaMXZQHp8HeYebW+v18RDOktIfX1qHUNXWc/viIwH
9afyqzlz62DioHc7YhUPZwKBDyvr2BF121xXPB6/t71pkmPYQOB3ix2nZOIw
zHFD6hr/Bo5Pjaj+YfiN+2LbaR8+3cD2t24Oe9miIPQuY+8r7Q08W8wf9muI
BHXyC8FPLzdwerFsrJgUiV9nKpWDDDfAFlxwepqTsn7OPmjMegMMB7OmrY5F
IBZM+BCyAY7L/1JePguDjWWOskPEBpZs/WcunQzDw4LX2v4xG5R+6iYcvRQK
Wvlqx8KkDQTFLa1v+xGKhwpOnTuKN6DCrEeezw8B7Y3dH3wGN/AvkLvPWCYY
7Y4Fjr9HNyB13nxOgSUYcdVvg/ImNyAQzMXg2B8EVaX68oGFDfxxO2X8zi4I
8Xfc9grRbcLvzM8k27ZAPFLlSMk+uom33A7MWQcDIOJTUl59fBPCUlpbM7X+
oO807uw9uYnPNivCU9b+iFdvpqGT2IQF2/jOc2N+oH/iqXxDYRPcS9//0Of5
IlFn32yX9iYYnz+QE3f+CUXZ/KTol5uIfn7uykvlnxjh0nn/Xn8Txb2W+Zoc
P7G/OnmTxWQTl9rPqfj7eeObuBLTxa+bWF3cp/QnzQuHdi3VsnzfxHbj0QOm
ll7IGvEjdTlsQuIpKXbbNS/M/pzgfk/ahLiIFPVojydUqWxPRIds4rybN0F1
rycW2k9Om0RsQpbrd13ViAeckhsT5GM2IVWZkXI3wwPFOrznuhI3odVlPFnx
2AMashXrUambiOgkqJaIe2CFyyDfJHMTii++g7zDA8LVOZdZCjdxouzCOHeW
O8ojtBi7SjYx5vR+kdfdHc+sGGuiKij+P4iN/GLgDi/xhyrydRT/mF54mgi6
Q2wXgYulaRMOYQ213Izu+DsS3tXZuol7udMk2UkSqH0WtEx6N2H5Y51WKokE
XyOfY/KDmzC5W3+X15sEyZtyk8yjm6BL53mfaklCvcBYXOfEJhZeSr6hekmC
HpXzu6iZTQgeZ9NnpvA4fYeEpMm/TVTs0N8zJUtCUHLXqtzSJuQOnWOMoPD4
+R82ucxrm2D/8HzmKoXHm3UErTs3N5F1bPB5PxsJBrL1l6Kot3CCT5XjEwMJ
jNxm203otyCbyvhKYIvC0wsH/8rt2IL2yUtrM0tuIFaXOjPv2oLDZTnDoXk3
tEe8vtu5ewuhRTIf98y6wdiKnTOKYwsBmiYlLjNuYHmU1WG8bwtvu46sPp9z
Q7T40wC5A1tQ7t1FHbzohou7tj9jPryFcar0KyoUfu8ZiePvPLIFH1Jxoxsd
CR8KVMYjj20hO5v4+9VuEth9Nn4bC20hxP9s2/RBEmKNQt/KiWzht0b6Y2FR
Eq7evH6GWXwL0tf5FaUvkTAoML/cIbmF0tT2RAE1EiyovLMjpbdAX1Iiv82E
BM4OWBpjC9GqcvVTriQkJQ/Ly8lv4aVajOhMIgk3fzhuY768hbHYR2cONlP4
XUe8quPaFqokYuNd1kmwlu34EXlzCx70c+Wq/O7Yz22tbKy8BdGm7XXOd9xx
u7qmbZfqFu6lfvoZmE65T/2HjcvVt9D0SHTH1xl3EJfesVg/2cLD53d2M53w
gMghzsuLulv4tb5eqRntgUjxl/2xeltI3i5wU53C64euZn/SNdjC9a2/G+pS
nmAx1EzueL+F0yKm6g3tnrD7lnjL3XwLdqLTleaiXiD40E7c/LyFjrVmBWcH
ynsqijxc+G0L544j5J2SN3RbV7PN/9tCp8DRW58zvNE7qfjgzI8tpA/xWrwR
+Ilajrkfke5b2FNycNKU1QdXTsifeOq9hS6S3ocmJx/ky7iXcPtt4SJXsIMP
qy/idc6t/wjdgskQ8e7cMT8c+2jveSVyC7F6fg3l2X4IdO4So/61BbHAhnd+
Kv5wzrB6YZy0BaeFKocB3wAwVDfQnkrbQk2xQm/DkUBY9h8NHM3cwtzVVFdb
i0AYMFY2PyrcwqRc722580FQUme9KFe3Bd+edyypA8Eof6vVs9a4hTt5eaN3
74eA+C31Q0rrFkqirv1iqwmBSJxqwrHeLXx3S0x4XhWKyKJfiv0DlPhlZj48
qxSGQ62bIz4jW1DIEK2MbAsDC1UID/PMFvJJF6XGV8Nhx7GYUT6/Bc5LN7to
3CJAOHH5njV5C4UPX3PeEInErPKE/eIG5X6H7WvbaR4F3Xrv9df0BGJKi979
nSq/ENopV3mNgUD8aLnt06P9v9E7POEpsINA7KQZNVYc+40HaxdO9zERiD27
TV/Oe8aBRDdCyGUmEMOdwsZ2XYhHLbNz9c/dBCI/ebBiMiEeV470v7jLQSDK
nWsJs4lIgI2wvaToXgKRXkJy6NuxROSfFafbtY+ij+RL3/s7EWdvfAss20+x
F1XyTaI0CcdMTrRIHSEQfZ3uxrwUS8VEnvpZIj+BaGZ5t9xvjNL/t7t4XzpG
IIo23BPPiEiDuN/SIyUhAvGf29fhkXMZWBo+kXNPmEDU5NILDd+ViUwRDZ5H
IgSintT+xbCJTMgWF/c+FycQBYMqn2/kZYN217LsKwkC0aspRvh0eg7K7wuG
GJwlEHc02jFqZ+bi5oTLc/PzFPnQOAW9N/lQZX087nyRQJR0/PHvTWchDqi5
XvdQIBAZDBO1O+2K0BtW8svnCuW/N3hp6XwxtM8JvQlXJBD3ffobIJRbguNf
HtfG3CQQb9CdLr3vUIrJP66iCUoEIrPyyCNVrTK801z5l3WXkg/Hvd3B4hWQ
iBa6V6BCIHaUFF15J1yJ1X+PU0sfEIgX35aanzlTBUvbUtM6NQLxGJ1KjO/r
v5CvW2lr1iAQ07hTBF2DqkHPfVK6U5NAPJFoX8c3UgOHWLeNYS0CMZip6EaS
Sh1uLZdqTGoTiFe438j1cdaDVW41b06XQCT6ntZ2HqlHk/3Jw0svKflJsBOl
KW6AV5Om9boegWjo92YpOq4Rjw6SBqjeEIil2UPnxH41gedF2cVtbwlEkaXu
N7ZZzQhbP7mN1ZhA5GvbSKXf3wZdhSe6e98TiNFUvW7rhu0QciZV7DcjELdC
mkqdRjsw01Z2gtecQNxWHPv+slUXEvnW7AU+EYhPhb6/8pbrgfFr4SmhzwTi
bJRWo413L86mPbkpZkUgWuTrDe//3Yc1gnuc5BcCcfhck4NObz9yr5WzXPhK
IO78eCJvS3IQVqS1t3K2BGL2889G59KHcLFbuOHydwJRV/GF4PqzETAceyp+
w55ADIz1asuWGkPVW3d3ZUdKPnNHvxqfmcCPrHLyfScCMVejTUVCfgrKdOv3
1V0IxBYR8wz1yzPguHUq46kbgfhNKnlR68csWr2ecum6E4jL+mqTzbfm4NPv
bv7ak0B0ELtOXu6cg4ZQRaehN4GoH+F/v098HodN1i+Y+lDeC17Tsz+ex2De
qYBPfgTi6OeHf2e05xGx/RnhSwCB6L/F4fPz/jxe3vF4YhdEIKp13jw2f24e
wn4VhY4hBOKZJpac4+zzmBte53MLo8irCPqfHafw9ifBLuMIAtFPy6BEv2AO
59lUPR5EEYgv/17MEfCagx3SGHh+E4hujlobjApz4PF6OxWZTCDKVruZ84fP
QvHqcGpuEYGoGn3adX16GoY97AZBJZTznw6v1g2fhqex/HGbMgJx96zFnc8a
0+gPCvS5WkUgnkyaXQutpfD4qqplYz3l/fIdWo3InkR4TM3V8T5KfBqN/8gm
juOP7Cb13wECMUniNXPAu3HMtwhlxw0RiFrEJ5edzozjAu1/wsZjBOJDdRpJ
vqwxNKpdZCPMUfZz/+Bb+DMKql0ZnRwEKuIUzeOw/TtGoGYQ/EaWh4ooOj+X
K9Y/gO0Kj7IVD1ERe2uP7wuLG0AqN/v2B7xUxNbZfcuenwbAUvY1WJ+fishT
3H12lWsARQdeNPkIUxE/7ewvcnzUjxNVp6TJMlREQzZrl4H5XrQEjtpSyVIR
c52f7fhT1gsbk6DGnfJUxDHh8T28fr3oOsymz3eZish++Jcv69VeOJuSA5Vu
URG/fvf7XH29B0tHc+hjHlMRDRqTOecHOxG6Znwn9QkVsfTvYVdzn04o1QkH
FjyjIvZftW7MU+5E9MfAc606FP+dtB6/LeqARsMXPToDKiIdr/HjS7/bUWx5
rf6xJRVxcEHV5XhQK1w7WvzYg6iIB14U+X7bbETwhr3cRjAV8Yz1UGv0n0Yk
HCSODIVSEY3nPptd8mlE7bNIkbRIKuJGZpF527lGME2aFj2MpyK+uHS1XeNj
A+zW943551ERq0Ib5xY46uHFU+1oW0BFZGpj16GaqEME0VrMoIiKaC/0cuZd
fh1KbcbNZcuoiNk917Rt9epAw5S1a7CaimgW33jsRkUtLA6oiR/vpiJq+pSP
sB+vwQ+wtO3upcRPZNadvacafk+KP632URFnvnXsKXavRnaYUFnVEOX8IzMd
gnTVWDm58VB/iooYN06/Z3biD4xk/D8nrVMRhxa3Di23VOLl497KC9zUxFfB
8k4LB8swyvOyY/8BauLNJuIM93gptLv/TazxUBPnY90d85NL8VR9G1MmLzUx
0Sd126frpXj0SPiWxAlqYnDTEYYwixIo3v/YIHyOmhiza5G5cLUIlXvoB5mk
qYkHeK8dPv+nCFeanRYmz1MTi+sPveX1L8LFeyEcMURqosDtxZ0i8kW4cKfy
vsAVauKtyOgVcddCCN/i7Dx4nyK/T3KSTb4Av3YFT24+oCb2Xwuq7uMqwIlq
wY0uVWqiVKfRZaZ/+eC/AR5fDWoi1z6XRLPQfBy8rq3JqU1NrO0QeunCmA+W
y8mDLMbUxM3cFJftjTmYk1GaonKjJloN+W2+LskA+YKWy3Z3amLYGWVzNZsM
rJ83PbPbk2KfXH5+Rj4D9NKBnw75UBNb5Ej31orTsV9ylgkh1ET7J3l3rKvT
oHDKWfhjEjUx2k2nZmYjBdeFQ+u/pFATJ6y9mF+UpkDpZLqJfRo10VFPyUrf
KQWPBHtzf2ZREwn2xAhOvhQYCIjcyiiiJip+cMktVkrGz4O1b8gN1ESWg9Zd
ysWJCOAZZNtsosT3786oWVIiQg8sp9G1UuK/l4mLXjsRcdyHCByd1MTHS/cf
u21PRPFeA+fTg9TEy9JmPntVEjDNzJJgsEBNXC/aWVJOEw95gtL8ODsNcXAl
0ejQvRhEX388XbOHhshOM2GfyB4DVk/98WROGmLvHyeHzsZo9J907LfYT0M8
fIKjd14lGtaPKutZj9AQd+WVjFE/jUJ+6sUkqdM0xIZPa9NWrhE4Rn037uAZ
GmLdrM/xOdUION94FkMrSUOk9lZRG+CLwONBq5BqKRpi8MsvDIpp4djcnef2
VI6GOH/em2XXYBguvD5n9N9tGqJh0S7723dDEZp+xeDNHYq+AxdJz4+EYift
A7279yj2qaOMxv/XcJ1HU9W9cQCXc849SDQoL4VEhkKZJfU8UanUW0gUSUiF
iMovMjUg3kK5l8xzqZCpRIYuMguJJjOZModSyu/+udfae+29v/t7zlqfmWRo
j3KzFT9OoJSv6AfdiGTwrM49mmNFYNpPg8GVPUlQKKWk/tmZwDo+uxPHOP7W
/LxhTj6YQIvcLL1XO+JA5kyRn2YogTVJWXN+k7EgNGmyes99AiM8r4T8kxIL
01SgmlU4gTMnLDKZy2IhU3nCNTyOk4/f7ss/hqMhtug2d0oCgTbOX5UFkqM5
7tpwPzuJwJ2GU9dmLKLB/qRJdv1DAtkubG+dliiQCXw1wf2MQOexSy5itZGw
WsjEZ3k2gazOsltCQZFAxo8LiOcSWKYcu/H3gUjozZNU2pZP4LIFLcxofABx
3QGOzqUEGnM/PWD6NQLuOkgueLIJ/JJOs69mRIDnXOF/QeUECi/cZJW6cTzO
P/4ktYrAkyPOf9v5I2CN1tHhL40EWh9iqx3bFw5U+djV4WYCBwN/rIwUDYeZ
QwE8P1oIvCCcZG0wzoJ3NoWyKz8SeHbPTgOFKBawx43zJT4T+EPq2rSLKwuy
3Mf2KrZz8jYPFDU5yILgkPV2+7oJ/BDsJypFscBLtHDWpJdA/v9Z8Mn1c3yc
auxn00/gzYqs6j8VTDDfOibkMkBg7//2LWQ/YsKBV/4p3kMENt0bNjC6w4Rt
e9er3RkhcKSWbTvqygS55oLyyFFOnoZBQ8HmTBC2MDZ+NE7g+bnx3P17Od4e
HO3NmyTwdbzlSwVVJsy6+LuWTROYrLZvUH8Dx5sLEtxNMwSORYuqPOX4uiWg
4F7HHIFyYvKhdjQTylYaS377SeDHP2mLQX/CIDt2NOvnLwLzv+gNb5oLgwQ5
f2T8IZBvnXCTGcfLIbkSTasWCVwujZqyHE977yw4JbmERP7j7YlpnPGFGqMJ
JYLE+M64BxMcj1scHfXWoUjUsl1fLTgfBgZdfgIHaBKXytQHinMzQdteIs6U
l8R7k/rHlQWYID/7UvHMUhJ1Q7flnBTjeNjXqNh1GYms5r3LC7Zw7rt09KCv
IImNG27OmHE8Pcvya7+7gjP+66B41JIJRiUzH+6t4uyno9Om4cGErAGbFtZq
Ekd4FOz8IpkgINjyNlKYRAWvd7dNizjvo6lbGytColF25XBFLxNqT2W/SVxL
YpClr8ZXfhbI3l7PThUjcXqzoVGzNgt6P/7Nz5Ak8V+blbMeSRwvL3HKzZYi
sdDTdca5nQVx8h2ZzzeS+M2yyjqe068Fw4NPCmRJjNl1fkH6ZDgc93iVWixP
4g+xPpZYSji8SNqUyN5MYij7renjiXAQqouMeaNIYo+96dJhiICmtVfDGpRJ
dK8adaAnIkBp92BwsyqJVj8OP5X99wHccTwW1KrOOV+4tZ1vzgPQL1a73rGN
xKyG2K5L/0VCytdkz57tJNY4LU0x54oCboFVV7/uILHdr8tl9bUoKLGcchrb
ReKTpKtnkm5Ew7oAK/spPRLPWe6RfCsYAx7PGs/M7iHxiHLZz6vJMaDOlWnx
Zz+JXqpe3Eu6YiE90f7AMiMS1+wvqVM+lgB8tZ/2rDhKotBd6Qi3ggQ4N71v
1+pjJGpEIFG/PhGk9GS1xE6QaN1J9kgvJIKvQ7iqpAXnvvOV/9ldTILOMGrL
RktOfsLRylrDSRDV37dR0ZrEWIr0EhtOhp/8xpLKtiQaJIkc87iYAsfUy9ap
23HytCBwYSEFVvgnrNphT2J/TLCaiAzHx7InlxxyJfH4oh1veHEaDByuXzhy
mcQtgVpli66PYffV7T+PupHoH75anG/LE1isFpmw8CAxp9bJePzVU7CYuj1i
5UnijXNTBXA3HQpFfn619ebM5z89KGOXAW72be2ON0h0K/Jwb9zyDN7f3/Px
4i0SkXvgS+jyLFB+lddy2Z/T33fpKyLvZsHo0rBazyASwz/V6DuyssEm4/DL
O/dJVJqYM9XqyQXpDYVLnZgkzvucXzvklgf94dKnDoeTuFN79fLiFc/B1nee
WhlFYnby0OQj0xcgPWtz/Hs0ifl3DwsoEPnQf/5t+vtYElUEPvbn5uXDGeNk
44hEEjWP6HQ1bioAmeplj64mk9hb6zYzNlEAAzpXfx1PJZFec25UuqgQ7GQO
Ja57TOLCP4JV4g5FcHZ+bjwxi7N+32To0zWvQc7ptO7NHBIvL56VYkW9hqHe
OpZtHqc/pcy0GCk2nKtP0JF9ycn7S5e18N4ykNu1NJSnkETzd8Z14t1lMPT8
St/wKxI9x9jzzr7lcD7+QFB6KYmO+bxss9YK2CT0vOMum0TZ8tbTBUFvYOS2
hLJzOYklc635c/qVYO8680G5ikQPjUCrX1+qYNOg5eZVNSSefil+7kNuNYyY
13jP1JKomlC6lM2qAYc9cRvz35Kok6O5wcejDhQKedwfNJH438lf5/u962FU
6VK9+zsSB3xdVnmENoDjP/su6bRx/icDmdpGXY2gcDenUuwjidxXWBeuhDTB
6BIx0cVPJF40VNVQ12qGC9+mXrM7SLxEmM4XPXoHSlYWQsldJPI0yL+3uNgC
4+8rz97qITGx3+ri4z3vIXO/8qszfSTeLvpyekCuFZxKogX0v3K+79EqJf+1
baCkyrCWGyRx+1KGi6rEBxh/dPE57zCJO3zW27SrfwTne3ss6kdJ3LfbZMut
1M+wlZH1LGOcxOFcduhesh0mPUSJkEkSc23+51vK8XPWxK1jF6c5/bC1sTHf
0AUXbSceG86QWPvk+7O0K92w9dPxPypzJD4W1L1u6tIDk4cqjgj9JDGBqfow
NaAXssqUUmbnSSQfiK/SK+oDF83IH22/Sezs+Pdgy8qvoJJOGLz8Q+KXqLqR
fcEDML3eKS5ykUQ5nxHn0i1D4Mqnt8eCoJDyq1e8/v4bqPhkPNhBUZh8tlvt
YskYTH8XHhWnKTxpPOjJEzkBOeduABcvhdKzHz1akybhUsfo/R4+CmOzT70T
PzoFhfd63L/xU7jd5O6yj91TwL23zWpWgEKXOEXlUM1p2P+rVn9xOYW0tYee
ttU0hGaWKvGuorCjr9PtHsfPH63zVq9aTaEecbhizGQaJIQfL6wTpjCgTfGv
Nme9XV1sn4wIhZ5C1ocfLp+GTJ/7tVvXcuYbnFcQGZiCOdWAbG0xCqeamXu7
C6Zgx9C1B7slKEz3DBPffncK6o+csTOTotDPIZiRqzYFI5Ja3L6bKbRXyTtY
dnsSVNoUhgMVKbx1NGhXq+UkuAdJNoVtodBgEfyN1CeB5ztf3CNVCmeqDCIE
qyZgY0XHtsbtFB6UnO7xDRwHK7ubLuIHKdy55WaFsOoopIleNZP7l8JKhiWG
f/sGE28dQeUIhf6dictqU76Bt+axZXuPUri8WcD1gMg3iOaRf3zBgsJLm1TV
vfhGoO3J2+4iRwp1VLaHbuEfgkMTIkfM71KoHz5fWnm9H+YmeEN0Qyg8sbIk
W8OwHxIm5xvk71E4V4SpIpL9MDP1yeAnk/O+MtJH1cr6IGYmUp8VQ6Hk09bA
eN4+GJ0XgcanFIaW8HA7pvdA+C9e7xcZFApensm8d6MH8Pd8UewzCuX7eT1E
j/cAc+GTtmMuhWrGztmGdA/oLEZq8L6iMDPvYcqOc91whxRV0qul0LtmVXSY
WydoUHwXNtVz+rI/gO2s1And1K+nK95SGNajWjM30AFq9Gf57mYK7y1KrV48
3gHtvFEbvT5R+Ea2OL1evx02C4qK5Q9R+N/267Tgrs9QKyLKv5lm4OmdZqcd
EtqgL7/rBQ8vA/8O1Vf0OrTBgknq6QE+BqZ94JJ8r9kGive35icKMFDg5xW9
9c2tEMqnb/3PGgZKpJZtQd5WMPl96SW1kYHlvi28ecEt4BS5zaZPhoHtm6PS
DU63gL/m4jK2HAO5JgbyD6q1wMtLQTaeCgx8xNanAr68A9HRBIHvqgzseNog
VK70DrrbG2y7dRl4VVd8PnSwCeY9wgRLdjNQMK3HzPB1E6wUOV4YvZeBo6Wi
ZY6RTaBn0i9oeoCBF2ihkOyDTfCw4VdhgyEDdbjeHih0agSHEtkVr6wYuG26
t1JkWwPMxV8vZnkzMMjsK2mkWwPhXs2/o30ZiL3P7PO5a0DDXFI76QYDhZo+
kMXl1eC2hv0i05+B9x3K0pP0q2H2DldWVTADTzxhpqUfq4IZd5+k+TgG/qnZ
sPxc6BtgmjZ2LyYw8Fue0Y21J96AmrqEBCOZgZM6XytNpd/A5cmS6JWPGGi7
XvTUmcIK+G73l7n5GQOV+cu+Z46Ww7SxV8DJUgby2rtkdJwrg/vKDW9s2Ayk
BH1Lb2iXgYqgGGlfzkAffjVWDH8ZuNYW+bpVMXBpPN0gn8OGKVxwD2lkIH0l
jT+Imw2Titcc2V0MzE6Jihx2KoUx2t1wIxeNlgM+pjWthTCpXDHIw02jTgKz
70V4IUybC3qPEjQe8brtrmVWCHPPUp/k0jRqyK3cMd1eAFxm7whdQRpTPq/r
WTf2EoTSNr+wFKex/+/ZDnXZfFjzzu2g7noaZ5/LfK2dfAEiC+zejRtoFFsh
XNhV+ALEj5gJjm2kUVWy5v3NIy9A9uetc9cUadw7GP0g/Ppz0N7XKfpAh8be
V5mic/O5oOMqn31tJ42H9r+8z12XCxBzWf8U0ijrr3XSKyYXdk/yXZbZTeNz
6c74AsyFQw80G/IMaIweaXq/NTgHrIZCfZpP0GgnwPA30MkG/9t6/XzuNAoU
ezxpKM6A8uh7L2Wu0fjtQgPV5JwBXM+67uh60ahQeXAhbkMGuLdeU/e4TmNa
ziauqKB0cNyQ5z8cSOMLq9i0apunYFgkLV8dRaNReJ2f+bbHENzo+qcvhpOH
0WsvjR9pUNv7unkxjsatKnVjJc/TYDfvSQ/NZBodrbNLmtTSQOMYq+7hUxqX
bB8xqdR+BOsmKSe/IhpLrC6MhNimghlxVDexhMZnpUMtbgqpwFqTtKb4NY2R
Nx3qJ2dSQGDHztKZChodIsL8IgJSYEmQ23LbBhpXqG3V8s9NhgGpwRzdThpN
7tTQhdJJIKWpHmDZzTnfqUOXZWYTwerATXOPXhob4h4WClYmwqeLEmTOAI0h
iU7/Mz6fCPXFpiaSEzTeCVny1uN5AvA0p8rvmKLx1wpm5uPABNjT//2P2Xca
00V+eBlYJkAJX+jD0B+cvnhc0unjSYDfYp0e6fM0frezfJJRHA9aygqHq3/T
qGLHZeViHw+Xd3tI9f+hsdnIWU/wn3jINq3+sbhI47DxsNqtyjj4PzWti0g=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, False}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, {
GrayLevel[0],
Thickness[0.01]}, Automatic, Automatic},
FrameTicks->{{{{0,
FormBox["0", TraditionalForm]}, {0.69,
FormBox["0.69`", TraditionalForm]}}, None}, {{{0,
FormBox["0", TraditionalForm]}, {2,
FormBox["2", TraditionalForm]}}, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {0., 1.1502671540345986`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
GraphicsBox[{{}, {},
{GrayLevel[0.5], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwVl3k8lN8Xxx+ZQcryjLHNM9bQQpQSLdxjKUspZGlB8UUoKqWohKJNRFEk
IREllYSiSImEyL6rpAUzyDK2/O7vn5nXeT33nnvvOed13uej5HrYxn0BQRDL
8c///3lbfZOsDh8xEM6xkl2zRhZ2C5yT+Ky2HammuBmZrJSFlGhkH6nmjHxC
G+rsl8rCO7u7Jw+p+aLWdBW5EEoW7AothRzVzqK5fDfv7/yycNcrvW6nWhRa
liMdNdgoA0ZG9Xk71O6iAt7GPIEAGYjV/JlhqZaD0toqrpiVSYOwM2fkl3cJ
ckDpTkoWUnCR7eH/wr4Cvfjb6sSdZwJ/uUVlen0t2hmp3VBeKwES5VLKficb
0MTjK4TlLQbkDv1yvnWhAV27G2vw8zoDrKSKEovjGpBK5M8L56IYEHVgn6Rg
XgP64XBIpzicAULCmUJ3hhvQaBvJv+k4A2a3r+eWezWitelzy32sGdDXurdY
1rEJLR/uH72xmAHn+DSnDA42oeJPKnw7hBigtIJY53aqCb3P+EUuojHA+fT9
JznxTaiyRGTDhRkSWuWG7hk3NaGHA4p3L/0hocb17GWf7c3ojKBOyOtKEvIH
U+zfQgua3mpL7w8nIYos11K3bkHZNHUVz1ASPNb9FopzaUGqc2+9Bs6QIBWy
usjzXAuyvLzAc/wYCf4SZQri71tQ+LZry6RdSVi74fsvZ9NWpFaqGBBjQMLi
fYJllQ6tKEurqEd1Awl959UTtT1bkYewh1eRDgk3ao5ZClxuRYcevfv6W4OE
0f203MdVrajKO9TZliKhKnxZhHQH3h8UWjsiRcK9h9vcQgda0Yi+oXM0gwSb
sVgpu8VtaHVda0fdQhJWyL7kvmG3oRm5io9+dBIWGHRVLlvZhtx/aN+V4iOh
3ZXv3nX9NmQR4HSmclYcnl1UPT1r2YZqv+gfyOWJw6Vsc1sP5zZUfvj+Ua1x
cdhf77OyzrcNqVl3l/8cFQe9iRiBDcFtaG/TiW3T2Ban8nvSrrWhKebTVXqT
4vALtReKpLQhmZtl+48tIKHU7V/Myadt6JDkjdhmGRLiLysf/Frahs6MN/5Q
BhKO5Gwx2VrfhvifBYaEBpNg1uAt9+JrG+IaHs840E2CIi9qQn60De3Ma5vW
cmUAj/3886UF7Uhu9EnZmLAEfDZsyRxltKMuzQ8/7tZLQIbHTKjjknZkN6su
vy6LCWcjFPZ+WNOO7rcaHZM6Lwn2T43XrjJpR0oerjU6O6VAs+mAyG3bduTW
Ob56CUMaBKYj+vnd21EVuf5CYbE0dMs/LfHxb0dt8nSXtzYykG/cGN8S3o7+
uMjOpDbJQJQn76jhzXYU0DDywN1UFjwi2VsfZbSjbYWy79Y+lAWDXFCRLGhH
rSC7nUGwQKrFbe5sRTt67XXsc5kFC4ZmLjX/amlH9dmqGyojWPBe8fETm1/t
aDHx3PLAexbc2Vx/qZjXjh7J71B6Ns6C497jLmoLO9BLHSFapCIF267JboyW
7UBe52ZR6WYKVPL0mdPLO1BxdZ/dmDsFs60uQ/9t6ECvHuzMLgqloHEu/EON
RQd63/jrWFwCBdnKD5N193agVn6F4uHHFExrn26xPdiB7qy3Ff7xhgIz421i
fqc7kOE9VdcVNRTc3Clnei2iA616KVYt1EbB9/84Z7MTO9B8ziHb0m8UrDpe
kv/xUQe6fDeUuvKHgrNh0Zz+og5kGWawJWGYgupYFzVadQfaZD4WQY1TwErX
dlbq7EALpEsUNvAo8HzBf9NgsANdp0q1WNMU5Jc31uyd7UD+twKpLmzTmtPp
gYs70e9Fj6hUbNv0n9C/yca27L2k0CkKUiZM/Z9rdKJfz5hOtyYp4AjIPq7b
1IkMiZRK3hgFm6T/9A1t60SSF/9ufTVCweWlRexFTp3oxafdHpwhCpp1r9ou
8+lE/jWbXqf/xvE0c7q6OagTbeOvf8zto6DUc34mOKkTWV5b0HuknQLRwLo1
SY870abTD/pLGilwvJx68NXrTrRKyB/qayngZRl3jHV1IhXndHfnMgq2vGJK
MDj4vCH+2t9FFMRW/bDQ+teJst6ubrZ/QYHWwMVXXvJdqOVpr8rgAwo8NKoT
up27kMPcsrkzVynI25RUP+PbhZbnacTeCKdggaXvQtngLpQ0JjOVeZaCJB/x
wJ3JXejZaStW0xGc7xzbXZU9XcjGSIEEOwqMVndJ5e7vRhHmE8Je8hQorOPc
CHftQXRVmh4tlwXnshIiIo/2oNOy2b9KHrGgj735fFxID/pv1ygZlM6CTP47
ful3e1CKHa96Jp4Fq+rNrcvbe9BMI3QIh7BAMd/m4rnlvUiZU7/o8Hb83TrH
pCy1F1mcfb7bclAWrC+6lxhe/4oiIsfqtmvIwutTEqgx8TvaNPZVpvquNDyr
E3n15twP5HzqjFWnoRS4xaULS+7/iQJ65F0cMH/g65kf/9x/o3cf5lPo+RKQ
fi2lCMwHkOu3kLrxWAacYSuTR6wHUF/6ilydaAbYZKV5JO8eQLbKRVUnIhjw
ryyD/Oc1gExMbZJnQxlgP5F9oOjKAMr8ml0jdRjzyOmlxLrqATRaOzIVZs6A
Qyu+HFTfMYi2ba45uGWeBKOCnW/3OAyiX2WNMdnTJMiYNEld2TeItE9N90lM
kFDu1Pr21+FBJFFziOwfJEE+pls6I3oQBVleOBXfTkLd5J93il8GkZdIvIVO
PuZFOT9bym4I7d95rXabL95f0aGo4DSEVjjbdg96kWBf9Vx1mfsQWlO/UjDK
nYTAz/9pbfAfQoMN/GkNjiS8aXtn5Bw3hMzdLs8c3EqCKee8V0bTEHq9K2m0
bhnm3/Be3yddQyhQ+Y3fORUSvP+uOVb4Ywj97rkuqKNIwlXe9zNV40PI5qyR
b5I0vt8Ck2iOJAdZSagtOy1AggudHTcpx0Enq6y36OB+Pio4lkCocZBTleDJ
4TlxkBS5n8ZYx0E/ZeZFvTEvMsTOZFIGHHTiwm728hHMC4btY5UtHPShXm7D
+KA4fGRq5K7czkHega+2Tf4Shz3StIJ19hwUSDROX/ohDgOynUXImYP0TOwj
rL6L43zmlZp5cNCq1TpbvLEtqnC13NqXg7Ratj1L+ykOyUpuVXtOcBC17FTr
R8yjVSqbPv93loO+XF35jQ/zsEyN2XjoAgeZrHgyKLSKhJ3LB1v9ozhIZJx+
fNFhzGP1911nb3KQ1xDT90YN5rnmnW8X73KQubPaDnU8fwisPv4zOoODErQf
CepMMyB+zbbBhBwO8nf9adf9VgKWr1MZuZfPQZ72WoJbE5nwSm92/NEbDnqx
Nliy6KQkbNvYOJ33gYNeZ0QXfcfzVJd+9vzrWhxfmW2yYiLS4AthtIpmDmrS
Uvj37ZU0zBs5Lqzr5iBkeUtqsa0MRG9eK9rWz0HRO5bZ9rbJgLLZYolvHA5K
PdhCHtguC88t+qQHJjioyh/4qp7LgollMXvsHwcdJ2ofii1mQfOOWKU5AS76
26ubTOxmwQGbQ2oCYlzUxLt9XfkOC3i2Jupi0lx0/98t/9fNLLjswF4lo8BF
mfx05o+FuD/vGVurtJSL6G+/ip1fR8Ejx+r1K7S4qPvTeK6zE+6n++4brNHl
oqgz24yWBFNQ43LGeBPiopdhvlludyhwdrM122yK19PCAtJwfxv20LDcvoOL
Xn2YntjxiYJQL5qNgwMXeT85llbdRcGdpI/5Tc5cdLKXXnlykILC+ijK1oOL
Dl2TPvYT86GBbhvyxYeLHpp/jt7JzwbOetkfVv5cVBp+w5KziA3Cvt3mn8/g
83+ebOtjsEH1XlqOZRgXtf3nWbZPhg3Q7ClRHcFFej5KA+fZbHAU1gywuMFF
7toiaX4KbDhp8Lez8jYXGfik0CyU2HDdr9DQ9B4X/VMUvqmqzIacjKCM8iwu
chsXMZPH9sd2o0Umz7go9Baz4v/r+0SFjpQVclF1z6+uEuyPMK5phFIuSlk3
fTBajg3UyevrSyq46IZZ56MaFhvWPXK4q/+Zizi/X568KM0G6x42f3EzF6HI
MqFqCTYckvh2YEM3F5W/+52bKcaGtNOHVusOcRFDb7ZvlwAb3jxZffPFGBfV
7bPYY8jHhvbvE9NrZrno80q9noEZCoQywDWePoy6b+qKPcD8lYK0WIeFw0jg
kNhMOeazSju9QkpkGCU1Gl95h/mGRD+pxzGH0Tnz8wWHWyk4ccJuPGbJMEpv
EdnHX0JBmHjhUuulw2jlTofD1wspiHnI2iOuPowuc3aelsvF80R3z5so7WHU
4nnVUzMdzwdbvC9FGA6j4vG96vYRFFhJB1Ph+4YRVz1p9aADBeqFmYYBicMo
PEPlmO4oC0zrFRIvJQ8j4/KGDfsHWPDfn5tj8WnDKOenZMmVPhYkssMfvHw0
jOZVrs304XpdFOoiMlM0jAoXCOvlFLFgwJzVFtSJzzvJcbwRzoJHHRFHzsuN
oGcWgxbpLBaoz/smRyWPIP7vdgWfzWXh8MmOaavro+ia+rz2liZpMHt+gHJK
+IuM2jaefbdbCkIyytSSE8dQZmSG4pJZJsxWvdOKvDqOLG2+Chp9lACR531z
72MmkNvQudIdmDd+nyUiY+MmUFOA2oE+zJvWASO2W8IE6lisQJ26yIB7Kqkb
+FMnkCxb7GHmWQbo3XQ6afh0AqVd+ePI8GGAa2Dz8OvaCXz++25pCwYUosrv
+YsmkdLLT7d+Y30j5zjpd0FsEl3ZPOuTTGA9FKC2wF5iEoXtTTS3nyXB8lmY
4jhrEq130hCv+EvCN2VDpzUrJlFmY21D3jcSRAReNT8xm0S0+0P/SktJcK1+
9DEzfBKxCnetux1EQvqSC6vcL0+iBN3VWuGBJPw6tf+WUuQkCurjUkf9SfBZ
Lul+O3YSjaltqtvqQ0LAhbPE1bRJpPisLWmxEwnXwFr38NtJVB2cnFi0iYQv
t9TvqpdPosZF5oUv9Ehgcun0X5WTyFbbqvzpWhJuJ736sr9uEonybj7Jwvon
Y3qJr03PJFrU0v8mg03Cb+t/jaLfJ9FFK6ddmVg/aGS1bvzUP4m0hfx6HzJJ
eOYQudCEM4mWn75VlLuYhOK8ifs6c5OowvTNrRqsb+YX1S8aJXjIWYuR0oz1
jdF/j/xyaDw0qmcW1zsmDmGvwtu8hXjouq9d28CwOFSQ+2HpYh4a2OoiQAyJ
g7DXhgffxXhIgangt/63OGwrZYqmSPBQrkjvYBPm1TVp7nFHaR6q1PO6uAXz
6Yvvxw4ZiofiXbOtzL9hPn5IM2qS56HDe68Mi/SJwy65s1kxyjyUXdLHf+CP
OCQe3yW+XY2H6u1+aArg+3V/0j4pvIKHYlCEQqE4CUpLRLo/rMS2gtR0yHoS
3E79NDm/moco5G3oGIDjVf/2EdLhoTfWKU8tG3C8lt1hzOrx0CHDUb3Y7QzQ
CDkRWLiJh273KSR6/2GAb4tV73HgofSUfupmqgQ801Q3XW2C39t8WEramwlj
4fScIVMe6t/V0fVXVxJ0u3qYD7fyEJqenvQnpODU2lenPXbw0O+I01+ViqXg
dUTsN+WdPLTEZ+TcPw9pIL77mvfY85Bkj2V1/bw0GG8wf5q4h4dAJTKMuigD
F2KWSO9y5iFbrddp+v9koPLXXBDTlYeKPLVrOB6ysAha++rceeiCKzfgT5ks
bL+VuzXSi4fOJftcr5JgQTTnaq65Dw8919b/xNvDgobNB2QFjvLQonil5OwE
rK+SDEPKjvOQjshyPW4d5t2xVaJ1ATzk1P9HLoiOeWKucKfrDA+tkpb/umUN
BQsVRVcMhPCQ//g/bbm9FOyZmC3ghfFQXdCNf7lBmHfVA5sFLvNQxg4UeS8R
66l77Q0SkTzEufrm8VHMs+2BH12UYnB+04pF4jDPkncUcjXjeGjnx76vft2Y
d6oPgjYl8NA214fS7hw8f8/GLbJI4qENVaBQhPvzjS9hCQ6pPFS1kXIvwv28
L/PYUvd0vD/4TNR93O91gl1f+GXhfFQHhOZIseGCnbVxyGMeEtqXs3ER5leL
OtRHPuOhs8lfw35i3ixboLUv8QUP5ZXGFB/EfApslRvKfMlDTbrCOsVL2FCV
s/h0/mseIl7Qb09hmwqfEXr/lod2e0+HGWL70N4/N+vLeah9adH7HMyz16vb
VHo+8pDUdNPF3di/qFBl7mAND6lXmb5xwOfv786H6Xoe2mgS5fQa8/VZXnqt
YDMPvV9F23mHyYYFEbGOku04H6+6RejibLB1Of9HuZuH/lQZ2AhgXk+IuAgY
9PPQl3PSXwQINpj27Yjd+gf7L5llyGF9F//KQHk3h4eUP7H1pv9SsOEA2+D4
BA+RJjRf9Z8UROgvqg6dxvUd2XoiqpeCTonp3df+8VCo0PCRZqxPz5a2+D8U
mELBT/YdXlFNwTvZG497paaQRsDGbTufYv1cvVDOUncKbWrx9jgeQMG+1ZMz
qgFTaEW5zqN/eP45kdK5nnN6CpEVRksT+Sm4KlZ2Mj94CmkdKVFdP8eCwqGr
f7dcnEJnubczA4dZIP5QeeDAzSlk9/Br0eIWFpQpb2/PyptC0v/g46n7LFBj
pheuHJlCObmE0HHA+n/Cxl/HexoJiE2lVJyRBbGQ2udRR2YQX/CQJ++nNMSU
ynTJ+c0ic/rTkTk/KXDQXkjb7TqHXJ0tC5LVJSH3gOxwl8c/tDfTqCCjSwKs
az+3ie6ZR5ZJL9OCChlQ+U3Jv9JpHrXXsv5TzmMATB4TP+cyj7pt+NUqnzBg
laKM6bjnPAr2Cngh9YAB4n778zpOzqN3dxzHSuIYUCc5EpUZN4/SO4NeGx1j
gJUTw8Sofh61rb/UIaiF/R9165lpnEd8+V23qldg/xfyT71onUd+382srqth
/0/2PFvWO492R/nnKcpj/3xp8mLceTRu+tbYXIQBnl8SZn0ECLA1ldz6cYCE
ZSdWtGxQIUAsUvTA+SwSBkqc9ECNgCcr+l+IpJOQszAmYfMyvN6NrpqQgvVT
0uReKw0CTiZMuj6/RYLh+/e97msJMHN+aTceTsIexr4/0SYEKJq4tOS4kpif
17fe3ELAzoYioa3OJPSml2cnmhFw8Veb3a/dJHis1zicsY2AeiUjIzVrEo7t
n/pbZEvANdrI3icI66WcG3P9bgQ0HPK3ncB82sH74DzoQYBfRYLifcwnhtF0
yYgnAeipGG0n5lN80/5zs4cIaFdsFstbRMJehdjvfIcJ8PycoOshiPWhV4WJ
4FEC7u2O85flx/ydXSnI8CdAhUGtOT8tDp5bXDylTxJgPC6Tu35CHDSiYz+y
AwnwPvHZcQTrK25bxQrl0wQY3Fme/ATzKnfJTMTSIALekG4HYjCv/H00hzSC
CYj9abu2G/NKr8Blu3YoASWqHaQS5tUMEfdE9zwBu9KMlm7HvHpjUSmuH05A
jUx98BTmVWjszFGjiwSk/dVvSsX+Tbo1G0wvE5DlcJlaRJAgtMx1rWUEAQ+a
VjRFKZHw6WhcnE0kAS4NLzMUcDyjiionHK4RoKom+jUshwQb+qyDUwwBVuGL
vbYvY4DkDq2XrjcIeHx534PMSjwvxbuyPOMIMM/vvfLwigQkfos77XOLgDVn
elaHuTLBWeNjp18CAWHhQmYahpKgdGJWPyCRgI2y9RrKslLQV6KVHJREQGmD
1i7rr1LwYOF/xPlkvD7Ym88hThq8d950uZRKwFSYgKnZWhnQTPpYFpmG6yOh
7v6GEhkY6Z9dciMdx2v8WvgyPVmQClLv8n9AwCrx0TNPb8vCJok9N3dlEdD0
n2mC5ogsuGZd2rHxEQG//oaKaOqz4BIqEJJ/TID1pT8l9BAW5DT9eEs8ISBZ
vtmg/RXm1UHm6e9PCaDbrm9I42D9xWe89kMuAeeUVZasY1MgH390KDMP1//G
1vItJhSYaKZkROTj87vL0/0OUOD9vnafbyEBMoVd04YXKIjeMydj/YqAxb5e
2eqpFLwYVv+yppiAH1pzZDyez9sv7ImQekNA2Tc3qe+4/xFyl02mSggYHiNp
zphPas8L5jre4nrJ2itiPYT7oXl//pt3BOjnl4fPTlHg18M8klpOgCnLdSCB
xoZb/sbLwypwfImNFY4ibChe5PfN4yMBTLvmgGO4339LTUk0/0RAIJq6KYj1
jZDeZ1uNGgLqfr4eNJBng2btnIjYZwKcyR+xGzFfbN00KkbqCOhyMXNiY/4E
Tu8JafxCwMv4OM85bN+Nvry+oJEAV9ZSHR6236sVjiY0E7Bbfu3vJdj+U9z/
6EwrAQ+JsVdx2J/4Tkn3fe0EVCaeHdqPebXut7G8UScBUm53RW9hXu0N9mtR
6SZAt+6roZksG0IkU6MFewl48bZD8LwkGzIefTb/8xXHkzz625ZkQ7XhvwU1
3wk4nrXo78fFbBht0Sh+8oOAW0dT3YcE2aBPu6Lp/5uAzRXfOjzmKGh0NJEg
RggI/5JZt7CfAj7Rl52SBB94u8pXEM8pcDxy77ChPB+wbu03s9uK548te4u3
KfKBWmXxR0ec73yKuXCXMh90NTQzPPQpEK8Iv+erxgcRp49NB2lhfsl5NSVq
8oHF+9uMdxIUrPiktXHCgA82PHPju9fJgknV1wKP9vFBs5n4iyeHWXC9oyWJ
mcoHdrHbX4zg+vXe11ulTy2AK4GitS4KuN4NrIb4biwA5V7xr7dLpcCYsBr9
w+QHH5Zqa+IePP+1K08sj+KHXO1nE06KTBiPC++MJGlgVvX27+peBti8GWuJ
kaCBxIQhdbSDAU/7/2uIk6SBxnEt/2fNDDika1SVJEuD1Bq5Ep0aBnxr/Vfw
WIkGfw6039v2CvOFCrhRs5oGA24FHs9jGZCd6m0hYkODgv0TVa5Y/whXtW0m
bWmQKc3IrtiMeTFqZihpT4M8BpW/0pABS4yX6sntoUHtwEfjOV0G3O77rrrS
lQZbrI7qP1RlwKWlTnyWfjQIWdbluZGPAf893lF49ToNVptnJuq9JEFF+dUi
31gaLN+YVyL6goS+myr7dtykgS1HufvHUzxvh0zRGbdp8MBbf+GtTBLcd6bt
vJVKAy+NGZIeT8KBqQlO6lO8v8D7ldhJzC9fF6PzuTRwr9D0GvfD+unbpzi3
PBpMjuaIdvqS4FmdsmlpIQ0eNs5syvYgwSvZ4kp2CQ00VxxX3GVPwsHNd1UL
ammYN4frunSw3nklFBhfh/er/vz8ZTUJg5rHqgO/0OD23nNllStJOCRjdmxT
Mw1qbuuHFKhifTYwUvq2iwbxRyMcUiRJ0NzvyEzroUHGt57fd0gSOI0fDoR9
pUH58DWf2yIk+L5JFDX9QYMNaopm8XQSDsdsdqwepMG3x3XGyePisErg6ZPH
HBrsCgoPTsO8GT7F4r82TIPingeSOZgHT7lh9kdG8XsC3oi2YN4cceNmWY/R
IGG+fL19P97ftntOewLnRydhYyzmzbDleysmjwZZcvM3jDFvnpZp3h+fokF+
t/TJMPz9qG7CZPMMDVb6rEyQxP60s/m3Fs7RYEHTge5ofJ9RRd+7CfM0YEd6
v3uI9V5uXOvIKT46FJz8tcphDQl+wsabHfnpUJptkRd/mATt4Mfx+nQ6BMt3
+N+vIGH0r/SgvCAdzonpBisCA3I9zyFiIR1WqHxZ+qWNAce6Bq9/FaaD79RC
8clrEvAq5mvgwGI6fFAgHshjfbRgS/P+cVE62FgXxuVYSIL5dJXpvDgdHg/5
/uAukYLonBLNhRJ0qAuIEq0dlIJW1zxJCUk6WIqPraenSoOCdNYsW5oOGwo0
c+qQDHh8SvquJksH/wPmdh5VMpATfL1qFUWHwyfmv7QYycLEmovPNsjRQZGt
LeX9SBb0f52ON1Ggw6ZpUXMjARaE3TkSvF2JDgpd39U327Gg2srdY9cSOuh/
4G0Sv80CJn2PpasqHd5W/Mr518SCvS+3rz20lA61o3Ppa4QpuOdjTJ1YToeg
7z9F03Up+KOktyBEnQ5VeVlLVPZRoN2s8fvySjq4l+ZtdgulIPCKUt0NLToI
BiUKEskUlBpIFSStpoPdcdngIMwbob/Cdx+socOkefpV61oKdjyYD3umQ4fW
/PYL3/B8fnPv2MEiXTqMVTuduDJMQbfYb5vy9XQ4GhzdHY/7p+r7rvWfN9Jh
dw2x3lYI65GAL4pt+nRwMdNdN4P1Q55GheB3RIcwFYmn5dJsmOkt4gwa0uHf
S+r1D9zfjeKeNk0Y06H+SIr0JUU2XDFPLya24O82d0WasB6qn0tIEzajQ0hl
4dgw5odMbtQVpgUdSiwyj81ie7/H+aPy2+iwvEFNRBLbmayAXcu208GDtSzU
DvOFW3sIaVvRYdGc6GwT5tm68y5qm2zokOrusTubYsNZXXuRLbY4PwVXDg7i
+5UPWIztsKcDZW6vmSnBhsUpqGP3Ljq8ed7QxhVlQ6LQ8iwfRzrkBl6PdsR8
/VYsF33SmQ587pGTt//h/n6UcTJ0Px0uFqusiOdh/do2YxLnhuPbHaI9PkBB
88Pa3uJD+L15gYpi9Xh+2Peu4oMvHdZJG3QqVVHgLlGYU3eEDrbjE4PL3lEw
djr1TN9xOkQ8KghRwvqVYXlcZnEQHXo8xkyn4ymw5Mpa7Y2kg6hE06bh/RRM
cBdeM7qG67vpzlmfPRSkDE/VLI+hg/Czkm2DO7G/kbatvFhcT1VJVzlbKLgz
lmAad4cOiHY0mr6SgsEpWfT5ER1GGo7YB02x4CqNpWlcRYdPXBOrmBssqJJl
LVYXFIA7CdX966pxvSeHvo47KwDj77XXqNjLwJBgoLUqIQhLP4g+0G2VgguX
jPuEAwXhLf1L/fQlSXiXGFOodloQ3qiUe24/LwnEk56rRkGC0DXgeDYtSBIC
m07rnAoVhOC4H0ts/CThkHLehd+XBUHIaofl272SYF2ssrzytiB8cZcu69eU
BPYw3Te8WBDEuJdOb21mwi5+W6PUN4JwROm5am0dE+Kk7km9LhWEhfYsI5tP
TBDVNygZey8I302l65xLmcB35YS4W40gdBQqrrv8kAn9S37mGnULgq61QLNy
MBOW6OpcdO4VhM7eCyeKA5mw3+L83lPfBOHPS73zDseZ0HZEgZbbLwgNWTk9
MV5MqH7tYKfExe8Jkk2UtmWCUH36cv0RQXgmf+1G8XYmbO77O7frryBYrvId
dzVnwhvh6IzoSUHY6u3197kBE2bkuk9lT+H9Y+FRzuuZoLdaY0fljCAk5S2O
EV7LhOMmp5b0zQlCRnvQdIEmE545VE7Oz+P3nMsu81jOhP8BIn9KIg==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 4.1000000000000005`},
DisplayFunction->Identity,
Frame->{{False, True}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, Automatic, Automatic, {
GrayLevel[0.5],
Thickness[0.01]}},
FrameTicks->{{None, {{5.15,
FormBox["5.15`", TraditionalForm]}, {6,
FormBox["6", TraditionalForm]}}}, {None, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {4.22096091503719, 7.035146364336634}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]}]], "Output",
CellChangeTimes->{
3.685684836182143*^9, 3.685684899373105*^9, 3.685684934519516*^9,
3.6856850869151773`*^9, 3.685771388558601*^9, 3.685771635524642*^9,
3.685772417972056*^9, 3.685779984653523*^9, 3.685780050584177*^9,
3.685780155491983*^9, 3.685780417010921*^9, 3.685780763047028*^9,
3.6857808051056337`*^9, 3.685780855285448*^9, 3.6857809456693573`*^9,
3.685781069874989*^9, 3.685781154708826*^9, 3.6857848637369833`*^9,
3.685785051208489*^9, 3.68578511975957*^9, 3.685787073486369*^9,
3.687077174632674*^9, 3.687090609016458*^9, 3.687091867557672*^9,
3.687092196121331*^9, 3.7103811547228518`*^9, 3.710381943604562*^9,
3.7103819767627563`*^9, 3.710382077031267*^9, 3.710382339772437*^9,
3.7104959611295357`*^9, {3.7104960082026043`*^9, 3.710496033550729*^9},
3.710821998314497*^9, 3.710822401440489*^9, 3.710822693938757*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {
{GrayLevel[0],
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.6631237556772783, 5.059450813334131}, {0.68541099386381,
5.05827743801483}, {0.699827209167197, 5.06764643081042}, {
0.71475601887573, 5.086023826420054}, {0.7284885614034877,
5.112929097533294}, {0.7383014588904864, 5.142651405652801}, {
0.744939306828797, 5.176448235560368}, {0.7477502951848498,
5.211265696941825}, {0.7460826139250745, 5.2440498994830005`}, {
0.7305464793822267, 5.292269296777347}, {0.7176674540788954,
5.304257907375546}, {0.7027186323077941, 5.307668587214951}, {
0.6874570826151684, 5.303564237772302}}]},
{Arrowheads[{{0.062499999999999924`, 1.}}],
ArrowBox[{{0.6697094199832774, 5.291081329669611}, {0.6540699140067214,
5.279746042545659}, {0.6221038266337331, 5.240778343296033}, {
0.6068277553704865, 5.216946436816766}, {0.5926722640884666,
5.192105361379456}, {0.5796373527876736, 5.166255116984101}, {
0.5677230214681073, 5.1393957036307025`}, {0.5553586743211116,
5.106630120059311}, {0.545401916548393, 5.073733625162852}, {
0.538255794382286, 5.040849370685529}, {0.5343233540551254,
5.008120508371544}, {0.5343289268145883, 5.002789156159335}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.5343516643182804, 4.981036621994629}, {0.5343572773776949,
4.975666715590901}, {0.5391102461607777, 4.943607669713602}, {
0.5456411683575092, 4.921525741110058}, {0.5556068870389465,
4.900003419024698}, {0.5697471307542351, 4.879512067179381}, {
0.5877491967138815, 4.861969831440761}, {0.6112577925618348,
4.847780940366533}, {0.6412516806019564, 4.8399424357443115`}, {
0.6753776079902166, 4.842859433444956}, {0.7152503264025558,
4.862313810013366}, {0.7366594613413127, 4.880876448320528}, {
0.7535265180609187, 4.901081028922247}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.766069396959668, 4.918807747313854}, {0.7755425336605265,
4.933488691576033}, {0.7920135920877625, 4.965495142645348}, {
0.8075094467531096, 5.002271243182795}, {0.8217357509741533,
5.043161283309515}, {0.8341374918168081, 5.087852898843798}, {
0.8443681893483246, 5.135759049046215}, {0.8524462963882944,
5.185812009201332}, {0.8574751494168074, 5.229071912711141}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{0.8593849886269922, 5.250735621402616}, {0.8620449784873218,
5.287615670058291}, {0.8633941730439991, 5.336664772789712}, {
0.8626645883874939, 5.383589786612091}, {0.8600829634789584,
5.427889135349538}, {0.8558915764787538, 5.468469370415515}, {
0.8503202741878744, 5.504710541152004}, {0.8435771485284242,
5.536821318275912}, {0.8358702914225069, 5.565010372504138}, {
0.8324562740984252, 5.573813246817854}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.8245908052086941, 5.594093968173995}, {0.8184547275241755,
5.609915540096024}, {0.7991834060774337, 5.640538954417818}, {
0.7788690113294876, 5.659425021479962}, {0.737598739685867,
5.674589202634545}, {0.6965021515103618, 5.6651211809285735`}, {
0.6714570893903369, 5.653551413741027}, {0.6470255370440054,
5.638839509974118}, {0.6231515100211439, 5.619881727382336}, {
0.6000029616724225, 5.599989292702203}, {0.5775059370622941,
5.577035562972703}, {0.5706431817605429, 5.569758390684547}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.555720468589284, 5.5539316638298315`}, {
0.5348842502159058, 5.531198191332223}, {0.5147299156368474,
5.508456347734149}, {0.4945590294354606, 5.485714128031941}, {
0.4751309912759737, 5.463065417884092}, {0.45644580115838695`,
5.440510217290606}, {0.4385034590827003, 5.418048526251478}, {
0.4212614975376102, 5.3956795757894565`}, {0.40467744901181324`,
5.373402596927287}, {0.38875131350530956`, 5.351217589664969}, {
0.37348309101809907`, 5.3291245540025045`}, {0.35344517936394393`,
5.298488570574921}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.34170829847905393`, 5.280177094906493}, {
0.3183519437540281, 5.2416600509999345`}, {0.2973393008626949,
5.204225784366195}, {0.27798553871891307`, 5.167059836476425}, {
0.2601924575139879, 5.130159997059176}, {0.24386185743922428`,
5.093524055842991}, {0.2288955386859277, 5.057149802556426}, {
0.21519530144540316`, 5.021035026928026}, {0.20286382781689571`,
4.985752280920672}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.1961830335990262, 4.965051257698566}, {
0.19120027226789085`, 4.949575067559921}, {0.18332565047859656`,
4.9229366045160425`}, {0.17621240782426206`, 4.896441479205276}, {
0.1698691440735575, 4.870088937154309}, {0.1643044589951529,
4.84387822388983}, {0.1595269523577184, 4.817808584938527}, {
0.15554522392992404`, 4.79187926582709}, {0.15236787348043995`,
4.766089512082205}, {0.1500035007779362, 4.740438569230561}, {
0.14820382513442126`, 4.699683657360054}, {0.14929540987346918`,
4.659279130346709}, {0.15101696428470038`, 4.644154024332054}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.15347697670787067`, 4.622541028277396}, {
0.15385475487764108`, 4.619221972643417}, {0.16270754091975093`,
4.579509700530939}, {0.17716318616619614`, 4.540138846248483}, {
0.19948469863210827`, 4.501106220163758}, {0.23295957318852978`,
4.462409168591042}, {0.2644328181895766, 4.437236189545729}, {
0.30646930570063374`, 4.412205213208954}, {0.33235694307849684`,
4.399742850693337}, {0.35668831554655606`, 4.389942037534814}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.3771757794575606, 4.382658415627479}, {0.4003726808201234,
4.374923626795274}, {0.44587499105147715`, 4.362715880143613}, {
0.472766282669435, 4.356779065306058}, {0.5029240087950241,
4.350990926329513}, {0.5370932830647366, 4.346701355363108}, {
0.5762279939761547, 4.346015624268837}, {0.6210210614504957,
4.350094780267612}, {0.6721654054089766, 4.360099870580346}, {
0.6969176941802088, 4.367401882416586}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.7171367204151157, 4.375380142959478}, {0.7299373023971312,
4.380682931593374}, {0.7611789735022303, 4.398252020183276}, {
0.7939343172316686, 4.422421211121558}, {0.8279293503390731,
4.454612100295208}, {0.845226387339384, 4.474203682799405}, {
0.8626581090525756, 4.496373563196808}, {0.8801272720821478,
4.521257999445072}, {0.8975089206271083, 4.548965022928385}, {
0.9147127393920755, 4.5796379482477665`}, {0.9310471599991721,
4.612220750831979}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.9401128886308433, 4.631993159988408}, {0.9423919018484443,
4.636993856338638}, {0.9528350043068582, 4.661748150250315}, {
0.9629777204569069, 4.687682971739255}, {0.97282005029859,
4.714798320805457}, {0.9823619938319079, 4.743094197448923}, {
0.9916035510568602, 4.77257060166965}, {1.0005447219734471`,
4.803227533467641}, {1.0091855065816684`, 4.835064992842894}, {
1.0174548166576227`, 4.8678031384887195`}, {1.0252815639774082`,
4.9011621290984255`}, {1.0326657485410253`, 4.935141964672015}, {
1.0343871980342971`, 4.943722570995768}}]},
{Arrowheads[{{0.06249999999999998, 1.}}],
ArrowBox[{{1.0386659567740688`, 4.965050146648608}, {
1.0396073703484734`, 4.969742645209486}, {1.0461064293997528`,
5.0049641707108385`}, {1.0521629256948635`, 5.040806541176072}, {
1.0577768592338055`, 5.077269756605189}, {1.0629482300165773`,
5.114353816998177}, {1.0676961439357378`, 5.151705195624797}, {
1.0720397068838414`, 5.188970365754782}, {1.0759789188608886`,
5.226149327388132}, {1.079513779866879, 5.263242080524847}, {
1.0816364809564765`, 5.288335062739615}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{1.0833656843381037`, 5.310018460473807}, {
1.0853704489656892`, 5.337168961308373}, {1.08769225705851,
5.374003088955184}, {1.0896097141802732`, 5.410751008105359}, {
1.091297209626226, 5.4512344257245555`}, {1.0925810427353921`,
5.491401159164176}, {1.093484575440508, 5.531113303457881}, {
1.0940311696743121`, 5.570232953639362}, {1.0942441873695408`,
5.608622204742297}, {1.0941731644601396`, 5.636039195743972}}]},
{Arrowheads[{{0.062499999999999944`, 1.}}],
ArrowBox[{{1.0940244816874485`, 5.657791063655819}, {
1.0937629408752225`, 5.68265788984725}, {1.09311540055115,
5.718028513916627}, {1.0922244591343615`, 5.752368478010618}, {
1.0911091994155535`, 5.7858685773524074`}, {1.0897914730420366`,
5.818506918807259}, {1.0882931316611226`, 5.8502616092404445`}, {
1.0866360269201223`, 5.8811107555172315`}, {1.0848420104663468`,
5.911032464502889}, {1.0829329339471063`, 5.94000484306269}, {
1.080930649009713, 5.968005998061891}, {1.0797175915529185`,
5.983700572647755}}]},
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{1.0779789702385094`, 6.005383426024089}, {
1.0766488517517943`, 6.021334979209109}, {1.0743781284310316`,
6.046753698203717}, {1.0720378467429224`, 6.0713595568759455`}, {
1.0671995825462282`, 6.118185655444139}, {1.0622360077248425`,
6.161919199295425}, {1.0571805231575553`, 6.202744592846521}, {
1.0520273596178193`, 6.240891086248402}, {1.0468197105107593`,
6.276531872484218}, {1.0416007692414988`, 6.309840144537113}, {
1.0383776866931762`, 6.329163822010841}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{1.0347066834646954`, 6.3506040654785485`}, {
1.0308931389801343`, 6.372055345570348}, {1.0255521549749353`,
6.400113988492791}, {1.0202197250533918`, 6.426139993019111}, {
1.0096156406991241`, 6.473039116886102}, {0.9991159991551839,
6.513697747174012}, {0.98872263989649, 6.548820108132345}, {
0.9784374023979594, 6.579110424010604}, {0.9664515364416089,
6.609689800062339}, {0.9546107080399473, 6.635723080029101}, {
0.9429149171929752, 6.65721026391089}, {0.9402271896076722,
6.661152260406214}}]},
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{0.9272389986075876, 6.6785350786592135`}, {
0.908683809768237, 6.698253290082484}, {0.8865556854306251,
6.711886946189501}, {0.8439029793411769, 6.716542536875447}, {
0.8107166749860454, 6.706635389626586}, {0.7788350307216068,
6.689095201932557}, {0.7482077040474608, 6.6665917194039075`}, {
0.7187843524632074, 6.641794687651188}, {0.6905185426019671,
6.615731427592321}, {0.6633638410968606, 6.58942926014523}, {
0.6587525436065946, 6.584768550254094}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{0.6434533584814822, 6.569305426569395}, {0.6362792826425568,
6.562054476854522}, {0.610256876781623, 6.534792775772859}, {
0.5852966235140586, 6.507644156900236}, {0.5613985228398641,
6.480608620236657}, {0.5384806003784833, 6.453685330902605}, {
0.5164608817493597, 6.4268734540185655`}, {0.4953393669524936,
6.400172989584537}, {0.47511605598788487`, 6.373583937600522}, {
0.45572172380887416`, 6.347105365204605}, {0.437087145368802,
6.320736339534875}, {0.43549764673370595`, 6.318401244973839}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.42325736741328984`, 6.300419342356514}, {
0.41921232066766845`, 6.294476860591333}, {0.4020972497054735,
6.268326928373976}, {0.3827225199079072, 6.2373847863051095`}, {
0.36434282358079706`, 6.206595925007235}, {0.346895954616926,
6.175959416271144}, {0.3303197069090771, 6.145474331887627}, {
0.31455187435003373`, 6.115139743647481}, {0.29953025083257867`,
6.084954723341496}, {0.28519263024949526`, 6.054918342760464}, {
0.27147680649356676`, 6.025029673695179}, {0.26686202177906704`,
6.014547842820436}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.25810770237016445`, 5.994634753445634}, {
0.2459292624662255, 5.965693609445178}, {0.23408301142563145`,
5.936245118554794}, {0.22281038585726393`, 5.906942015470944}, {
0.21207784437875452`, 5.87778357043123}, {0.20185184560773467`,
5.848769053673243}, {0.19209884816183614`, 5.81989773543458}, {
0.18278531065869053`, 5.791168885952835}, {0.17390565395534344`,
5.762581836219604}, {0.16546290267481398`, 5.73413593592001}, {
0.1574364210836942, 5.705830483331958}, {0.15215081014154397`,
5.686321121579553}}]},
{Arrowheads[{{0.062499999999999944`, 1.}}],
ArrowBox[{{0.14660151121984744`, 5.665288669531078}, {
0.14254972403605154`, 5.649638114402084}, {0.13564823711271232`,
5.621749794616065}, {0.12908047694515049`, 5.593999115653192}, {
0.12282580779995803`, 5.566385375791368}, {0.1168745770904201,
5.53890793192184}, {0.11122051165957364`, 5.511566158970731}, {
0.10584804491863818`, 5.484359382268256}, {0.1007416102788335,
5.457286927144628}, {0.09588564115137913, 5.4303481189300635`}, {
0.0912645709474945, 5.403542282954779}, {0.08686283307839948,
5.376868744548985}, {0.08266486095531349, 5.350326829042902}, {
0.08195836824318596, 5.345615087406548}}]},
{Arrowheads[{{0.062499999999999924`, 1.}}],
ArrowBox[{{0.07873278475999321, 5.324103024028672}, {
0.07716835826165129, 5.3136695498502124`}, {0.07205503601522395,
5.277263550420278}, {0.06729548580630984, 5.241107089491237}, {
0.06286029922518718, 5.205198425801233}, {0.058720067862134476`,
5.16953581808841}, {0.05484538330743011, 5.134117525090911}, {
0.05120683715135234, 5.098941805546877}, {0.04777502098417954,
5.06400691819445}, {0.044582276726775956`, 5.029311328337761}, {
0.04210760290210371, 4.999930894053844}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.040411853672421255`, 4.978244665857435}, {
0.039067121751881956`, 4.960631981776565}, {0.036742894520104416`,
4.926644933224637}, {0.03470635644924851, 4.892890773260211}, {
0.032956599282170713`, 4.859367855959575}, {0.03149271476172746,
4.826074535399021}, {0.03031379463077522, 4.793009165654837}, {
0.029404805945060265`, 4.740574450501835}, {0.030158865557797298`,
4.688713365001444}, {0.03219311554307131, 4.652317472604315}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.03382254458747269, 4.630634800408841}, {
0.03898358456659368, 4.586685524535229}, {0.048723892730297313`,
4.536506441579844}, {0.06417764570998487, 4.486876343057478}, {
0.07477116317231515, 4.462264898270211}, {0.08727577461630276,
4.437789189798886}, {0.10568176393515005`, 4.409252281892531}, {
0.12932411682899558`, 4.3808988760556}, {0.1537643495103062,
4.3580417219757255`}, {0.1701020693691896, 4.3459540031633495`}}]},
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.18780723835413282`, 4.333345552644789}, {
0.2135950480270411, 4.318090847327846}, {0.2493594539409804,
4.3009462138608905`}, {0.28319334570039956`, 4.287732149590299}, {
0.32421384574760553`, 4.274558683609555}, {0.36283308269915676`,
4.264328303627857}, {0.4092075506503334, 4.254122408166482}, {
0.4532741825798693, 4.246317487988733}, {0.4785069835191578,
4.242616520190387}, {0.4979102460076536, 4.240087653232087}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.5195713102183604, 4.238236293969974}, {0.5573492930467119,
4.23599257524706}, {0.5866334253515044, 4.236486351652851}, {
0.6182814729910776, 4.2383284141087225`}, {0.6524987561022957,
4.244080746989232}, {0.6894905948220236, 4.2563053346689355`}, {
0.7292569891502669, 4.275002177147835}, {0.7717979390870147,
4.300171274425928}, {0.7940646952724048, 4.3159469434826665`}, {
0.8169367360875842, 4.334868725975205}, {0.8194219291804142,
4.337265014906601}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.8350808390006497, 4.352363750046424}, {0.8402920475735002,
4.357388535226434}, {0.8640086157711, 4.383958284559249}, {
0.887911272874218, 4.414955398744624}, {0.911824851076689,
4.450757302553546}, {0.9338486316775085, 4.488714697788165}, {
0.9552657776645186, 4.531263689893901}, {0.976076289037725,
4.578404278870767}, {0.9862540567441498, 4.60369642218587}, {
0.9962801657971155, 4.630136464718736}, {0.9971686249717812,
4.632631080382229}}]},
{Arrowheads[{{0.02474176090450419, 1.}}],
ArrowBox[{{1.0044667644223118`, 4.653122796272837}, {
1.0060651375708891`, 4.65761070838658}, {1.015519493439736,
4.686005455106617}, {1.0246432334036502`, 4.715320704878835}, {
1.0334363574626315`, 4.745556457703229}, {1.04189886561668,
4.776712713579802}}]}},
{GrayLevel[0],
{Arrowheads[{{0.062499999999999965`, 1.}}],
ArrowBox[{{0.6046524486184166, 7.2}, {0.5983280611475902,
7.192543179593463}, {0.5748419188756299, 7.163831269618011}, {
0.5522416385951907, 7.135233517581794}, {0.530527220306273,
7.106749923484817}, {0.5096986640088763, 7.078380487327078}, {
0.48969131621452844`, 7.050124304885098}, {0.4704405234347566,
7.021980471935395}, {0.45194628566956097`, 6.99394898847797}, {
0.4342086029189415, 6.966029854512822}, {0.4165021984484508,
6.938111171695898}, {0.41466782163814586`, 6.935112833416555}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.4033156803426501, 6.916557452860288}, {0.3994897924322785,
6.910303936074804}, {0.38320085059987075`, 6.882608596900663}, {
0.3675469757628889, 6.85502380642011}, {0.3515137755739323,
6.823319098021509}, {0.33620353228701105`, 6.791761690931337}, {
0.3215340530739688, 6.760349565425833}, {0.30753273554419114`,
6.729083394746252}, {0.29350441000432925`, 6.697816553755333}, {
0.28009023012756334`, 6.666694326967658}, {0.2672901959138936,
6.63571671438323}, {0.26218036948617707`, 6.622787721202303}}]},
{Arrowheads[{{0.06250000000000004, 1.}}],
ArrowBox[{{0.2542183613537263, 6.602544947806201}, {0.2434787701576341,
6.5741939940755705`}, {0.23235978997862805`, 6.543646210855254}, {
0.22174736682630164`, 6.513240366341099}, {0.21164150070065496`,
6.482976460533107}, {0.20199870398930433`, 6.452853183479721}, {
0.19277548907986614`, 6.422869225229391}, {0.18397185597234028`,
6.393024585782115}, {0.17558780466672683`, 6.363319265137892}, {
0.16612082172786508`, 6.3280496477497055`}, {0.1572048121873658,
6.29297627864802}, {0.1568151951737818, 6.291359268906259}}]},
{Arrowheads[{{0.06249999999999994, 1.}}],
ArrowBox[{{0.1517197638579376, 6.270211932447823}, {
0.14880088221877097`, 6.258097830955792}, {0.14087013799562254`,
6.223412977795975}, {0.13337368569146246`, 6.188920392291523}, {
0.1262726314798327, 6.154618747565393}, {0.11952808153427513`,
6.120506716740537}, {0.11310114202833177`, 6.086582972939912}, {
0.1069940519866143, 6.052846800864567}, {0.10122170669560196`,
6.019297673393429}, {0.09576419672163818, 5.985934545916265}, {
0.09060161263106623, 5.952756373822844}, {0.09017511953822242,
5.9498772679791}}]},
{Arrowheads[{{0.06250000000000006, 1.}}],
ArrowBox[{{0.0869876136598901, 5.928359529578971}, {
0.08571404499022954, 5.91976211250293}, {0.08108158436547147,
5.886950717346296}, {0.07668432132313537, 5.854321143742708}, {
0.07250234642956459, 5.821872347081934}, {0.06853469340188471,
5.789603380373686}, {0.06478622461900044, 5.757513326664582}, {
0.061245773639923826`, 5.725601186399748}, {0.057902174023666965`,
5.693865960024311}, {0.054744259329241915`, 5.662306647983399}, {
0.051760863115660735`, 5.630922250722139}, {0.04935485860650277,
5.604294100279525}}]},
{Arrowheads[{{0.06250000000000007, 1.}}],
ArrowBox[{{0.047471960413266394`, 5.582623233897365}, {
0.046272960367078335`, 5.568674202319076}, {0.04375188496651553,
5.537808645538414}, {0.04137396385918557, 5.507114221019957}, {
0.039130690919368674`, 5.47658997234924}, {0.03701356002134502,
5.446234943111797}, {0.03501406503939483, 5.416048176893167}, {
0.033123699847798324`, 5.386028717278884}, {0.03133395832083568,
5.356175607854483}, {0.029636334332787125`, 5.326487892205503}, {
0.0276627014170274, 5.289993936311152}, {0.025994975452885753`,
5.257060535607788}}]}}}}, {{}, {},
{GrayLevel[0.5], Thickness[0.02], Opacity[1.], FaceForm[Opacity[0.3]],
LineBox[CompressedData["
1:eJwll3k8Vd/3/0WzxD3nGq+hDClJIkqGtQoNMlVSRN6KRGQoGkgl0kClXDOR
e0nIGCJFZhIKpZCpzGOGQnzP5/e7f9zzeD7OPmuv/VrD3nv9KefDtpwcHBxa
1N//nsr/79cN//8pjHcCOHTsNnSDm+fdPN9twpgQGlEdL9wNZsWW5s1bhdEm
7fAxVY5u0H6+efKKvDAue6jWUFTbBac9ZG+8lxHGglunTp5x6IIwi4mZ40LC
+Fs3ya82qRPahC+ZRf4TQpvbYzo90AFX96Vdca8UwhDiFre8xHfIfOReU2Aq
hEGKJ8pV+prBpmam6NSIIO4QYfqb23+Gg7KlayvvCqLKUwVpy531kFIWe9FX
XBBdzk8K8jrXwL4ko1uSbwRwOhB5nTrKQbf+qrPFEQG8dsHDtUaqBOa3pusd
HeHHMUF56e/bi8A6pjwxO4gfd19S1hLhK4Bae9sH/xT4sd2o/6FRew7Ut2+7
69RIx+zBQRXL01kQfUrfXewaHTn2njbgVE2HCL5AsUUJOtoaek3u2pwO6w1q
chLE6WhNGtt4rkuH+UO8doZidNz0kfmU5E4HvofP1sSI0HG+YoeYdnEaXKyr
PqfFT8d/E3s07UTSQH1r9eVbq+lY0r7V3ulrKjzkqHgvPkXiu6BVbZ9LU8F8
SZla1W8SDfhMt+plpEJVYWjFhQkSxbvzr5+5lwqr9F/JVo2SGHzgk+lJzVTY
P8f+e3GAxPHBSvqhhBTY/2Zld/0PEjfe/cS85JsMIQcVisOrSSw9PeF23jUZ
1FMzYuWqSMy1Npa+cjIZrJXrIgoqSPT+II3VO5PBf7a+va2UxDvXizktR15A
cNBrttQ7Ej3Pneg7ZPkCXGudt2RnkVjWPX+zTy8JMtpmBfqjSLTJKWu/vCsJ
nu5YtfdaJImp0tk6EnJJcMXw4kNaBIktSzR9X65KAhqfmeuuUBKL/0Wpt1Q9
h5Lzsq6BQSQKTvl/dTN8Dgl/N1vtvE2il1SwsLV9ImQqXe+NcyaxJFYsTsIi
ESw3TU7BeRLTqlw8pg0TITglRKzdkcTnns0ew9sTYW6zZZ6IA4kmhx+Vc3Em
gnVzIYNpQ+K+gtNyQ7EJ8MJIM+yBGeXPTjTQZCbAnYPZOxWOkzhR9CTp+d0E
cNDQmKg1JdHDpTPoo1sCBH+/lM5jQmJzdWeu+d4EWCvtaPbAkES9kxeNgybY
4BX2+kSwNokS9+kpzD42TK52CFDZQ2L5As0pp50NHH/WNjcjiVIu/a8NathA
k9uaLaxF4kW3c/lf2Gyo2xcaGbuTRMlaU6+SKDZE9r1+smcHia0tG1s+PGGD
R+N7Vo8KicQ73YWdPmyIcb9B26RMorxLvprnf2xAtSv8WVtITEzZsf74cTZU
B0U1HpUn8eTShoEjxmzo5A5L+SNH4s4Usvk5sqH0KF+i1kYSfzjO9n2QZMO3
L41lNZIkZi24dEoPs6DDWDJpQJD6vq/c2qmXBcoFn08lCFD23Ty2fu5kQZjn
SqVT/CT+fXHg+EwzCzj1p/m+EZR+l57YJrxngfmBgvpqHhI7le82txWyQNXH
StV/DYma9MQfyq9ZsJjsmaHNTaKM73srjXQWlEgI9L1ZSSI5ohdd8pQFggnJ
pulcJFZEmBydjGTBMd9eOydOEvNGTcZ0wlhwcuThA7kl1PvPZp57g1ggkL1O
lL1AYMHND1UzgSxYprb81ql/BLoqdmZW3WPBtcjDixLzBIaeTyDqfVlwz0Bk
Z+RfAnF4W99SHxZYVzyePP6HQImD/AInrrNA+4JjucAMgf0+4Tsdr7Ig5ZXm
i8eTBPLq8wfIXmbBRQ+lN8a/Cfz2KWZqqQcLqgt9utdOENg086hygxsLYrcr
ut0fJVDTr/HRORcWnHpwr+XACIFvXn6X/3ye0rNkl+nKYQJHB8kPlk6UPmeh
r3yQQLfsgWhuRxbcJUIf+g0Q2H29tqHVgQUGx1Bfp5/AZYF84Q32LJisURPn
6iNQOKFr88BZ6v0Kn2XvfxF4O9S9aAPFgrGCnDd/Ejhi/irA344FPFv+kthD
4GR/YPkain/qyKgvdhGopjUYn3OGBce9Iy697STw5KHX5n4US7gcq7rWQeBy
sZ51VygeTTdX1PxB4OeIY/KPKb715VnKfBuBZ0oXM+spfnRVQetNK4HWTyoH
tlP2GxTnezy/U++XxKx6R/H8o9Vx6t8IFFjpqOtM+Ve97bjb3FcC6XHijbrU
eiaSuo8XfCGQszxucA+13i2Pkk08mwlM4zj+/sw5FuzyfGmr3kTgEgY+yaD0
ucM5eH/uM4F5U+0RUv/T861VRcEnAo1zgvgLnVlgtZdbyKuBQB2fV+DtygIF
5aFrGvUErr2eeNTuAgtKRZf8nf9IoNyn0ieX3al4R+6/W1hLIBHnoJp5ifJ/
b7GC9wcCd9Omr9Cp+D/Ite/XqiFQaX9pxFMvKr5++HqxikDt2GjbbVT+GERc
CLtZQWBu/voVXn4scHLuTZEtJzC6Z6515g4LuFXgW20pgTJ7p8x9H7FA3fbJ
dZH3VL41zSUwgyl7uwJmiooIPL2K17mFyu/mZus7du8oXpJb+zeOsq8VNZn9
hsCB4Cu0LwlUfXr8qztRQOBhJ9bmvmQWdBpvL+XMJ9Ai4IFmYg4LPpcwZoxz
qXzqUDF+9pEFH54+vT2SQc33p+CdbBML1No9N4akE3iw8FNB93cW2F2Q6NZM
o+w/7m/jGGBBxM1XzwJTCLwquurqt5Vs6DEb1FNIJFD63esZcRob3rrXZzaz
CazTC1sbLcwGleTzytdZBJYW3HiwbzPVf3TqvOvjCMwMV/b/7xAbtK1GNS9G
UfH57R7gdYINXe7nzolFUnq46R1psmUDy/FxRnk4VR8rZn5oebLhTneLv3Ao
gWUpV3kWnrPh1lExi6IgArfpOexY84oNv2veGjo8IvC85e1Q82I2uE3Om9Ef
EhjPE5T9+hsbgnT2558NILCV6211IF8CuO/rjyP8CazcXijzQjwB9HO1zAr9
CPy3/7D96i0JkJkhuemsL4G6PS+iwvQS4JHKQ+LtTQLjbHmP/r2TAP7LqrjP
eRH4aucWTk0yEapvbg+pciVwnYXa82DpRODY8PRSgAuBRwL44xRUE2Gc3/S8
kTPVb86oGm42TwQhifjIJkcC/RLC3EzYiVBWFTTVZUflX3tl1uf9z2Fp6U32
kpNUfd/4fv7uyecgkbbse5kFgcEzNrvvXnwOZ3jeydw7Qem9UGJjH/ccit0+
zBJmVP9a2rCuYOE5+KyRi5cxIbBNr7dpXWUSHO/MGDTUIzAwZu3Sgq4keG/S
dYF+gMCpk2Yez/8lwcdr22jf9hF4TKGNfX37C/ims+G+rS5VH3t2JSgmvACV
37u9riGBLkU8LgoRyVB5ZenhDFUCw+OFNPTykyF7t8fmyyoEGt6zHiv5lgzH
hcaEYTuBD1INuz+LpoCy3rRK7TYC7/2pVPZkp4CIhozDgDyBm60n94dUpYKi
T0PxRikCLXk8/GV+pwL7v+OtzespfRnZnEpiL4G2w4PXbx2BBhPHRSvcXkJ+
vPO7TjECu0RS+zik02CpjezeKCECI/Xys9qN0kH0mMgw/1oCh3g055rOpkOl
+q5HZWuo/hM7eJvfJx1u+zUedOcmsNGmQ8XlVTo0bHJd07SSwJJtA96JEhkw
0CGUxeQicM5+jusdZyYkRz4JZvyl4Q4jsfpH6zIh28r37YcZGoYEj5XkaGWC
udBnDu9pGh6uFbbg9MoEb8NbHzt+01D8etNM+mwmmKn8C0wcoeEhv/80VFdl
g5FddaRaDw11fzVovZLPhrjfZXpDXTTcjlvlQ42z4bE0F/G0k4ZbEprn/MOp
9zbq/Ut/0HCs+4imhuIrOL3gmt/QQkNri5Pcw645sLTJ8ZdzHQ1VLRSSTkTm
gNnlFVJyH2nIG97+RL0sBzQD+zx6PtCwWJA30EQkF7jPXLIxq6bhrcnCct7q
XFAyDDfVKaPhOc3369rxNeRzX2WKF9BQUV86Zanbayj2ydb99pqGtSGS27Pi
X4NVuwhPSB4NHcW6Ol+uzIcBlk0nTw4Nn/70umDUkg+hIm+fLqRT/qyEqfKQ
N7DDScCtJ4GGVx3yT2DDGzCr2B8cx6Yht7CQgdWaQtgXGlB7kkXDfcPeG0N8
C0GWY49fSxwNu6IMeGSvvYXMFpVV9VE0/Okra+C+vwgCBBusix/TkKcxntPh
XBEU7D06eT2Ihrbf3yuXPSiC3oj6aK1HNLwTVNaS3VwExpIJKm8CaVgn1P/q
2bli+F4UcznvDg1P5OBvmeT3oGt8TO+VNw0N/kittf/0Hkz1dEvuXaOh1Qp6
uujsezDREDb+z4uGw30JfK16JSCZ78TmvkrD3w826QyMlwDPQrzWaXcaPomr
f9txrAyYK8TkBByp+ffKpnD6l8HjOzUdQw40nM5qC8nKKYNLn/WSS+xpOKpY
H1wjWA5Z3jmernY09Ctr0BboLIckZbHVH09RekfucrB6XAnBmRyt98xoGBjx
cSy2phJyb4nVnTpOQy3ze81Ry6pAd8V0065jNGSN3+iu96yCqK5G8UETGhY8
exAe4FoN3qIy0frGNPzBG1uS5vcBGlz69ch9NOrkpzlu+uEDzL2XujKkS8P0
3pbFP2QtPClfWlCmQ8Mp9V1puxNqIZv16srlPTRUhjAtzy8fwZb/ZVe7JpXP
FRanu/PqQai50TptOw0l/y3/ptBfD9m62TRXZRp+3uG8+YBIA/hEBH9VUqLh
ugetVxa9G+ClwaHknK00vHlV/+HaI58g/2iAzTs5Gt5rGL3qeO8T9NjrfLi5
iYYO0jlbK99/AmGRMT2djdR8OjyXg1U/w7YURmCVDA1nX0jfO7y5EYq2MKWb
1tGw0sz6+PlzjfAst0A7TILK/6lOvoqURlgWVXnlhDgVj+9O1SbKTZDe9ECu
i0HDALMvDZyHmoHzbUzMmABV39mTmVJRzSD0oepiNj8N7/bJf/xK3UfLZ2ut
L9Op+LPLd6n4fwENiRM3OAgaVpd41x5q+QqexuZ1NB4aqv1xKE9WagF7hXUW
zdw03OsbvVPwQQukzWYsRqymYZYbZLkc/AZnK5TuS6+koUA7n9Od1G9w3F79
Qv9yGnIqe9CWEd8hksvF7eUyqh9YKSg86PoO3qWX3+3komHPlsaOWsNWmAoT
0F5YQkOnkvi0lsJWuBt32KqUg4bNSx42f2C1QZrBx2smC3xosKsh7rdoO9BE
O3jX/ePD9WpKEbZh7eBxTtp+dI4PHSZuBr4J/wFBGQdvP/3Lh53zfYYzvB3A
+qK41fcPH25RKOblOtoBX9/U3Lk4w4fFN28sCkR1QG15f/iFaT7cT37zP/Cz
A5JVZZb7TfEhfedMeYZiJzTWlk+kTPLhw/cJ1XbenaCjknBy7Dcfps9zbvH9
2AmBP2N7TCj2THHYt259F8w6tip3TvBhd2pk9VGPLnh6wKcqimJBkc+VWh+7
wMl9m8Mjim8d0zOc2tgNxONff8v+N/5u6O4nt7vBImCxZj9l7/ypmaZtvd0Q
I/KuVIaav/GStX2/Xg/87rK0OEf5F5RIRNdn9IBqecgqOWo9X7b38s4zfoKq
3WnZi9T62RP5ghI+P+Hr9DYn2Xk+TP61r0dl8CekjnB3XF6k7EcbRuw/9guY
lj5dXlQ8mmNPhpqX/4KbCx7L9ah4bm1oUXbY2QvSQVylf6h8OHKVq9Y5tRfW
X5iKiafy56tbffUJmT5Y9djX0E6UhvHNjWsEY/vgcLCl/ikqn93lX0jfEOuH
3KWKQq+o+uC7slrlXHQ/mDm8TL2pTvVrk36HWIkBSBgTPzK4n4YmTo+4v8cP
QP/Bkk0CVD/QvbSws3LTIGQlDwVvoPqLZKVl1PKMQUgRUPRBqn8N0MXkN6gN
QXh+cPRtql96j49tel48BL8e8NoJJ1H98VLjpcUDw9AvGrVaoISGFdXqGx43
DMMp2TQtJrX/PBc65FtwbAROWa088GKB6gcbG00+fh8BeYMoljW1P08rasoJ
WY5CeJWyQJEOdR6TXVT++W0Uhj2zSovPUee3T+k798iNQVPJ9hAzJrX/zhwW
SLAZA9df5764FFPn4+tGGkZRY7Cf1aPZS92XTkztzpuuHwNVs/t6T9aROHNO
+5oV5zh8s+Di1j5C3Td93/QfUxwHV/EKpUJ/EmV5Vb7nm4/DUr/ca+8LSYyx
UdzjcnMcEvKk9vNOkWh+dW6bE2scvObLdSy30NF0WM4tq2QcdvMs32l7ho4L
LPVY4x/jwAedsR1P6bgtxmnaYmYcxJL11O+30HGidq7+L/cEPH+uqy9N8mNx
qswaY7EJkBtZ9dJZnx9vCdmbPNg8ASrju0NV/fjRzNfeu1d1ArRLv4nuL+TH
h/tWzz6CCYhec+nilUl+vDm4z6lYdwJ+/GxYYMsJ4GCG5PW0AxMQA8br06wE
cCTjVcOjgxPg4eay0uuJAB4aKFQLp/g6vV3hb5kA3v/yWGqWGp964+m44IwA
xrSLinTtnQBTSUPBjxsEsVjxtpfXngkQU3+nx39UEIvMGk+Ma1Djd9IfD9wU
RKVEXmdbyr8ffPqfDVIFkZdlKDqrQDG3oPXuL4KoodUUUrthApbuNXpQtSiI
dqlFPbPUeg3vJFgObRBCd8s+5Qj6BCgm/SIz9IUwj1tXuHj1BDyxaf4t4SqE
/Id43Xw4JmCfgAuxJ1gI15Y9s+EfHIeuG5K55c1C2Fo2o8fZMQ77MwNOaE4L
4bHXL+qKGsfhKz1J/iFdGDX+llp8KRwHq7IqiWEDYex6SI/RyhyH9km2KY+9
MBLZFovMhHG41P29QPGWMOpHv4ze+HAcpoT5yhOyhVFxqeK1hFvjsBjzjCOs
RhifHZ0dlbo8DspxolV5ncJoElP7R8Z6HCL11QYSuUXQ5YFLdOpRyp6sV4+v
hAjSO0kxdb1xEOdPzn6pJIIT77jdHJQp/+XNJjiPieBFJbnVPBvHwdZuIUnt
rAj+UZBdlys6DvJ7ObuaLovg9GP2u/XLx+H24NbLJmEiKHpnBI1bxkDtaND5
qXoR5NvKsFT4OAYPhY8t+dkmgvxqexrJkjF427qvxWpABC8H04omU8ZgjV1U
7nJOBg7s5d48FjcGqRFrV+ziYaBK0LO2iZAxSP7xWn6FEAM5xJyWr705BjHN
duJe8gyU4V5zYYPHGFxZ0Swip8rAW4pi9L3nxiBJ89cZb2BgiEBQR8TRMWCo
Xlsic4iBzBRV8QiqPkvu1o9lujBQJKA+aVBiDHQf2Ua3XmJgOymho8M/Bp1H
f10o8mbg5dYdj1dzjIGtA3vg7X0GZrQ7XRkbGIXtp/wD24IYuLAzvbylaRSe
a2vrvw1l4Fg2n0xz8ijIabG9a59R451qpPpDRuH8oqbTYiIDD6tzTa/yGQWp
z4TLbAoDBWaOjV08PgoGch1yh3MYeP7GSa3RZaMw+VJxPqOc+l7l4jfn8RGQ
fL+z0bSagbt+hS1ZaB2BJUN8WvW1FN/Qqt2TPQJa+z9V6DYy8P7iuNXfpyNw
KzFQQ+cLA0sDuM0L74+AHauLS/QbA9fd5rJ2Oj0Cv88dHDvxg4H9FtoWZkYj
UD+esKG8k4EFf6MjD6uPgGyd4C+eHgY2qRkKmMmOwOe1A5u2/2KgXFtEiSM5
Av1Cre1qfQzUvVETEbg4DH1V+WMSAwzM05F9UjBI9ddb8Qd7Bxl4tzW3VKt0
GFxCnuqJjTLwuslZw/6XwxCyptkveYyBGwJPSsaHD8PQneFHwhMMLLoRoeLo
Owx5/sYXzv5mIFee3DUd52GogByZ8EkG1nCrjGw2H4Z4s6z7KVMMtHfqvCap
O0ydP3b7x08zUO3jsfUbFYfBcL/FrPcMA/9sLqrVYAyDxPuhcvjDwOknBpf/
Wz4M5he1y35R/GK9vsCT8SE42yeZf/EvA0+e5o5ubB2C9xtm7AYoPtH7bYlM
5RB07ZAP2j/LQC+N1bt8s4agYc+WPw8pjmsb2zURMwSL1o5mxRRrrOeYPX9v
CPx3t1q1UTwQ99Jx1n0IlO/pZ/VQvGPW7U6w9RDU9QTMfaE4vbRkj6bBEEjN
OnbkUrx0RjRocucQZGmoLvej+CEv3T5feghOpwlwIsWbN+wtesBH7Wdfwbaf
8o88YhzgOj8IBTe6i25S7P6y7v2pvkH477xywiqKNQptzE41DoJQhS3rJrXe
NMlKXZeiQfjgskFrgNKntu3NtYCUQTg+oz+uTXHlzLKZnLBB2MCRpv6Q0vPH
lTOJo76D8FRRMvIDpfdJj3hfVddBSCt1Dpin4rHmR6jvfctBaHhi4iNBsbrU
/lIr1UFoW8lWRCqe022No+2Sg6AWbFGiNc7AA+vy+R15B2G0+jSvEhX/ddl+
G9P7BkDiwhrbP8MMjFiUMmmPHIDhZ+Xya/sZKH22SP3DnQHIcdo6+aaXgeUB
xz9WuA+AUv1q09NUPqYZ+db2Gg3AUVsV0bBuBnZ/5ZOqXjoATVZz5Is2yj/B
VYelJ/rBVZDgEG+l6o/rQvv9H/0gOvvt432qHr4GWvb75PfDK+4+milVL8WE
0Rte1354LWk2n1zPQCGLWOGojj74krE9MOA9A5PNdFT/1PVBvtGO+1+LqHwt
ML5o9a4PXDiEV0m+Y2D0y1xVo5g+WBDr5H5ZwEDxkIZlWRZ90P6caZ2aTdWD
9iobv++9sK3NUe+/BAa6vO2sk+z8BVih9En6LgNvaokcKFz9E2pANMvWkIGP
wiVdigI6wd3+xMBLqp9ecm+NX2/VBj7sRwUeVH82VXizZ/THVzBcE+1u0ieM
Wy1v8zSVNYJC5cTmTldhZIuM9rg+aIDi9cWvdywTxumnNXzG5bXgslDBvBgl
hFZ9f3c5/KyEfG9FsVx5IcyN/BR5llYG8o1+56FcEE1neueuBRfDzRa6Ar+Z
IKZkf7U5mVEIgWKyFwYmBZBzYHA+feNrSDxrEX0sWAA1uMUVFJe9gnpz/V/W
WwTwwOXd4tvKM0A1a1fV+Ed+/OsSHVAXnwoie/5V/ufAjyveLs+Lr3kOVyfM
tp9dxY8h8qdMlRZY0LM9YN47nY4rfi4ZjLkdB8d+fLF7d4iOdzfoZ326Ggeu
JG/df8Z03J631XGtcxyEBvcacBrRUePin7DoY3HQSfd4rKtPR//eFSCyKQ6k
t7Sq1u6lY7WOcbV/bSycWbQd7FCnI99y1j2aaCyEtgbOCG+go3rTjxSbmGiQ
ZJbs/zRL4ike6bahe9Fg5PP48I2/JC5KzNnfuhQN3yVy3BT+kJinejD3u3E0
pN2amrpHnb+OTHFy7VoaDc2hm1fqjpHocsRWJc8pClIkN5sX/iTxvFf5nXX6
kVDQJP/ibT2JutsOHw/cFQn/ynM9netI1Fqb5LB6UyT0/Xf29LqPJFqL1rJU
lkfC0szt7j41JPofEpg/XBwBpq3Gz/aVk7jEZ9/g210RsErZeH1zAWW/Q62L
Xz0cOpRUnnMlkiil6vzQWS4c+sjoxQg2idvnS106hMOBnvfDRYlForCZhd/K
v2Gg3jUcax1HYvYnrmGPvDAw6furWhxJ4uoLlUcm1cNg92olNb9HJCrfexHe
LB8GxD+7LeIPSUyc3rLss1gYRDNOqOcGksgb4y/L4AiD0muurP57JG75EPh4
pCwUUrQ3Jxv5Ud83SFY3mIaCHareXXeVxAMuAlwuB0LhW6+1UMFlEtNiztRs
1giFuD1bio9eIlFoDePX/PpQsM2OtLp/kcRi+mqxNaMh8F2eVTdznsS2jKeh
Qg9D4J9b1dWm0ySyz/+5nXorBOAIPd71FImOO5JIm8sh0BDa2cNjTaK6/Mu1
O06FQNHcXPbekyTyW/p+9NwRAq9G52+/Pk7ixjqO3Dd9TIjiChmLNyDx5O0z
47IdTFgeNGllpk+iqQqnefYXJmyZd/659iCJp+P25GyrYEKET67S1f0kku9f
R5clMkFpzKr5kDYVv31x+rtjmVDH7TW9Yg+Jm4hAuY4wJkwqJcm/RUrfp18v
3LnHhDf5it/ltEjkS6DBPWcmBBjX4DI1ErXths9usGdC5tm9tDc7SHT+eaik
9xQT9uaXz7ipkihGRql9N2WC8KaG5Z3KVD71DQ/yHGKCpenxrWFKJFodPDN3
5iATclvbnYy2kRjZ12MeiExQpffIv1Ug8ZjaZTihzoT1TVap7ltI3KGr/8JY
lQmpa5u0t8iTGFJQr54lzwRl7oTMqE0kalhxnrdiMKF8+etQL2kSb5QdZrkK
MuGO/ZeK7VIkGu0WykolmcDp280zvJ7ENwmit1hrmJC4+Pa7pQSJ0wl9X61W
MSHc5f5pAXHqviP+c9ve5UwYyIMldaIkBkqe1GByMKF/0swbRaj6SncOWfgX
DMrzbyz/CpHYd4xbJ3guGJyXcB7JFCQxXfp8uOnfYDj3QPbkOQEq/lJNA7oz
wfBHXv66ND+JJ6yvBZyaCoafZ9bmtJFUPQ/Ef0r5HQwc5R84QwkSD9f40WQm
gkG00dbWmEZiId9/0TVjwbCc8bVtFR+JKhXO1bGjwfBAWtKxZC2JxnPjQ6yR
YPC9uofvGg+Jsa+lzL4OB0NOwo5q1TUkvl6757Q6xdNKHBFjq0ncuuKe1ceh
YCCSIq6/WEXpmbbzWRDFLY+XedqspPSj37/uR7HYVQgQX0Giz563B19QnNy3
N+vrMhJXnhA+wUHZMzkrMvZ4KYlVF6ZW3KHY+FbeHgMuEntiBjJ3U/4IlUkk
r+AkUcSbWbCF8vfsa8NN7zlIVMh6fFOfWs/MoHah1yKB3T+8bWLGg+F6378z
OxYI/MeeLpGi9Mjf5blhYp5AjcSQxdbJYOr8kD+XMkfgYrC/9gpKz7oac+E9
swQyNFylLlB6t0rQD3/5Q6DBShPp9fPB8MKmh+04Q+BhW8Ua2mIwWAVX0Tmn
Cex9uzxal5MJ4knFMaGTBFbe+CJeuIwJa6Krtbf8JvDkkP3eKzxUfXGv+HF8
jMD7TvLTb2lMsLii2jQyQuDMskF7PQEmuKad/+U7TKAeb3bu9nVMoFmMm2UM
UP76q+cFyzBBtHrHm3391P26fd9bjc1UPYx4q7X3EihpM7XNbgcTVuut8OP+
SaDfS+GaAU1qfk+dI8+6CfzCV1WUp0P5Z3JVQ62LwIKjdUKqR5gQOFZhZfeD
wACTpIRf5kyYTfkevtBGYE08va+bqr8nXB0jzFYClzmyW8svMOGsa2Z/aQuB
sMSwINWLCdk3vR5afCXw0PWUhG4/JpwW32o82UwgV36wKoQzgTGlKyndSGDf
jLtTRQkTVkwsWeX3kcDP9z417qxjwqjaVz+xWgIlzly+svCN6kec/mI5NQT6
G3eRd38zoY3vTHRvJRVP4YNFqRtDwHBuvP1gCYF/f3WbfVYNARMZE6WfxQTy
mWjeP6wbAlOV3rHeRQROxB4N/e90CPhel6nNKKT8X8XvWxcfAmoFN+yE8wg8
1ZK8ujk7BDxLRh5l5RBo5Kw3rF4eAkZ6/E0Gryj/N9klbRygxjffSvXJJLBT
weJKpGoovBJIixlOIfC4UfiyTL1QOKCeFH0nmcAl9C00BatQWD50MFfqBYGl
Tz99MrsbCq5zPrvMEwnMM/+wiftpKHVeI1lTbCr++vHqMq9CYecJnY1BLAK/
dtu3PK8JhRtjZIV8PIG6D5UaQ7pCgSl540ZlHIH/B5/bZvk=
"]]}}},
AspectRatio->1,
DisplayFunction->Identity,
Epilog->{
PointSize[0.05],
PointBox[{{0.6864124993081443, 5.147497275115406}, {0.6, 6.3}},
VertexColors -> {
RGBColor[1, 0, 0],
GrayLevel[0.5]}]},
Frame->True,
FrameTicks->{{None, None}, {None, None}},
GridLines->{{{0.6864124993081443,
RGBColor[1, 0, 0]}, {0.6,
GrayLevel[0.5]}}, {{5.147497275115406,
RGBColor[1, 0, 0]}, {6.3,
GrayLevel[0.5]}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "TransparentPolygonMesh" -> True},
PlotRange->{{-0.05257638144718597, 1.252576381447186}, {3.947423618552814,
7.252576381447186}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.685684836182143*^9, 3.685684899373105*^9, 3.685684934519516*^9,
3.6856850869151773`*^9, 3.685771388558601*^9, 3.685771635524642*^9,
3.685772417972056*^9, 3.685779984653523*^9, 3.685780050584177*^9,
3.685780155491983*^9, 3.685780417010921*^9, 3.685780763047028*^9,
3.6857808051056337`*^9, 3.685780855285448*^9, 3.6857809456693573`*^9,
3.685781069874989*^9, 3.685781154708826*^9, 3.6857848637369833`*^9,
3.685785051208489*^9, 3.68578511975957*^9, 3.685787073486369*^9,
3.687077174632674*^9, 3.687090609016458*^9, 3.687091867557672*^9,
3.687092196121331*^9, 3.7103811547228518`*^9, 3.710381943604562*^9,
3.7103819767627563`*^9, 3.710382077031267*^9, 3.710382339772437*^9,
3.7104959611295357`*^9, {3.7104960082026043`*^9, 3.710496033550729*^9},
3.710821998314497*^9, 3.710822401440489*^9, 3.7108226940507708`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"Hopf", " ", "bifurcation"}], ",", " ",
RowBox[{"detJ", ">", "0"}], ",", " ",
RowBox[{"Trace", "<", "0"}], ",", " ",
RowBox[{
"trajectory", " ", "converges", " ", "to", " ", "the", " ", "steady", " ",
"state"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"ge", ",", "cplus", ",", "func1", ",", "func2", ",", "plot1", ",",
"plot2", ",", "plot3", ",", "plot4", ",", "Ge", ",", "Gi", ",", "P", ",",
"F", ",", "z0", ",", "Z", ",", "s", ",", "re1", ",", "ri1", ",", "x",
",", "y", ",", "t", ",", "z"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"**", "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "********)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"SSN", " ", "parameters"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", \
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**"}], "********)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ge", "=", "0.7"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"cplus", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "*", "Jii", "*", "ge"}], "+",
"gi"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Characteristic", " ", "function", " ", "for", " ", "detJ"}],
">", "0"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*", "z"}], "+",
"cplus"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"-",
RowBox[{"Jei", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"P", "[", "z", "]"}], ")"}], "^", "n"}], ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[LessEqual]", "0"}]}], "}"}]}],
"}"}], "]"}]}], "-", "z", "+", "ge"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "0.01"}], ",", ".6"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<P(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"F", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "0.01"}], ",", ".6"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", ".6"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<F(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"GraphicsRow", "[",
RowBox[{"{",
RowBox[{"plot1", ",", "plot2"}], "}"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<detJ=\>\"", ",", "detJ"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"z0", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";", " ",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossing", " ", "of", " ", "P"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of P is z0=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"z0", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Z", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossings", " ", "of", " ", "F"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of F is z1=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Steady", " ", "states", " ", "in", " ", "the", " ", "phase", " ",
"plane"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"re1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ri1", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], "+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*",
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "+", "cplus"}], ")"}],
"^", "n"}]}], ";",
RowBox[{"(*",
RowBox[{"steady", " ", "state"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
"\"\<The steady state of the SSN is re=\>\"", ",", " ", "re1", ",",
" ", "\"\<, ri=\>\"", ",", " ", "ri1"}], "]"}]}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"s", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", "0.6"}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", "0.1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "100"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"func1", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"x", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\n",
RowBox[{
RowBox[{
RowBox[{"func2", "[", "t_", "]"}], ":=",
RowBox[{"(",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"y", "[", "t", "]"}], "/.", "s"}], "]"}], ")"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func1", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.05", ",", "0.11"}], "}"}], ",", "None"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2"}], "}"}], ",", "None"}], "}"}]}], "}"}]}],
",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"True", ",", "True", ",", "True", ",", "False"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"{",
RowBox[{"Black", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}], ",",
"Automatic", ",", "Automatic"}], "}"}]}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot4", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"func2", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"None", ",",
RowBox[{"{",
RowBox[{"0.39", ",", "0.35"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"None", ",", "None"}], "}"}]}], "}"}]}], ",",
RowBox[{"ImagePadding", "\[Rule]", "25"}], ",",
RowBox[{"Frame", "\[Rule]",
RowBox[{"{",
RowBox[{"False", ",", "False", ",", "False", ",", "True"}], "}"}]}],
",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Automatic", ",", "Automatic", ",",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.01", "]"}]}], "}"}]}], "}"}]}]}],
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Overlay", "[",
RowBox[{"{",
RowBox[{"plot3", ",", "plot4"}], "}"}], "]"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Export", "[",
RowBox[{
"\"\<Desktop/MultiplicityPlos_16_11_2_N/Figures/Figures_Components/\
HopfSolAfterOutside_rE_rI.eps\>\"", ",", "%"}], "]"}], "*)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"Right", " ", "side", " ", "of", " ", "the", " ", "SSN", " ",
"equations"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}],
"*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "x"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*", "x"}], "-",
RowBox[{"Jei", "*", "y"}], "+", "ge"}], "]"}]}]}], ")"}], "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"Gi", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "y"}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], ")"}], "^", "n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*", "x"}], "-",
RowBox[{"Jii", "*", "y"}], "+", "gi"}], "]"}]}]}], ")"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"splot", "=",
RowBox[{"StreamPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Ge", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"Gi", "[",
RowBox[{"x", ",", "y"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "0.2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0.3", ",", "0.6"}], "}"}], ",",
RowBox[{"StreamStyle", "\[Rule]", "Black"}], ",",
RowBox[{"StreamScale", "\[Rule]", "0.25"}], ",",
RowBox[{"StreamPoints", "\[Rule]", "2"}], ",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "ri1"}], "}"}], ",",
RowBox[{"{",
RowBox[{".1", ",", ".6"}], "}"}]}], "}"}], ",",
RowBox[{"VertexColors", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",", "Gray"}], "}"}]}]}], "]"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"re1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{".1", ",", "Gray"}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"ri1", ",", "Red"}], "}"}], ",",
RowBox[{"{",
RowBox[{".6", ",", "Gray"}], "}"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]", "None"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"splot", ",",
RowBox[{"ParametricPlot", "[",
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"First", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"x", "[", "t", "]"}], ",",
RowBox[{"y", "[", "t", "]"}]}], "}"}], "/.",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"x", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"x", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jei", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "ge"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "te", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"y", "'"}], "[", "t", "]"}], "\[Equal]",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"y", "[", "t", "]"}]}], "+",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], ")"}], "^",
"n"}], "*",
RowBox[{"HeavisideTheta", "[",
RowBox[{
RowBox[{"Jie", "*",
RowBox[{"x", "[", "t", "]"}]}], "-",
RowBox[{"Jii", "*",
RowBox[{"y", "[", "t", "]"}]}], "+", "gi"}], "]"}]}]}],
")"}], "*",
RowBox[{
RowBox[{"(", "ti", ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ",",
RowBox[{
RowBox[{"x", "[", "0", "]"}], "\[Equal]", ".1"}], ",",
RowBox[{
RowBox[{"y", "[", "0", "]"}], "\[Equal]", ".6"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "4"}], "}"}]}], "]"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "4"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Gray", ",",
RowBox[{"Thickness", "[", "0.02", "]"}]}], "}"}]}]}], "]"}],
"]"}]}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.6856832345840483`*^9, 3.685683238440484*^9}, {
3.685683270361025*^9, 3.685683392609159*^9}, {3.685683425575263*^9,
3.6856834497172613`*^9}, 3.685683488392981*^9, {3.685683571770441*^9,
3.685683667234864*^9}, 3.68568378728773*^9, {3.685683822482774*^9,
3.6856838583704987`*^9}, {3.685683899688251*^9, 3.685683992627406*^9}, {
3.6856841813268023`*^9, 3.685684183998352*^9}, {3.68568480064569*^9,
3.685684805683517*^9}, {3.68568516017771*^9, 3.6856851610413647`*^9}, {
3.685691833456345*^9, 3.685691834439756*^9}, {3.685768341510788*^9,
3.6857683969199877`*^9}, {3.685768523654282*^9, 3.685768551311233*^9}, {
3.685768646703397*^9, 3.685768647747795*^9}, {3.685772273862591*^9,
3.685772286390493*^9}, {3.685772385172326*^9, 3.6857723877972317`*^9}, {
3.6857748548546543`*^9, 3.685774864200262*^9}, {3.6857782885006523`*^9,
3.685778288595319*^9}, {3.6857783777553463`*^9, 3.685778415967535*^9}, {
3.68577851437036*^9, 3.685778640100889*^9}, {3.685778845811984*^9,
3.6857788920838547`*^9}, {3.685778934765953*^9, 3.685778936325938*^9}, {
3.6857790599772377`*^9, 3.6857790720858593`*^9}, {3.6857796972212257`*^9,
3.685779714088502*^9}, {3.685779809119835*^9, 3.685779809879874*^9}, {
3.685780602091001*^9, 3.6857806230600777`*^9}, {3.685785520542881*^9,
3.685785532789974*^9}, {3.685785655412012*^9, 3.685785690260673*^9}, {
3.687077113527005*^9, 3.687077122496688*^9}, {3.687077156616476*^9,
3.68707715721061*^9}, {3.6870772165570917`*^9, 3.6870772946041183`*^9}, {
3.6870773310239363`*^9, 3.687077346719512*^9}, {3.687077441688766*^9,
3.687077451323942*^9}, {3.6870774869994173`*^9, 3.687077494340919*^9}, {
3.687077651809629*^9, 3.6870776954895477`*^9}, {3.687077757293809*^9,
3.687078067003785*^9}, {3.6870781197552032`*^9, 3.6870781218400583`*^9}, {
3.68707815845107*^9, 3.687078164340597*^9}, {3.6870781985240927`*^9,
3.687078240966535*^9}, {3.687090578318616*^9, 3.6870905860064507`*^9}, {
3.687090663709216*^9, 3.687090663797771*^9}, {3.687090702497264*^9,
3.6870907526580143`*^9}, {3.6870907985750427`*^9, 3.687090834301165*^9},
3.687095768996513*^9, {3.710381204109106*^9, 3.710381227370816*^9},
3.710381310083016*^9, {3.7103813957813797`*^9, 3.710381446641227*^9}, {
3.710381483848954*^9, 3.710381543226528*^9}, {3.710381573634019*^9,
3.710381614276005*^9}, {3.710381646875771*^9, 3.710381737498909*^9}, {
3.710381829129504*^9, 3.7103818326729717`*^9}, {3.710381870976214*^9,
3.7103819219838247`*^9}, {3.7103823484783*^9, 3.710382384501403*^9}, {
3.710382422345564*^9, 3.7103824426547194`*^9}, {3.710496104249381*^9,
3.710496114632662*^9}, {3.710822409759041*^9, 3.710822438255724*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.],
LineBox[{{-0.009999987551020408, -0.6999999875510203}, \
{-0.00981290207609477, -0.6998129020760947}, {-0.00962581660116913, \
-0.6996258166011691}, {-0.009251645651317855, -0.6992516456513178}, \
{-0.008503303751615301, -0.6985033037516153}, {-0.007006619952210195, \
-0.6970066199522101}, {-0.004013252353399982, -0.6940132523534}, \
{-0.00019451530612244898`, -0.6901945153061224}}], LineBox[CompressedData["
1:eJwVynk81Hkcx3EPRy2lPNaxnaTYKVlmKlo63rR2CRXSpLJNS7WlR5u0kqk8
VNoopYONcnTMWkNSjmwG32wUOR7u5sLM72fG9HAWpWbS7Owfn8f78Xy8PrZh
R4L26evp6f2ku/83Qd2c+NhhD5IlBTMDDJVk4EKJwuPOFdRyl3tWZyjIpYDj
kYee3sa0v/KqN7koSEpIXTzr3X1stquUuLX1k97q3IiiS/lQOTgmzgjrJ6mr
1ohcdz6Cb9h0q1mTNBHwWkxvPiqBuHbavqdxNJEbe/waNvkEfA2/xduAJobX
8kabjSrA5PtXZV2kiENJZaI7uwo2x0frVXoU+VsTnrdk9TMs2ZKjXBQrJ9+n
C7M5ghoIC4MnE4ZkxE///sLMPc8RaiVRVvvKSOiUqiTvTS0qXAdNXgb3kZG6
hPayGy+QG/118gDVQ/SSUs59dKmH/KO28RpHSsx6LP1nVDYg1rKs0qFPTO59
eZtpHd4I9fwjYp8lIrLi8UYj/ZEmvDrHV1pHvCZerMn3iowWvLnXzrc43EUG
u5Iqtdat6L8hOukU0kFKJF1JE1Qr2JbH1HLvNrK23v/2wfI2SEXztne3NBOv
02f+eXG6HeNxz/tOzWkgyUXD2es9OtC3pt/SzqWWpNYnNLiadyKSXTVb5lRF
FuSLtFbCTlhczUtRWhWTvVE7uDGFXWBusZvqO5VGhsrNqt/FdcPMVuM9h5OD
8brzpuwNr8FM8w2zFZZCUGF/181KiGKNRXe8uAb6J855GEmFiHAZ2PzDsgYk
Fc/hD2aJMLitSB23vRVtHcJtQZFiXLbLKGLf7UR6FXvW3VUSXDdeIx/rFGLR
Fa1JpLEUMtVNp1uZPWAw9pszWqWwyGcMnbCX47d1hoqP13twcdP+6TWXaES7
N6t99/ci8YO/z7iXEp+1WxecX96H0LQkt4hhFRZ369fk6MkQdUAZbTM2CEVE
TMjFgzKQayrez9NHoaJfvT/QKMPTpB2iq4Zv4de6suyCixzZwRUlf5a/w8id
k9xb6XKccRhZKNg9ARaTw6v4JMeLVk641PQDOleEjM0Lp7CbM9PIZ2IS5XOZ
G47UUbge706ZN32Ca4Qo8NuXFMxTWeHHOz/hScXZX3rqKaj6fbzEUp13dcX7
NVFoo0MYucM6Z3EJo4PCM8nZ3zfPVqPUtm6tTEZhV89ib3mQGo+X7Vwd+JlC
/9HSh2YSNZhcA++vvlBI9zSIyqHVePTqAZtoKcyNjclwHtL5kDb6OwMapDbA
MnhK50JeqbEJjcatfrWFNho8ZI2y/v2GhiU3YT5vrwZOZ9M9Y+fSSLRfx9x4
WNfbPQOZ82l8bl5YMBqtQeGx1MhsaxrugtcdHhc0eFDmVsS1p/FjcvHEOF8D
x2l0NYtBQ81zXs8r1nV2cotqKY1Ao+6RbQKdJ3uH2Y40mBts/qhq0v37JE6Z
OtHgHNU/fKxL19NZpnXONM5cThE49Or6G/GCUywaCqI8Sis1KHBLcFy5koaU
tfRq1qgG/wGOKlnb
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"P(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-0.01, 0.6}, {-0.6999999875510203, 1.7459998732693895`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {192., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}], InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.],
LineBox[{{-0.009999987551020408,
0.7099999875510203}, {-0.00981290207609477,
0.7098129020760947}, {-0.00962581660116913,
0.7096258166011691}, {-0.009251645651317855,
0.7092516456513178}, {-0.008503303751615301,
0.7085033037516153}, {-0.007006619952210195,
0.7070066199522101}, {-0.004013252353399982,
0.7040132523534}, {-0.00019451530612244898`, 0.7001945153061224}}],
LineBox[CompressedData["
1:eJwB4QEe/iFib1JlAgAAAB0AAAACAAAAhPrNiLEqYD/AIA67O1bmP+eHs+VA
oI4/ixPY5+/r5T+LUHZwa7mbP1XwUHnZiOU/j1jFgDHyoz8kKRZL/SflP96+
pmqvi6o/KZV122G/5D+UNDvZNlqwP5NzUmpTXuQ/u6TODZewsz+hwh7N6vXj
P+EJQGdi97Y/UGaPaVmQ4z8EkajvzQW6Pw5wgcmUMuM/KrO8iDpWvT/tVXg4
Hc7iP6f7Y6gjN8A/9v+x95hx4j84mNieX7vBP7tIBnA5GOI/SwKjHZxgwz/a
2oUv4bjhP1z96LOo6cQ/a1uwQZNh4T/uxYTStZPGP1gT/+HmBOE/AImPg/g1
yD/OtyqKD6zgPxDdFUwLvMk/vEkCSUBb4D+i/vGcHmPLPxwSIrb7BeA/MrFJ
BQLuzD8a5asdiHHfP0Qx9/Xlmc4/vgy3fKnP3j/r1Ym8/x7QP1rWaOyVNt4/
s9vVifTi0D8uMdYvR63dPzzITJtpt9E/nzjcTrQe3T9EfYG4xn3SP/U2cSDH
n9w/jK/tnj5A0z/mrpSMZyncP5TIhMk2E9Q/r5YQtg+w2z8cqtn/FtjUP2bh
6Vm8Rds/ZHJZenet1T+clSpQVtraPzmbiJ7ZANY/ZEgp6qay2j+IjfOw
"]],
LineBox[CompressedData["
1:eJwdkgs01Hkbx2dplzRu6aZSKOm18SI0if2KEF10Iduq1qW1oi0JUY7YomxI
7BI7YhByS1i5xF+5RIxkzMz//5/rlmRTEt3sip33fc55zu98z/N7zvN5Lgb+
J/f9oMRgMNIV/r/31V2t1slYAX4Ocm4si6Ix1ZmgfsBRiAbHrwec9Gh0OQ/9
ftNZCGVm7ABnBY2cTkOT99uFOBv98c6sLg2HTsLlVw8hUnkpSn8soZHcMX1+
8JAQYdc3Ouho0TBq/2ly9xkhcjdzXa8p0fBu8xK6VijyleK+ChmhYOJQ9EPW
bSEOWqsa5AxTmCUmp0ZqhBi/wPN7+JRCEXFVK7FRiJ0nltivlFGYaO1x6+gS
Ytl/ZkurhBSSWuzvOfwphHDni7rQbgrNTUaczUtIBHtNrdhSSqHaovDxHl0S
XXl6ui7FFIpL9Wd/XEliTdFs6+4iCmmZK3wyDUkUxCS9/jafwtEw7cVTZiQe
XWZY7LlOgWny+XKFKwnOm4PLOi9ROJI9FLo6moRJm3tw7lEK+7X25dnEkDD7
7Syx15/C9kuPubvOk9Btcvuo5EvBMuKRSUwCiW2rfnrn40NBZW/bMHmNxK8Z
M8Ev9ir4VCu+TS8jETNtFXjkGwpKURccvhSTiFQa2MBeROFVnxHNlJGgndtC
X2tTEBh0n170lMT6zy5yW00KZb3MkjWjJFL3sNY9mq/gWZ2p7viORI2ReVLj
LImirlI6lqngNn4Xxn9BwmVxf/gnOwonM9/c768nYR4cqsFwUHCZh8dl1ZJY
TiwsVXGisJwVcN6nmsR4kLdoiZvi/7mA1fxbJLLuybdae1FY9ryYmcomMRow
pRH2E4V5VXXlmvEkkmqW3RrLpTClrK+u60JCo7bXyZpDQcPTtvr5VkXftbHS
WMXcd6xgJ5bbk7hRN6yzsJxCTN3HfENrBXd9dSyrgcJIzlrPljUkRE3bPRMG
KdzzS+flzAlh2h41t0qFxvgYS/vmHSFq2r/OCVKjoXTl06t4xV2xOqRWNeo0
PBd6Jh4oEcKxc1uw8yIapLdf2whbiAMPtfghBjSqmxnvOZeEON9bWtawhUYk
znhF+QjxhEd67QulkaZa5uE+I0BUb1NawGkadyKMyFMfBNBvZ/eGR9IYfZna
mTYhwIka361ZMTRu5/kW1A0LoHZtdIP4Mg07u+j1GX0COO7+pBzIoaEv5hzn
5AhQ1720JnqQhula97V3/iuAT9v0q1/4NAq1X45VrRdAqUFkzCYVWrUwv8BA
gD0lebmtUhpDuhN5IToCvE4wTlIeozEY8ij75w98rHPa5JuiLAIr0Ca6sYmP
6y0HNDhWIiSwlwonbPmgfd3c320SYbquSFtmwcfKeXaJrltEcKvel0Ks5yPf
3WD29VYR2AG1St5L+LglHHtt6yGCqffQjGRiCE1v47hDx0QY689rtCscgtio
PFk1T4TAfKqidYaHVT253T4FIiyq2PH94FsefI+nzbt9U4RVwypMwQgPwzUR
MV4VIuiZZKpUDvDwGg7HCxpFiN22ITirkIfZg/wddkOK/Ha073ThQT91Ti10
vhimLVoNlbGDuLje4MUvTDFSm7XZUWGDGH3g2H5TU6Gfq3lvDBxE9ceEc6LF
YhR7PmdG7RrEVj/mKxdDMdqbTqfbrRiEv5UuV2+LGBbe0xUFtU9QRFte7T0u
Rnf/0aYfhANQjfAMGTkpRtFT1dXzewZwXDPS9YvTYoxdZy7PaRqA1bbGOZto
McZHyi9dzB1AZyVCCxLESO8rMI32H8BI3M690TfE2Px0to7z5DGMjQN1jAfE
cAzjr/PjchGXV/GdJU+Mg5vmwkMquKCXTnHsBQp+m9SCXVe4SFaNM/cUi6Gh
d4SRvZ2Lib+yd8WPinHX9lyc6/0+NFRwL4kYEjTUMFT/LOuFu6X1zFULCX6M
P+X66nAPCsvOOf1uJcH27IMWNzf1YMbwwS/FmyRgpnW8NNfuQZWOh26LvQRJ
PWLDtvZu6LwPsnnpJoHfuzFG47puiO+yQ7f5S2B+bUI8/qwLJ+znPf+ULkG5
5KMvy7YD/n4+pi6ZEjS/tN9ordaBAwk1ERnZEnhyHX0+UO34huv7lVm+BCf5
xfc7otqhebjFOKBSgsak0LArtQ9QHRMZzH0owV9KWabJevcx2Tz6hjMjwcW3
gWp+F5oxIgPrzZwEExc3OSfqNINWzoqzU5biEzeRWlvYhAc7nLWF86VY2HRY
va+tERkijiVzqRSJN7wS6t7fhdU/30VEWkjhzsstOedchwhb7t/ugVLkFxW0
xE6WItlr/7Pvj0lROvRHQiSjFAWhVG/4cSlm+jaWBKqXoL/4OftGmBRsblzQ
hrU3sU5n9pvJWCmC4vufWjlzIBgzu5CdJUVofVuyrDQdrNy0BaPdUkzE3DG4
cC6F2N2w5N1MrxTXW/d85fQijTjKY4u1HyvqVWnJNXQyiLT5tyq38KXQ+nI8
LOVUFvFXxH2Pq39KoZ81pWdmlE/k7J7MsPlboVllXWdtbhEzc/tXJnwtw4Cs
JIxhUE9Udr38Umwmw70vXM/Ie+uJIynxbywtZQgPnY44f+Yu0bb89gM5S4ai
7nqVzwMNRIK12jE7F0W8MkB/fkozoRHS9seUrwzmGotln39tI/QFGzz8MxXx
v58VLojtIp6w21mN2TKs06x6qCPvIn4O+M5QK1exlI6nJxMdHxLDE5fetxTK
sLBfpbVCtZu4teDZ77p3ZBhifDylktNDWG7NHh3olSHN6rCK65M+wlCgdD+P
Icf7BWYazo+eEBGlviFOSnKsyMz44PLFINF9tnXxC2U5ug6lT8ezBokTq88G
m6nIYUtcYRaVDBJNQW91WtTl6JB+m517mUfs/0cWSC+Xo23fIbc0Lz5xUb+F
udhajtHPb9c/WkkRwsnldxts5IjdbOm2y4ciTDqj/A6x5GB56Zdq5lDEwDGr
+sItciR3to7vW0YTK2vLv7d0lCN8/1JQS0VEnXNOjYeHHDurhAcWrpEQOSaD
vwl95WD83+TEv07vsGg=
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"F(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 0.6}, {-0.5, 1}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}], {576., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}]}, {}},
ContentSelectable->True,
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{
3.710381311655034*^9, {3.710381720000657*^9, 3.710381739199018*^9},
3.710381902505272*^9, 3.710382363012937*^9, {3.7103824232103653`*^9,
3.71038244335632*^9}, 3.7104961154205523`*^9, 3.710822025123342*^9, {
3.7108224202050257`*^9, 3.710822440122488*^9}, 3.710822695565998*^9}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"detJ=\"\>", "\[InvisibleSpace]", "8.5`"}],
SequenceForm["detJ=", 8.5],
Editable->False]], "Print",
CellChangeTimes->{{3.710381720016608*^9, 3.710381739212558*^9},
3.71038190252033*^9, 3.710382363039658*^9, {3.7103824232267733`*^9,
3.7103824433757133`*^9}, 3.71049611543556*^9, 3.7108220251429167`*^9, {
3.71082242022066*^9, 3.710822440138381*^9}, 3.710822695590136*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of P is z0=\"\>", "\[InvisibleSpace]",
"0.34399639978372526`"}],
SequenceForm["The zero crossing of P is z0=", 0.34399639978372526`],
Editable->False]], "Print",
CellChangeTimes->{{3.710381720016608*^9, 3.710381739212558*^9},
3.71038190252033*^9, 3.710382363039658*^9, {3.7103824232267733`*^9,
3.7103824433757133`*^9}, 3.71049611543556*^9, 3.7108220251429167`*^9, {
3.71082242022066*^9, 3.710822440138381*^9}, 3.710822695593605*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of F is z1=\"\>", "\[InvisibleSpace]",
"0.47970878686280977`"}],
SequenceForm["The zero crossing of F is z1=", 0.47970878686280977`],
Editable->False]], "Print",
CellChangeTimes->{{3.710381720016608*^9, 3.710381739212558*^9},
3.71038190252033*^9, 3.710382363039658*^9, {3.7103824232267733`*^9,
3.7103824433757133`*^9}, 3.71049611543556*^9, 3.7108220251429167`*^9, {
3.71082242022066*^9, 3.710822440138381*^9}, 3.710822695597752*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The steady state of the SSN is re=\"\>", "\[InvisibleSpace]",
"0.11039083557420919`", "\[InvisibleSpace]", "\<\", ri=\"\>",
"\[InvisibleSpace]", "0.3858774664985039`"}],
SequenceForm[
"The steady state of the SSN is re=", 0.11039083557420919`, ", ri=",
0.3858774664985039],
Editable->False]], "Print",
CellChangeTimes->{{3.710381720016608*^9, 3.710381739212558*^9},
3.71038190252033*^9, 3.710382363039658*^9, {3.7103824232267733`*^9,
3.7103824433757133`*^9}, 3.71049611543556*^9, 3.7108220251429167`*^9, {
3.71082242022066*^9, 3.710822440138381*^9}, 3.71082269560181*^9}]
}, Open ]],
Cell[BoxData[
OverlayBox[{
GraphicsBox[{{}, {},
{GrayLevel[0], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwUmHc81d8fx6/rXrOQvbKKkpHkm0jeHyNtSZSMEpIipEJSWSWRrEtWiIyQ
ve4wK5JdVmVk75lr8zu/vzyej3PuOe/zer/e5/M+JK2cDG/icTicMwGH+//f
lbOO8QZOzpoHx8iUt9FlcJXJh6dZRh+sWqMDJmzLIDEELr+WuQYzP0trE1TK
oMb4nZuDjCMUxjiXHW4tBePS8yzmMk9hn31ZxCJHKby7/aHlkkwwHN19UsQy
rhhS44VPmBNC4O2odFSeUzE8fTGQFLwUAoS+8ehrOsUgb+JittgZBhZOrazf
Jovg5XpoEzUuEoZZdxq0YEWgrd1aeEHmHYT8ymNVXC8AIbnoXT4CCVD6S8WH
/qMAVgKUVE0JiaCKiXzdlV0ALS4r4UFLiXCAYfCFpmUBPNV9eX6+8z1oZ2l9
v1GfD79G0yrJcalQ8C464Ep2HkQojqael/kEzZ7nQ4uNcqCe8LuEPeMT8A0X
mc7y5ADud1PdN7kccPFfXa/58QmKdcyW3gvmwu3Ng/+OGX8CqTltAXGxPJg1
UuI7cT0b1k5xmwnIFkAA5wHTkuBM4FMJsna9UwBd1Q9CJK5kgpI4k0N7ZgHU
37mhwCORCbZLq57hioVwtsjrREjBR2hL+vuOU6UInqm9iP7enwEf13IHmKEE
zK4Glt24lA5fhg9M2nqVAC9D0cfBPenQ35Ky+KWqBLb2uz/p/ZcG/GlvCX66
pWB+yadf/W0a+FzyksGdKQOuOmHVh0OpYJp14c6KEQXylTu4ZcI+ANu1mfmx
OxUQXQJXbDWSwbW9dXUhrQJyIWV/sGgyDJ4rYtgcqgCT5eJm5s330Lu7/OXL
g5XQOG2iPFP+Hop3PH8bl1EJL1r8LV313oPtBHfp5/gqmCmJZVyyTgLRVAL1
NLUK4lha7/w7lQRtN+gVTb+qoNxj67WGYhJodnfXdglUQ1nmpdmU1UTgr0vs
nAqthkcvCcJ14Ynw9YPiMu+LGuDk3f+gJSMBPG9IrEen1ICzXp22o2cCKO/m
3harqQH8Id6fry8kwLuIJSZZ3GcoD+JN1F9+B66+VP7jHp+hfs7Tn3buHcjc
OHPkpuMXyKGKDAVwxMMfUQ31iaAvwEEmlnWPxUFYl4KmU+YXYMl3SIqviYOt
C7v0Ho19AVKK95OnHnHQodll/NrqK3gJuAsGT8eCv6jtw6LLtdAeYjl6ZCwG
9ufkHUl6UAtjFHMSoT4G6rU2l4PCauFEy5sbR7JigONWhIdNUy1MucpV19yL
gci86mc8enXwgE0x+T5DDBzV5dDatq6Di00dWgYj0fCr4yp+0rsOYrc7uwO/
R4PYxpxfNa0Osu1fWe+OioZUPfFX9/77BrUB6TbRytFwqvvOWYtL3+DNt0lu
C+FomLAv3nH63jeY9hfa+xgfDYqh599IZH+DMIP7Op9/vIXi348jmvfWw7vq
Tp3HHm/hi3PXOwXe76DPkz2N74oCW8a9lkLK3+GmNZFN/ksUsEQ6SRINvsPh
LSWZtPwoOEdhSvkT+B1yT519FRocBT+J/2UEMjbAofdBqgfORIHrW687bpIN
wFn27GWHWhQIyjXIWUMD8Pp1HWqVjQJzA+tP6o8b4Lw9gZzDFgVDMaEF4wsN
8E0qqoPQEgkvFHoetHM1ArtUgJxAdSTsr9x/pEqxEXIvql94UBgJDsMVpW/v
NIJ6iKznzphI+HdwhnZyoBEms2xpuXaREFmt9uwwrgmGLj7p5rCIhKPGzzFx
sSa4WzNfXHgxEjw9RGvoV5tAz1TnYMexSGD8cqbuQ2sTFD0qtL3JEwmCBurV
wgtN0MTyykqBNRLkf8tS33A3wyVSgoLeNgkuz7PkPrrUDIcannjbTZHgjudK
xsz9ZujT1de4N0iCZ8xjydYRzSBKfrfn2y8SpO+ujTrf3gx32z1/29STgJpe
HFq91AxCQuM9adUkGBP68UWEvQW8IsKcj1JIsJlSXREi1wLZd00/YtkkeHmH
rPH9WAuw3r7iW5JKAm6l/DLiuRbQ79Q38EgkgQwlqcDDoQUqTk7IDkSQINcr
WqnIswV8Rh3sXrwhgbpeaPZsUAsUcn/YevCKBJ/ZAw4ciG8BEZUjT7Ofk+BC
q1eaTXYLcA8eCjjoTYJfke57E2gtoF3i0LzmSQIbc+ek7sYWMDxFwXE+IoH7
6PVY/ZkWKNoeHuRyIQE++4pgwFYLXDG2X9p0JEGQywVSDUcreH69nKfsQAL+
oye5t8Ra4duEZ+2n2yRI2tR8c/RgK4xfzR+9d4sE8jVHdtyHVvDJ/F71+CYJ
il8qBmRfaAVNt3higzUJMH0ZprHrrfDZaMPKyooE9TxivlLOrUD7TQ3QvEEC
o24+nIVXK7QkF8haWpKg993OJ1EhrZCmW7Tw9ToJ7GyIa62JaD/jyAgXxIuy
m6478tD6TnIVVoifzv5b1KtqBYP9p6WiELMUTTl7t7bCF8HPdznRemEeQ9OU
v62g1+V88TtiUezPHfo8Ot/Wnif1aP9U4s9RJXwbcOzJT9yB4lX6/t3GnrsN
PvTM2ofakIAcUvP3g1Qb2GWIRZjYkuDEZcq1fmU0v0eo74YdCVpECn4L67RB
34Axb/YdEpj+/WhifKkNXnNrravdJcFQ6vv2N9Zt0Fhz2ozFmQSODjGG9ffb
4KJ+77rAfRKsHAprJvi1QRPr3RQ7VxL4LAecg4g2WD5vI7qG8hXl80ivsLAN
RJtPvO1F+ZU6da9m5nMbPKPskDv0ggRZO29jsu1tYP5m6WMN8kflWxP1d0tt
cOncyJs05Kcz1wxKuog/4OdQve9KNAna95xS4eH/AQk1r3xeJpBg4pOq4ssj
P+B3vnG5TSYJeL7wS7m4/YC3s7LbzF9JkD89di3qxQ/4evCleGMDCQz4KbFU
0g+IOJyfVPuDBMG3rvMxF/6Aa7XPJMwHkP5s6Sxxcz+gZe9A2DZDJKQqe5yo
2v4BkdixGXu2SDhhds5nhOMnlEmXpu5A9eqTNbeupPATcrQOlUzsjYQNfbXZ
L7d/go9bFgf/2UiIcWOXn3T/CaakHHYp40hQS+yx43r5E6pvbT28cT0SXOe9
B0xTf0KbeLiwx4NImAuvb58d+An7I/aacyZFwlCXGVXIvB2mK404cxmjwIdB
cVXTvh3su0hmw1xRIHkAd8TGox30mJQ8zolFwbXHKTmf3rYDz6ePMzno/uva
Pf1ep70dRO5epn9ziYJGq6cBd/U7wCPp3muNmShwCDT4GmbRAewKB1/4b0UB
W6EUY6lDBzAsHjJk5HwLp4i1nvjADtinqr33tdJbqE7jdI6q7YCNKz8Yxx6i
+3wq8XIV1gk/poOzClmjIXjXl4NyFzuhf+BpSLpYNNgeGWch3eiEuTcv9doP
RwO/1yGKnU8n3DXnFeq+Fg0PearFuT53gnStxnhASTSoqA+OXTvZBamGJl+C
7sfAjuvM1XVXuuC0GIltR1AMDPnKxSrbdQGfTDPT55QYCG+8f54poAusrnww
7O2IgQVLQn52fRe4HK/xpB2PhTx/6ccb57uBe2OHthJ/HLzMOm1ke60bRK5E
3sKU48Cy9a5Ci2M3HE3+uhmgHwdcIsV9yW+64e/jFx+/+ceB8yc93bOt3RCq
n3lxYyMOFNtv7Ywx+gXyJ64baS3EQ5bUxwRVs9/g8ejEDj/UF64pP+40sv8N
+7USPw3zJcIpnXOcLo9/gyHvuKfNvkQYtJ55mhX7G9rZw9bKziSC8Afla5J/
fkPpCwvm2rBECNhHEWW3+AP4YWrzk/1JYCvfEN17rQdG2XOsGOzfQ6FGfOu6
Yw/MDSsU/uf1HvDnHVmFnvXARS2C6CvSe4i/y/XoUkIPvLt6NSi88j38/GRk
UtfXA+Y3vu9UEEwG7UM9/PmWvXBtJuNITGMyiB+ZCX9u1QfRMnscLxp+AJ+M
6MDX9/qge7qGie/OBxgSPeFL8uqDD59dg1a8P0A6Y5zLh3d9cExLdlI8/wMo
tZ6++OVXHwyylTYs8qSCRLGhv49sP6jtsc1r6UkFpYufdKuT+qFgvcjgQWA6
/GXzw/Qy+mGxza33WVo6hH2+qlGf2w/xmiFWuTXp8E+VqNJW0Q++DlmM3hvp
UCpmvmegpx9sqt+nDDtlADbFiscL/wXDkQeSIxYf4aL/zQqtsL/QlKppKW6S
BWJgw2oX8xeiZUc3Fh5nwRTd6lLw+7+QlFt7ezUhC17aWo7+yv8LUkOH6hLG
sqD8hBnngx9/wSo4f4+pZzbIEy5eT+UdgHalWnJV9idg9tbYZosagCpMI0w8
Phd+Hj12+lDCADzTct75KD8X3s+phV9JGwCydq7yXG0uaFqq7kspGQDWj85b
qou58ACULxzvGoBXeVyDSmfzYGBzX4KT0CDEumYu9OPygebBAz9jB8Ft5PfF
Ud8C4LXZHnNKHoSGs1MnPGILwOH8ZBh75iCwxf59IFtQAKISNSPa5EFIMQyM
+zNQAJ5fXILzugYhiPFYRaROIahztfUE8w0Bfb5BzoStCEo+hHiefjMEx54o
zuZlFUNey05yuc8wnBC0MuQ8RobPBw14VF4Nw4rvmugBEzJ0BIc5ZIQOww+Z
YhbDh2TYOCcgHpE4DIWv725/zSHDqW8SfrfLhyHx5naSijQFeqsO6/OuDUMU
RUrDdxcV2AquDty+NwKD7mf5z03QYDd33LE+9xEwKOMXimYuB6V7vRFGXiOQ
EPfvXtfecjA+aH0S3oyAuLxHtOz1ckjMdMjizR4B85CMsaW2clBNeeZaMTYC
/w4MOyoWV4AN6QMbn+Uo+B/b+3t3XiVELHDly9uNQk/GAsv38kqoueB5Vdd5
FPjqxhRNGipBiu1S+n2vUSh92DHLMVoJ/U9xem2Jo6CqIuLbIVwFXH/sp8fT
R4Gy7R9uv68KQK0zgiFvFFjSJ1u7D1fBu8XsQaWqUbgaL/hW81wVmNmZeb/5
OwrfjcYnuR9XwasvX/enjY+Co6fErOmLKiBLKbeUz48C9o1W/zC0CgR7WMRn
GMYgXcV/n2RaFXRcLKaekxoDixdf9NRbqoApR9LG5sAYEK8+3yKgd8p/O16z
eyqj8R1/GOMHqyDiq7VppvYYTPP/faJMrwLDY7tWWK3HIE/hP/UBwWrweeuZ
IGk/BvwmdelMktWQtzSqp3Z/DKwf8Ywu7q8Grtxykp3vGJBzJf/IHK0GbOeB
416BY2Ap/ibWHqrB6Q5pKCp8DPYUFBu56VVD016Hw7XJYzDA8tVw4FI1bHl3
/urNHINJseURzLQaFPq0fegFY2Bf+IDnpmU1BEULtUp/HoPW7dDeDftqoND9
3I83jIFxyod1p3vVMHFpTtz4J4pPeDo1zbUaTnPUOvoNjQHDQ4NRa69qcLdX
5o+bQtzFIjrmVw3pdfG0gn8onpZfYkoB1dApzXrz+waKl3T6x7HX1cDk+2DH
IGEcNmWPHGJH77Yj/X0FazvG4Y/9g0PvIqrh5vGzZtx849B3tKvhX1Q1fF6W
/KgljcYnr5dOxVfDP6PXF68qjIP5/WObrxOrYU/+yorzf+MQcyGib+F9NRhy
2iS+PD4OFbLCXiIfkL4OzScTT4xD9vnX28xp1ZD/TX225Pw4aDN/elqaXg1/
ZVIjm43H4dp7DTGFj0hvv12aoxbjUPBjdetmJtL7r+fw1s1xmNZyPG2dVQ1r
Tu1TgXfHYd/1HlHh7Goo2FL4J/hwHD4EBXjFI3Z4/WL9g+c4KH2QzZ5GLCPa
hz/sNw7hvg9+s32qhv6PqmyVgeMQhZfUXULj0Wohu86HjwPT5rB4NmLDujHB
XzHjkNPwNVMZ8Y4rWhK33o8DJ/35kRdo/6/D0fv+ZYzDXw4PnnQU37MHC4re
eeMgmr1KeoviP8p49ghH2TiU2prtMsmohoXQ5OOxleOQ1brUNYLOnyWxobu/
bhzmfcWxE6nVYJtjdK6oeRysm0/H3U+pBgnN7EvanePAbqV80QXp2d1ANGvu
HYf8qqd1WkjvMLNrVuYj4+CQ02U/gPJxbqL49vj0OBhMjacYxVZDJbOdO+Pm
OExd6X6aQ6oGj8jKZyGECTh9cnrxbVg1HJYW8t+9YwKOF9zMM35TDana9SRV
kQmQo2kunHlZjb7nUvGfpSbgLIuQgx/yk5Dl45SLByaAfuaoSDjyW9AT+QJ7
tQlI8vdjUnavBpfS4JaEKxNwX7rgot/NapA/Odopf30CEjNOhz9E/h5uh74y
2wmo/Jt/ADOrBpPFuekfDydgfbr1qbVBNYDiJXaWiAl4nctltoDqa4WayU2K
nQDBJR0yTRn55SxBWCp5Au5oCg/ayqN83i7ar5E/ARaHi34biaP8pAjoObdM
wPnGpMgcRpQfZefzm50ToCkWa/VoowqeVdUZveqbgFM89STppSpY6H1knTIz
AdzCLc/3jVRBl9Afr64dkyBY1lz892sVfHiTSMFOT4LF7MTOXN8q8BSV2uV8
cRLuJas57vNA90dGsm3C1UkQ+u9n0wvnKtiqTt21dXsSBlYWjHEWVXCZnnWL
8moSnD4MdM+rVAGLRRnPkYZJaLZL9LL5WwkOB9rs5S5MAd/ieY5+pUpQ+cIo
ym88DYV8KvdbXtPgS+1vCXGLaXhuJkTkcafB5foC6f03p0H4THGTtRUNHjVb
H1R/OA1p68fklVVpUN5do32NNA1bCY5Rb/5S4eSM7+3U9mn4V25pmKtGBVMB
QsmRyzMQk/Vq96E1MkwK/aGg5gU251ibmEfJ6HyFladsZ4Aa9/HWyg8yJEja
1Ju6zkBPeOt/+z+RYUjuc8/TyBn4NQimddZkcMT8CLUdM7B4rPir6s8y8L5N
MLxyZRaSjzm2jtWXQlz8t+L2a7PwZ67t7XVqKZS2BosY2c6C1PdNpvnsUphR
Exo2eDgLOwNLhW1CS8GcTdH9TPgssIWI9gZdLYUjmVfeHW+eBZlhhdMLMyVw
sU+UkdoxC+LPS4KEBkrAgWfglnrvLIydISmYt5dA8mOHQ6rTs9CylpFymFoC
LKmY1VviHJR002rkAkvA1dV4KXTPHGCdEnd1FEvAj6t038V9c3DnDf85qT0l
EPpR2JRLbg7oJftKRAVLIKu3rzxYeQ7aZdYO2OBLYFDvzstArTnQ5p0zPd5V
DAYCz0SeX5+Dm0HZhgIBxXAt7+95Xes5IByO4P70rBgczup6Md6ag8A8vf8s
XYvB/xnrsLfjHFwSEHrDb1MM5aPhn54+mYOKrFKW71gxyJWma7nHzgGreN81
/e0iONkqHvsyYQ7sPQeIi/QisJ6I/Pc2eQ6a/J+5lMwUQazo87SyzDkwYQ5w
S+gtAnbvGzvXKXPwuVZCYbKiCPbFdNmyV6LzdfmvBZUWgU7BhUqRz3Mgk8QK
+nlF8Hj4+H2NhjnYzudjOJhcBJOnhbuf/JkDWS3Tw3Yvi4DZOlQ5uB/9/nGS
L8GnCPZ4sgS9G0LnE3uwUPG4CMw+0TUrpuZg89vh7XCnIvjO/SMFtzkHWdFl
/jkmRTAqd2aLi2EeHr9gfq5zqQgYT1RdkSTOQ59lkxb9fBEcc8th0945Dw8X
bnwr0SmCzN+Bzr6750E+oJmWoVQEtf/w9eGS83D7y1NrZfkiGNzpsSdFeh69
3+psu/cVgQhm1/FZYR5CF+mXfMSLQPVq38H2Q/MQKVu510+kCC65XA4Y/m8e
PorOSKQIFEFgiq4Gk+Y8fFPVvq3JVQRpNAqJX3seSq+djyvdUQQ1HcqzMnrz
8AzzrzNgLYJ1Fsn3J/Xngc1d/9cvfBHY391kDrg2D167fj01Wi4E/xcPbkRb
zcPFp5JCtH+FkJwwSc6wnQfRMq+TOguF8Lu1+2694zy0k5QV06cLYXnCoPaX
yzxYHDFrfDFZCDyEOolJ13ngeX+yyWe8EM4eKf7B/mwe1LsEatqGC+HWBQUF
Ud95OJHUGi8zVAi+dikv5P3nIU95PS1qoBASvEX6NQLn4Xvg9k/pv4VAiQlT
O/8G6Zt5WrC1rxA6C1jDLcLRemG6N6N7C2GxwWvqbtQ8yGqa5TztKQTOkeUT
T2PnYeXTyrjXn0KQ23ZMCE6YB0uDByyJvwthR96f9KvJ89DZ5LF/7FchzFid
yd+bhuIXKLh2GnEzbyll9uM8EOrFk2q6CyH3q/QX8qd56HlRM3wZcah7eNPz
/HlYnU6UYkTscoChy6AY5TOBfL6uqxAu/XH8K0KeB81jPBapiFWC/0yM0OYh
4Ea2XjxiPuzMv7yqeTDLD8RlI6bPl2x6fpmHr425Xu2IO5OlmU99m4dfl8Rp
/Gj9UuNwLp7GecgY6s50RhzNzCDc2zIPOhKD2oOIPcoc92T8nAdy6nF3RxS/
mf0f+Qdd8yAuOKXFjc6rsfvMEfgzD76886QmxLubS4Ctfx7oxy7cSUb6bHlJ
n24fnIdARdaiEKRfn3K4YeLoPBgGSTpEIn0rh3Dm9pNIn6WY54VI/6RIx5tH
ZudhZP+75Yn+QvA59ceRYRHlK9WlVA3lTzerxDtqDeWDjNsWR/mWviYdaLWF
9HZYcC4ZKQQmrvAIBfwCbKxIs90aK4S6+45pNawLINxV/YpjqhAypP/kBu9c
gJOnbK4xzRTCq87T5Ku7FuBKQ8kh/rlCOH9MunFWcAECzgznPEH+VJwO6yCL
LkDfjWW9dnohcCXg+p9LLIBvrVyx7mohtOH/LIjsXwDRUvulO1uF6HsTJnhK
dQEe1V4d+IHqQdUTJ8VzbAGeyIVIj6N6EVR0lOvVXIC9Z7QW+FA9/Qo9rflA
bwHs1gVwxfxFcO0qzibReAEYPfjqOaSLANgd79pfXQDuX8/U+vYXgQTtt+sR
iwVQJ2b0fUX1PSBREtBgswBnpsJSf6sUge3Y3ZyV+wtQdFpnXUivCJzcfq8Z
hC1AwfHAD/0OaP10C7m7kQtQc4TUH+JSBPrdfWYBMQvQ2WETYeZeBPLHhqhV
7xeATB3fj/kVwcTW1FPlAqTPv5gruvFo/RdbeN6fC1BfJmku97MILpd4HVbq
WoDFzoW5x7+L4MQY3ubcH3Q+DjfWkYEidE7mL35DC3BwqM2baaEI/u7k8l/6
h/TyiLjjuqsYzEmS7J18iyDzH8ckzrgYzn1NPrYotAhSHZbUfotiOLYs7cAp
tghmtUW/umyLQfjqgcaTMotQ0NuUs+tRMXSKHn5TemQR4q77eya/KwbDFF2e
mCuLcGDOgePQTDGcKrglYhG9CLu291irvCsBPnHSHtv4RcgH9T+FGSUw8Kpa
zilpET4PndI9XVQCnla7NbwzFoFQ9/VidkMJ5Oz6Yf6hbBHMh18+vLZRAvzO
mu+muxeBWp1donu9FIbk+SSfCv+Dq8kTR/8cKgOv1GqZhNh/kCJ6wN9tkwzc
mSO9Vgn/QPbvrLMZOwVSctiiZJL/gRT9qoqOEAXqSg2ZP338B9/ER2R2/0cB
ru8Do9Syf2A2mk9dcKBAwiw+41fnP7hZ2JT5G7Ue5Ud15Ph5l0B4Z+U1TQoV
DI7fGuwWWIIT+j/b1+qoMKAVGBsvsgRlla/FcjuowHT2B7v0niXQNuuOZ1yg
gr6F9dRh5SVQuXT4vc5+GvR4+2ZfNFiC/jPszs1hNNiorzn4OmgJ9rAe34tZ
lEOc/gbH+5AlcONmnze6Uw4abSozxRFLUHG+SNHQrRyedH/I6o9bAkLu3XnG
0HLYGvWXVcleAh1PIb0jNeWAI57b87txCWqsT129KVUBiS/98HOtS3CvfmH8
s0IFYDtofwkdS9DS/JifqFYB3jyKiYq9S9D22v+29IUKwEtx7faZWQLeMn5C
96MKIMBPfllOOpi759Az6iogpXoH/TgPHXy+fH3Y21oBunon2g0F6FCu9Hti
6lcFPD9fHO4pTge/27+ORU5VAJP5W66Wg3QQM329k4W5ElL7WmaHDtMhu+3v
MoG9EvSsWZtXVelgOs3kMs1RCf53PF7vweiAb2qN8eKvBJZH5mxuBnRQS2i9
kbW3EtI3IsYDjehgF8jtiN9fCae8GusSTeiQkKzFqyNXCQH+mv71lnQQ3v2o
wPdQJRxgd7Pts6FDdz+Lk69KJdQH55z4Z0cHEol0+q5qJbBFShDE7tFhpVd2
eEujEj4KXR1UfkiHZ6eZvFKhEs7Gh1affESH8TGNUVXtSghKwXvf86ZD3Urn
gMDJSthZMLT5ORTFR0tg/n6hElyaeV5HkOjA0hK99e5iJXRNaovaRNNhbd1C
/fqlSni/N0mdMYkO3t/jrqRcRufTavnWlkIHCrefsqxJJdy12DZ5n04HgyeS
WjFXK+FopIWbVi4dXO0zNjDzSojPD2LaVUiHJ3qyma4WlYBvppD6S+hQvxgQ
8vZaJdhNTuzNpdBBSDwyO/V6JTQyCxc+q6CD9ANBxiTLSlDee1rnQg0d0t/9
DvW/UQlvMfc2sVo6XD/z0dTUqhI2zdNuzNTTIfCH6TUh60qwetQxR2uiwyWD
r0mfEdeRiF6v2+iQhSUrmdtUgkK+CqdFB9KnQF+gH3FYk/U7+V90sCyTtjK4
WQkrE2EKGz10sLF8vjsbsQVzNfX7XzqcKq03piOu3jN/NnaYDlYthgLytpWw
H5P4fWecDoRSD0d9xK/NL9xRn6aD79OEWxaIF9yfrrLO0+HwYTHOq4hNSNkv
u/8hPwxfuqeFmJb3RyBjhQ4i48kx/IilmtjT3DfowJPOFNuF9ns5oX7kFG4Z
OJR7Xvojnma680WAsAxSL/ge70FsuCfaaJR5GeyS419mofOUQt1gMfsy0F9a
10kh3m2+7PKCcxmG/jO++ALp4eMug7/MswxnMizVO5F+YxHGodICywAD92P4
EJ/P85NYEl6G332eL7WQ3vmNBTmfxZbhv6TbImYoH4ITA5oRUstgLb3/jhXK
14CUlsXhA8ugvRIVrY7yewqcp/CKy1B+VaOAHeU/2yzhcduhZeAXNVipN60E
94jN6HtqyyCmle/Li/zTkysvq3V8GfIGXFkTkL+0G81KubSWYdgqSk3QGPmV
idyRc2oZFjy7BDqRP12kxm8+O7cMn4ydiLsNkF81BZf0DZah+ZW+qKE+8qub
K8/MlWXw8fyj9+oM8uO4soH8rWXw+1jy7giqh3iiVd/6nWVgPTxeuYrqBS8V
6vjdcRneeMv9l30c+c90NuiO6zI43Tz2afgo8lND5rf058vAcuW0aJJiJXzY
80LpZsAyRC9E/VhB9TvmYRkl+XoZfj07mKkti+pBlu9mTMQyKI7Ctew96Lwv
nuKCkpfB/iDP6UGBSniDXVR1qloG1fq+fRPrFdAWJfdO7ssyxASwyBCWKoB3
lkgcq1sGq8x/scwzFRATT26zbFkGnj3spxv6KiB1bY+jYd8y0FTWdl+urgBq
IT3lv81lYOMtO1bqWwHb7K3sC7gVGN1n+jrscQVoW2e6fCKsAJ+uUpPZ/Qqo
3WWJ7duxAoFJ/E+oVmh/x2+/BUVWYPrQbYVKrALG98dxbxxdgV3n3T+IrpUD
f7yWV/WDFfiZ/rX3iU053LqvxNHivoL6P+dqNtNyKD0tHtfjifaT6Zt/c6Ec
TOkbJSt+KyAZSSX7qZdDwoXSWUXSCoRMHEuW4iqH/fiD12OLVuAmTfqgH5kG
6rdENR/QVyDryKfWsxw0CDzO3uC9tgIS7T0HIxhp8Idn7eqbrRXYsY3/0rdC
haeVnQ8/Mq3CrUznL96DVKgRCs/u51+FazVWV1dLqXCugXX3edVVMLlbPTBv
Q4Xrh5bXpd1XocqGMl1ZTQHXxD9qM49XwbyvvzCqjAJBnNVuxc9WYeLh5rZb
LgVKp4MW9fxXYefrhXzjd+h7+1Fq8lbkKpzmyXoa4EGBain9XxmFaP1Ios6C
CgVkeD+UKsyvwkWnb5TsfDJo+L6iL/1bBXplsAf9IxkMF5xUyldWYWTFJfVc
Mhmetajn6uPW4OQP2QTJCDJ0BbWkOXGuQYjqeX9nVzK8Im5E5imswVLlQGzR
cTJM0w0f/ndnDb60dJaad5YB9/C5X/qOa7Aq8Wl6vaUMjvzQAzuXNUho3P8i
ux71FznqrLEeazBC2SV4qhzNt5OKxwWuwZE7fWrmqWj+ZVG88Js1yBNhYgpJ
LAMzXf5bh8PXYGV/b1JHTBmkSLAdso1dg/iO9Kdxb9D87vnP3zPXQKQt5NgO
jzIwrZ2UHc5B+9FfjXU+KINnRcPBWwVrUHS3jlbsVAZ1od0mh6hrQLm9fzv7
Jpp/pmoqsgHFc1g919ewDJ5SQnitptfg5n/qpm0Hy+B9xqtHj+fX4PfoT4af
cmVQG+XXG7G0Bo3mFPXxfWXA9cA9vXZzDZr0XtzRl0Dz5S01FDjW4eu+ZhYC
dxl8FTZN0uNeh4w1H+/3HGUwyWLEZMm/DkYMpQlG7GWgMnyyJUxsHdKtKjsW
CWh+/EGbFcV12Mg0vie2WgoTgbLfdh1eh7lbLwxM6aXA6bFHUU51HeqWhHoy
FkvB5LLAigWsw0+LO8u+M6XgqbvLwk1nHcyT07w5pkohSZm9OuTkOriEnsrP
GkfrcWwH1lxYh6Xjxdt7hkuBY3Nl7s+ldSi5xSi0OVAKhycXjOlX1iGPq6h1
vB+tVzsiLmu5DqvFesJbf9B6Rf1+2jbrECOelir9uxS+Jv8aN7NbB7Feh++W
3Sg+r6aCYOd12Gmi+XNXRylwZ9yfi3iwDmp8PQXBP0uBt01QIdZ9HcoMtm6K
/SgF/nXa7STPdRA4bjNc2VoKgnutU9O81qFnR6u8a0spCJ9nGcz2WwfSApOq
ZnMpiLpmixe+XIdvEnVbgk2lIFG3/LYyZB2+SyzlMTWUgtR8XPvXiHXIvjIc
JvS9FPYKa3M3vl2Hw0m3RaG+FGR0RvV/xK3DyEHd027fSmG/Q1Bgd+I6GBxR
5a2uK4UDpEN1fSlI/xGCuzhi+fIOwkg60u+Bk9Ob2lJ0bz7WmspC+tscXdqF
WIlL8ulC7jrsoWgwpn0tBWW1r+SVwnWgb6mE6iNWsbJf3ipdh3WRV5EsiI8E
cqkQaeswvpnC1v6lFI4WFjmzV63D45CZoQLE6j2m2bu+rINdRbPoB8QaTLgJ
gW/rcMc1LyMdsebBDzJijetwLGnDpxwxZnLGem/rOoTKCSeOINb2nk040L4O
+xnur0ig/XQ/RvxR6l6H0p3OvncR6/1QE1LtQfnU8DjagPjURq/x8b/rkOKx
xnEcneeMtF+YzvA63M+/ulWB+Jy+bPPp8XUQb8FtGSE99N2a2A2m18GywoS4
gdgg8f6py/MonuQU9iKkp+E3wefmS+vgceUMkxfS22iBVmW1ug4/2m6Pm6N8
XBax3rLbXAeVFtGMsyhfJrosx5wYNuAV2xO1c42lYHo32+0hcQNqNVKCr6H8
mkcaFj5m3YBOyaw4H5R/y7E4hZe7NuDg3OeCbeQXq13ad4L5NsDoAusHE+Qn
G/XR1AihDWA5TxKvQX6zCzokkSS5Ab84J70aOkvBWekrN/nQBkzwuaTl9JaC
y1X7C5X/bQC9OigqHPn9gQ9X0Fe1DdgXy5f3EtWD+09T4g+tDXjZ91YidaQU
vNxnlycvbsBudTflrNlS8EmKUFkw3oBD1bw5Agul4Fevdm/l6gb4xTi2h/8r
hZeifhMEqw1w1X/aR0P1HFop2LPbZQMsT4gf6ET1buJT+K334Qa8uXBMPpy5
DCR0DYoTHqH9uzTBgq0MPtX6v5H0RvG6K9iIcJVBfRNdSzpkAz5KkzU0RcsA
3/MzVf4TYl65QC7VMvj2zjl8Om8DGCojS1LVyyDEcofXp6INUD9fuHpaswzE
hnSuKtE2YPnsE4+SE2VwbDKfXaVhA86FhgTLG5fBg9UQ52MTG2CsubTp5IrG
KfIWG9NIn8R/Ts3ofsU/qTtNm9+AK3z1nerP0Po43B5Y3QBwsD3038syyGZ2
atdm2QSOG05pRei+HuE7r35GZhNSu/nd2qrK4IoyK+Gq1SbEN59L6BUgg/z9
MgF7203YtI+r2SFGBnzhbbkndzYhJLrO7cReMmT9V2+Y5LIJ9YfZiR1KaFwt
MGncZxMU/gsYczpDhk+wEzyS0XqWTMfsnpGBcH6XR+zQJujecLW6PEuG/FtC
cz22W0AWac8P76HAOa3Kgo93tlBfZxGcNESBUeFbbm6OW8B6fWrx0yQFRJsK
t7hct0A3KyK3dpUCL1QMduo+3wLJcIujU3xUMGXwP/AxeQvufdmg/j5PBXzs
PxvX/i0Y2720LYbes3EPYvfrDG3B25iai9+qqKCqrz3FObYF7KvnMu+i960D
Q8j9jNktSJHNrUlup0LHLTmfP1tbMNh5JbVylgofVawStHdvg5GzxkqkFA0u
NjV3c5huQ2PBCf4gbxrUDUg+rLPYBg0pDTKzPw2w5ftcPje2IVI+4K17EA2U
JARPLtltQ+FfEVe1KBpwuVgW/nZD69m2tx3OokEL33xwOmkb2iVMOKd+0ODU
AZ0DVtHb8OZgQdvHLhpUapK+iMRvQ0tvUJ55Dw1yb6ltBKdsQ2w648XoERqE
lHnffliwDWzZi+iGoYGBBbeudus2nIvy9X0jVA5192z61n9uwyOzfd9cdpcD
9qLYo6hrG1hUp26dlCwHpRzTvP3923D9+cT1z/vLgYshWYxzdhuOfL+uzK5a
Di/5lsrqFrZBanhF1g31Z7gDJ4196NvgpLpr6MfxcpgznAxc2twGE6lg4+u6
5WDXFr1xlwmH5Vlcl6EalEPKH+36Myw4bOzF2wNZl8qhf2Qyah8bDvstNWMe
dLkcTNaPH/67E4cdMKAx7DYvh1N7B24b8eGwQjV/zye25eCnGKh6SACHwTB2
eNquHCqPqhA5hHCYTLVe3jn7cjh6/kVirSgOU5hSG/7lhPpF1wOd6nvRekxt
pofdy2GywuIoJoPDVL+nfTrtUQ6fWEOjT+zHYf20wKRznuWgEr9sZiCPw/b5
KmgKepXD8sgBmrEiDjNmqPnZ710OZKVrYmZKaH8C/xDJtxy0Pn/uv6mCw5oZ
U/S+vCgHAseKlv0RHLaeVBMAL5HeV+SSnY/iMJVvHAdTA8pR33yN4KqOwzj2
eB5bfVUO+pOhNx9r4DCJq/jCo0HlsOu/L1+9NHHYNu/beJvX5fDz6cq+FxgO
08GpbHoGo/6Y+/pEiC4Ou8B+Vfl+SDl6n4WdjdTDYbpPm3ddDEV6fviSFXsK
h9G/yjwWCSuH5NmVnUlncNhasPH9NsS2avJOqedw2Mgzw+2H4eUg63u9JVMf
hxnq8O5liiiHqYawQ3kGOKzNJ3TEB3Eu/9ewYkMctjVaeXYK8X3L1UWKEQ6z
F4020SaVw5GP8sZVl3FYzjcu7ueI1xavF381wWGW0WJPChHTjocLNJjisC4+
pcQWxF7+X91bzXGYe/6/V92IdVpXuzuu4bDAiuULzYiZRBSO/bHEYXelixjy
EX+zsYz7a4XD3BrS870RB30K3xyxwWGEeP2HmogvrHy9NmWL5j+TMh9D8XFr
r1XM2yF9zRMfPUPcHqgguXwHh2Eiuv2MiN+2W/psOOAwiw8B7/9/fjPxiEEG
JxxWOTDV9hPpI3a7Vpf5Hg77TBn3lUQ8kL/2Ycd9HFYluFFrhvT9sKHAzP0Q
h/EOJOT5Iv3t9G7YCbjhMD7cxUvRb8pBPiTim+gjHCZmFlgRh/KVv2c9cN8T
HFZyO1DrLsrvw7uK0/LPcNh3So6neiDya8kNfWVvpN/yhZ9LyB/lZ+q4jj/H
YT0yIhdV/cvBO2L9nrY/Djs31ZVHe14Our2KP04G4DBK3stUZb9y+H6PRDJ8
jcOG+gerx5Bfgyl19CtvcNhXUSmZA8/KwZC4ccUiFIctbrhFmD4ph663VsJ2
JBzmqx/CGvCoHGIHSI/vRuEwtrDhs/5u5XBN/tsfl2gcJi/mzvXwYTkMVRxM
eBKPwwIKPaLE75XD/MjGnvAPKP/35QcLbqH33RO5nodpOKzxEReHxc1y0OAx
jTTJwGEu9D7aihW6L6CERSwbh1HlePezXEP6vr03nV6IwyJcSQGvUP2fOz1S
XF6Dw25zikQd1SgHlz5e56QvOCx02j5cUK0coh7qyPrV4jBy6iLj9H8oH0mJ
sae/47AG7Zma+wfL4dGaqdfPNhymSLz/bgPdX6mZzacn/iJ/n3juKEwshwat
LXzjIA7jnPhCv8hQDgud8tScYRyWKEyR9NqkwXHCK8WH4zjsZwJ+qnKJBj/N
dXlw8zgsObJOsWuYBgwcZX/4cAyYhSDp8ZPPNDB3fu+kJcaA9ceazCd70oBV
z4x6ToIB2xH7n2GoGw2KRXhZTaQYsFyVk5yPXND9Xvv8vaMMA9Y83mF81I4G
Nbtvt8cqMmC3NS6IPL5EgwPfDx6jazJgeik/8tRkabAsTWPKvM6AxTFYm7W0
USFl/eGl4hsMWMeDc/stG6lg0KqYWGWN9vt2onG2Fn2PPBPVum4xYIxxueqc
NCpc++HrQHRmwHKSrAYM06jw2etM23UvBqyik8+C05MKYb8743mTGLAwrZlM
y31UeL8ZqL35ngGr53ryPVCKCnni2OhwCgNm+1GKTN5NhRbrdKWSdAZMic51
ay8vFXZOuddczWXADlYWhcoyUOHlhtD4uwoG7L1bO5nzDwWe7jZXke1lwI4z
H94aJ1EgGLi6d/UzYMYqGFBCKRB/4/OTtb8MmJo9O3P4awpQP8jXfh9mwHga
zrhffk6BVYXNq47TDNjUD45xxYcUeKD57lnBBgNmH3P0z+HLFLhzvb/+uAge
K7r69djybgqMid35Lbobj3nnuWjXCVPAtndxcl0MjwW+t9FPEqCAlQXzTrIU
HrtleC/JfhcFzMwULxw5gMfClknWVkTUb1zx/KGohse4XC8N9s+QoZ6faWjn
MTzGGF86fGSKDKc63vyb0sBjti70J6RxMugaJ/NlYmj8QetrhyEyHL9Uf2Xf
KTxmNdi97vOLDIoXBP+IX8Fj28dfnLhSh/ojjvdTWyZ4rPJO+jR6esCBJrnN
HlM8dtDxV7D0ZzLInAexuGt4TGTuU6NAJRnEz9paCtrisWNJ/UV2pWR4xzbn
vHwLjz3TPZUQXkwG0fpH3h238Zh7llZKbSEZBE+/fh9xF489rzrAfTaPDFwn
C4e4HuKxs1vlwxUfyRDMpLk064rHhoY+capkkGHH11piszseu2Gjbp+XRgaW
E79lXnvisZM6OdTaFDLgdPC3Wf2Qfny9s1YJZHiKD3o09hyPsZq4N0q8I8NG
Fd+rWn88Nm3xeXQ0jgwrmGzm80A8JvNtozM0hgzzmgbTDOF4TFM4udEokgz0
4zahrCQ8driwRuwUCf1ew/2/XVF47PjmtpFeBBmYjiU+kYjFYwTnXbetw1B8
6oWS++PxmJsvq45PKBl2qdV9OZiAx+4JWa9lhqDzq87thGQ8ZpfotSr+hgyS
Rwj5eh/w2O7Ht47fCUZ6/id4WT8Nj9VnLl2ueI36VxX5NeMMPHY6TUNXHPGh
w9g7i0yk38B5xldBZDiibKR9MxuPKbeph20HkkHjkN2IQw4eM5rknX2GWEvJ
89WDPDxGfj8twI5Y72CIomcBHsPudrAlvSLDWcWUNt8iPFZd0f9FC7GBQqlr
YAkee/9S4OR0ABkuyzcIh5ehcW2xwGTEZnL95TEUPNaa4xdkg9jywD+r9zQ8
9sEp94QSYltZFuaPFXiMX4o5jwmx/X7RzLwqPLZuO1M3+pIMzvuULpTV4DH5
3u/+PxA/lNFdrPyC/LGPOPYNsYe0SVRdLR5rGNgerEfstdfhWMs3PDaZI+na
gfj5Hq++zu94LF+x5e0U4ldSEb59jXhsdctZbyfaL0Qyfd9oMx6Lqrz96Chi
kgT1+0wrHrPhkZB3RBwj3uJE/4HHVKNWTT4hThAb4tlqx2Ojk2ZrK4hTdq+U
ELuQ//Ky2PSRHh9Fd5jv/IX87H/RLxtxjogEju8PHnuzM/eGANKzUFglRbQX
j5FWtuICEZOFTp3a24/HXhc5KLKh/HwWcA45PITHZAMuHZRB+fvG76dybAT9
/nB8UA3iJr63XdpjeMzXPlPEHuW/m6dSwnAKj8VlFn/sQv7o5f75+eoMuh9O
+r19h/wztGvM7sYcHnN9WxLuiPw1w8mV5/wP1b/33Gv5cDIscuw1dqcj/2V9
9RBG/lzZeXT12QoecyxMNuBG/mXcYan1ZgOPhXrzhItHofphfzAcuYXHPH+5
Tqu8JQMH28uAdzhG7JGqzw6jaFSfLLmt2QRGTH0s7n5OLBnEmD8/LGJixLCv
/KmTqH72MHUJ0VgYMXcLEZdDqL4UCTirhh2MmK4m4UN3Ihl0cAYLE7yMWKz7
LuHYVKTn2eszzfyMWGZaiBFLOhm4oxwnCgUZsZ2X60hPUH0PKLweeCrKiIl2
zDB6ZZHBx6y+jXsvIzY8tnx/MJ8MlcW6BeqHGbG54QOPRarIsB9vlCP+HyP2
6pSWMqEG5f+8dSZBlRFLK5/V+Ifup+tD3slN6mi93erCE+g+29pVEW6lzYj1
7Q8IkWtF999dtQevLiLuhDNrAyj/paecnS4hfqwJhsOongkmDkbGjJgTa3tR
7igZ/sS42ohdZcTadPdMeqH71bOuwCjfkhGrXCpqdKCj/O9R/O+XEyMmy6qt
eJOdAqq/pOiywUjPGKrbHTUKyNykPlcNYcQOxtJTizQowDtnzHcijBHbPX5A
kAmjwAIxQMUykhErGGC0K9ajwKdDsy6R7xix/Tm9+oZG6PcBlFl8DiP2OG3Q
0MqZAvxHjcZ/NzNihwplfY9kUmCJ9PzP610E7H7ZegOTDBUMy/91hvIQsMxH
Aj7fZamQO2L9g8RHwL4PX+F8o4Dei6ra9fFCBIz38MQZ7v+oMNC1VZItScAs
OvfeZtJF308R9/DGQwSM49TWevANKmQl3Tmz05CA6VT6/nKOoQJbffeJXUYE
7B6LoUlfPBXsFk5p8V0mYD7HK9+cTqLCHp19R3ebEjC/nLImrnQqxAwNSitY
ofmPGxntitD3d58Fw3kXAqaoxb29t5kK1tkXSoPCCNgr90ld7S0q7JUisztG
EDCspuVeE44GQ5F7r1+IJGCioqwxRow0sPFaJXLHELAnw9Vx+iw0uHkp+VJU
EgFreS7curyLBrdW6TNJuYiTTlvy7qXBfscb2r75BKx3+syWmgwNxga+k2wK
CVjuu4oGk/00sGtI1NhXSsAem7z47i1Pg9sJZ15lVRCw6IviBC8VGtifeCdd
0kTAwmp7kvbo0ECezPLobQsBOxuZwdepS4MpxfsNj9oImMo+JhFfPRo4CJ66
r9FBwHDFTtTPp2lwd3K+sqqHgD2MWPafvkADRUtz3uQ+AhbvrVFsc5EGMz+/
3vL7S8Dqn3Co/zSkgWN5LMfJYQKW9O3K3jhjGjiFnjBvmCJgZZs2NU2m6D3O
lJuTPUPARASCh5nNaTDnIcz4Zo6AvXuvo6xmQQNnm9mMi//Q+N5cTb/raH73
1U1lOgHbvZdvJd4SzT//2YB3hYAZfrRqzrlBg3uq0csd6wTspgXPd4o1DZSz
GM+WbhKwcxF7x4tsaLAg4fguepuAud70EEy/SQMXNp0T5oxE7MPEhXcPbtHg
fs9U2F82Iia+JjeTfYcG5NC/jyZ3ELE50qdIN3sa4PU6LJc4iNgX15yfqg7o
vf+pQpGVh4h1qWoLxN2lQZdVIR8PHxE7o9QnhjnSQFwgY0NUgIhJveOq/oX4
07OweiURImbPdvLvohMN6If989R3EzFOySuWLs6oHx57/FZXnIg96dnlPYrY
L875mb4kEWv5vqF76R4NGgxu2prsIWKS7vHZRYh5iabnraSJ2EvHR1QO1O+a
lemrOOxD8R/jv38N8fu7OiKuskRs6/ZqWwriCcmjeC85Iob5p/f8RazcIT8e
oEDELEwyIvju0+DRK8mW8INEzIWzZQ3u////Hfwl8YeIGB+/Lf8NxCyLbO/S
DhOxtGD1GXfEF9K2/fL+I2KBsaIB/ogjzf7ZU1SJmPT139NBiHs5xw2/qBGx
9vUTewIQS3/uUWs+RsRwEXJKnogd3Nskuo8TMZYzZiK2iAvla5kHgYjpYymT
eojX+ykzU1pETDW6PU0MsTYpt52uQ8T2uJVfnkbxvzr9gYrTI2JuGwrb+Yhb
N6OT2U4RsYizi2lOiAXzg1/xniFiPS96ruxBbGnre0/sHBEraqHwNSH90oXd
TfbrE7GnZy3GnBDPNjmAsgERixEK7WBBfMT3hoyGIRFrfjw4+hbl46nq5Z16
RkTM9IzMPgnEXybP/LtwGcVztifhHcrnjkT4fdWEiEl8DrDgRRzLIptx15yI
RR6pax9G/hig7g5xu0bE1inmaVqID9zjdvO2JGL3WicnI5CfSrvXdUk2ROz2
5611SeS3jo9N/VQHIhZ8T8SjE/lT7HpN7VdHdF6xdOk5W3Rf8JR+anEmYvsD
1RJxiP89TvIcekDEhD/XKbEiv3OffyC44wkRe2S/6ywZ1Y8pw+1tvmdEjLWi
eTzsGg2SiixGxL2JWGN/Yr01qjclsZOFh58TsWvOAiEzqD7PzwoZmL0mYu/H
33ZnoPqlz7K+0X5DxB4wenBeM6JB4txqo2woEZPbe3uOHb2n/s13n12JIGLP
ncKHjQxoEPcv+iQpjojZEuJ2xJ9B98uqEDRnEjFRTg8lHk3klzXWp8XZROwN
M2eKnQYNsPVVanwO0r/pYEapOg0iNrrVHQqI2MjQ1+RTqjTQ2I4+wkohYn5m
thuySjQIIggr6tQjf1HLhXCSKF9EtrsHGojYTc1fc0RxGvQT1zJ3NRExBY6P
Jsy7aaDC/Eu2v5WI3dF3Fd0UpMEf1hjpJ91ErOLsQZ1iLhrIcQrvLhkjYjSj
hLS721SoFxLeIcfMhG3UtTvc/kWFwZK+YhZWJuwQQd2Ao4sKG8YfboywMWFm
tNWt3HYqKIQplSRxMGGu7+O3Z1uoEMJ20kqQnwmTY1oyuozei8br90uJ0kxY
RmpLYFsBFfr/NNr0azNhLr1pvGuBVFj1COcs12XCaM8EMt0CqMAtdJUcq8eE
rTrJ7Vh6QQUd4yHOK2eYsJ81pQ6z3lRIbVwjN15kwtLpuqZDblSwL9+3i2KJ
4oWIr7+tqUBP8KaRnjJhfxlufbmpQYXIJ63rsV5MWOPfFx6f1ahwxExS/b0P
E1Z4TodNWpUKrvxVxZ9eMGGv/ePWJw9RYSkIl1sbzIStTIv8C0Pv1X+Pnr1f
fceEOatg/pd4qLBw6Ym/RQUTVnwhKpZpmgJhhxq/WFcxYdFBz0LLJyigzLmb
cKeGCRuWuKTqMUYBl3qql2stE/ahKqNqY5AC89jGozfNTNhxhnAhpd8UmFN4
7FDVx4RpvscJm9ZTYJr50UVpHDOm1mT4gJiFxg99HmXBM2Pfemf+s/2I+g0z
zqdTjMzYWMr9s9/TKUDP+fCxgJkZKx3/+/L9BwrgTNoYtTmZMb2cOwPPE1C/
ki5XfE0MjS8ule6NQP1Hm+s5bQlmLKltTrMxjAJCG1UD0lLMmPPSY0cP9F4W
MzDhnJZmxtSr3vQNBFNg34qf3WMFZoybPz5oKoAC6qd6hd9qMGP424XMI14U
0HCRzXusyYxpHTdi/f2MAhD34OR1jBm7qyg1+/MpBXTn2B7I6DJjQ2c1HnR6
UuD8W9XGwrPM2C9upgqBRxQwqPaxfnueGdP/GHBMxZ0ChlONq48vMGN9Kyv5
xm4UuIzZyOhcYsZoA/ei0tD73HIs5FmrKTOmtPnJxN8Fvbe5//AVmTP/r+L6
D2q6DgM4fgn4wO6clDa4wAymLk6T1oV45fw+MROCMhAVOmrKD9GhDMeQgwGB
IgwRcSBDfhgFJkYgugGb+hUZ5AhCxNVBUMhQBiqahHgt5YCe/nz9+fk+7+e5
+2JoZOLtHjnL7N0kaCiTAEp6+gJeJ8epWwd3RwEWD3oHGxJY5uA1xwRxDKBs
aZVlKVlmDXUQxAKWKzJS4mUso9g4KXwqBRQ9ju3xjWeZ5CifLvMBwLjiYdX3
B1kmpSBL0hIPGFRYsZ1HTh/lnUiXA7q4TvGcDrDM15wojz0KwPD4rc75cSxz
5P2LBvFhwMb33F2dybl5YisnFTD605DgtVKW+amy6MqaNMC2x52xzftpfpcs
BX4ZgI4tRZ1i8qaOdyIlmYBrVfWyoX0sk9qf5qM8Arj8I67kMFn/sNupNBtQ
19502oX8bNZlRJsDOPNAwzXG0ns9m3MfHQd8tdrWxyf/4LMowqGAepqOW27Z
yzLjAcHeHoU0j+hFFd+RPb+sshOpAYUDht37yZKEJ7+HFwOygpyYDeTKox80
JJUAdkZ/coFDHtTkZalLAaFdsXo8hnqrG9jRUAZYFiT/00QOub7Kq6sCMDXr
R1MDubAvcW7sLGD9sGq0nPzLfaN5oQpw/V352yfJ8A+31q2a+lq4U55L3uL0
ldL3HKBX2xLh/85yr98Wep76rVBPniC3er/wTLhAvXE7Os6QX/r52/LrAAvO
cPR15A27ND219YDzul+N7WSFdOzbjouAprtHLRby5XRh0sglwHsl2Vx7es+T
U5kBL7WA23eKAteTvc71uvOaAV3Pup6SkGP1btNCPaDPRMZQCbmmW2r67Arg
lHF8tZlsGTaUS68B5n9YemgZfW/3vx1kOdcBJwW6pghyuN0Ov+obgKXT8w/r
yBpeDa/VSP3Y+3HmyVzR5rbnNwFbtEabgeYZFFxw2vlnwDG+yrCCesiL/mPf
um7AxSe/CDxOfiU/2TmmF9D/me8dOfW0+Zub1sw+wGTTbf1TsvLya1crzYBX
RaowOfX3fKAx8rd+wMqexEYV9TrBf6DzGwHUrrxl9y/1zvf1UUlGASNHYEkN
7cOewOwI5X3AmCp1VQjty9Chlfa6CcD+JgHTTv8zt1rDdnpM0X1J0Ry7p2AZ
R/N5L9E0oNht+C99Est8bJ2ZC5+h+SzurSyi/b3BUdeqbdT/W1trdtF+z64Y
UTa8AFx27I1HSPu/Ubju865ZQEGFMORdug9JW5R86xzdnwyteZWSZbRhXbaF
Bbpv/sbIN9NY5j8hqjA5
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.015},
DisplayFunction->Identity,
Frame->{{True, False}, {True, True}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, {
GrayLevel[0],
Thickness[0.01]}, Automatic, Automatic},
FrameTicks->{{{{0.05,
FormBox["0.05`", TraditionalForm]}, {0.11,
FormBox["0.11`", TraditionalForm]}}, None}, {{{0,
FormBox["0", TraditionalForm]}, {2,
FormBox["2", TraditionalForm]}}, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {0.020871680181570477`, 0.1459363528784051}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}],
GraphicsBox[{{}, {},
{GrayLevel[0.5], Thickness[0.01], Opacity[1.], LineBox[CompressedData["
1:eJwV13c8lV8YAHDXvS4qe0QlW8loGSGeY5RSIimVpMiohFSiVJJIpYxIUcqI
aFhlk4ySonLdaZTsPS6udf3O7y+f7+f1nnvOc57nec9RdPGxc+Pl4eEpJPLw
/P+XkjMdZxNeD55uPWXOtzuAWGv1Nf1XIyj7ECTHjdpBolZaye9yM9z2kFMJ
PdEKH4deHKpCNLAc2rJyayUT3ihlJes7skAuTYI2I8UAeb2R2NsuHfBvaauL
3gMa7A93qzSN+QtxTPcRDwMqrIVTgp5P/0LbpEXLwFYqDE27HHiQ8heM/a7M
+WpT4Y77iV5m3l/453rXNFyZChU7HEUuNv8FUkhcZJsQFTRJ+51fSXbC+uC0
evjXAvw3ty8te9wJXwwNGGejW4CyzWj35uROuKAhP3H1fgukjBnEOmR0Qovj
bnJMeAuYnNBfl1bYCR/426N/XmuBi7DFxpjeCYqRB9qenmmBzsV1yT6y/2Dy
7cHUWztaoPyKBFAS/4FL7FXjT4QWkDy11OeT+g+WMkOzVnMp4GU9GLM8+x/o
Nl4bD56jwBqF6h6zkn+QMHHp8+lJCgTV+j3Ipf+DNPm37sXdFKC8O77N+s8/
KFi9L9WzkwKaCVadfb3/wLgkR1+5gwKsM0p6CjP/gPV03KyUTgFD0d9tD6S6
YFL479+g7xSImS0P3yDXBQ/MhVn36ykw0Pl6c51KF9BjznS+rqPAkw83by9u
7QJeG++Z5VUU4BzdrOVl1wUS41U0/48UsLWQo/Ef7QIDUaOKqXwKZGoJ3kw9
2QX73+k8u5VLgcM8fylM3y4YTv5k/uMNBQrTo4J2P+wCnZCVevJpFBB+GKTW
Hd8FRhsjxtekUMA9wPNn8PMukLz6rETjBQWk9yCVordd0FCm++haEgW8dTQb
D3zoAt8ni1urnlKgTk4mYLSsCy51ji5JP6GA/9hog9r3LtgQzjKci6NAI4N1
6XNzF1wtVzG484gCatVf5I+zukA/uStUPZYC19/k1892doGV42qv9mgKtMQl
X4gb6IJyIr9xRhSO5417cpsnuuBJVveO0IcUCPW8/OX7bBcMnJyiXHpAgdb9
ruc9Cd1QaHRxW1AkBXSMbFaTBLthhdWLisf3KXBfxag2WbQbJp4Xfvh6jwJd
Qut8jGS64cJezlkR7O0z4rI0+W5IOPVio9ddCsT+4X72W9cNpYEKth0ReD/q
B7yEN3ZD58lI+dPYZvlU6Sy9bqiVmRsVxH6a9PnTDhP8/FSgxOc7FJi4/e7M
3x3d8HHF2tZobCufp5LXrLuhijqXGIidcjisQuZgNwRHKKX/7zlTP8+CY3g+
gxm7Y7DtNI6L257qhq/bU1jV2FmSVmWDZ7uh4VDNW2H8e7xcXffwC93weY2e
xAXso72KospXu+FniaTzOHbuT6GSipBukHW61hWB11Oz0VZC5243aEllaRvg
9VIfxHi9jsbrayfu4cXx6R+m1K590g0ni+nh3dgLe1fKP3rRDWVp/lv/4XiK
vDkSIJjZDZZNGknzON5Ky5N+XX/fDXeenRTZiPdnV71C6OmKbhA6Om3RF0MB
x/Wube213aDyeeG5N95v7/B0Pfsf3ZClObZFLB7Hd8eGfpPWbshYGNJ/g/Pl
VZqXWcE/vD+sZyg9kQJFxPeJ6oPdYOwZkFf6jALtVVv3Sc51w4aZf2OmOD/H
FfwzIgg9UMuut8zD+UsKLuJZEuiB4z6j8qYZFFA3Mc7vX9kDuj2HPEtxvm9/
dmOFs3wPNPR+ccl4T4F9C1VuFLUeWH6eOpGXR4GLJTtlKnV74GaF1h/1YgqE
y0ac1zHugftVgwVxZXh/Axq+vbboAZWU55JKnyhQqWd77dGBHlDLv3Xk2RcK
LMs/0nn6fA8shLzapoLrW048yagjoAea9M88ftpKgU3n2x/ZB/eA6b40ja1/
KXBwo6slPOyBnpzB6IYBCrzI9noj+bYHHKtpqc+WKJC/7D3f3YIeyC4QmlPn
a4G60+PHl0p7wCRd+w1jWQsMrfMXG/jWA50Z4ydTpVtAP+2Gf2VfD8yFFVb/
3dgCVsTPTTpjPWDRe/v1Xb0WOOZCUs+a6QFba1sXB+MWCFGIYD0i98LH7RLK
x/a0QGNSDDqj0gt6cYftxE63wKm49GVSJ3rBb0S8TSa7BR5NiOZpevZCxLn9
YkUFLVBtE3TEwrcXeDtLLW9UtIDSsgOZF4J74YaiQ3Lo7xb4c51n5+8XvTB7
um/GeaEFHD0dbz782wslf8W/Tx2igp2RGEfQtQ9Ezc71HVSmQUhCULLi2T44
ZG0vNbyJBrlTvTsNLvSB4EBL3GMTGojmVMR53uoDvlPRv5SO0qBRxWvrl9Q+
WEl7qz4TTYPdwl+8Q7v6IJhRyi0g0gH9DermuvXDk4lLD8z66DDn0zJ071w/
FO2XPnZ8ig75XC22zKV+WICAZm9eBqit6eDdGtoPzYvMwjNrGLDCwVTBI6Uf
WPs9dYptGMD4zufY1N4PH6YuJErkMyDG8bjLsZ5+8NHVpitXMmDvwMfT/cP9
QKTOUOUaGPCJ3zOAuNgPN1Sff/neyYBXZt/i9FcPwLEvekNkMSb4FT34meww
AB7n61fc9GSCpmUvTdN5AE7NNN4f82NCdwt0FLsPQPUS3xmza0w4PDk23Hxp
ANTJMd/vRTMBtA8sF3g0ACIX+QzeFjGBU5YtHpc4ALuLLBXWfWZC3h7SKqXU
AeDZtUvpZgMT1E5/WL89bwB2ehtEUdqYsCJt5U7fnwPQIxIXx+ZhQd0WX+tF
2gCErHtgdkaQBTeqvtrf7RgAmz/R+RViLJhoD3RNG8Hz3xsfSVRiAV22NZi+
YhAWHTNd5hEL0h++KEW7B2GK1pGaGMCCoDVKYr77B6GwIzLzxg0W2L1OdU8+
MgjFxq9PbA9jAffzKzHu6UGIGGU4oVgWHJp+41F6dxBWUC9XXcpmgeYt7fKB
mEHIMEz9qJTLAl7RHPFViYPQx7YLeP2RBe/V88sDsgfB8vpKuR1VLBBwKpbQ
+z4I/ed/HC+hsKC93/C0G2UQSuvfmxgxWFDgX1bxqHUQfpmsTn7cxoKTUZWn
J4cGQSL5NfVfNwu2yZlWKk0Nwsr9Y1qUfhYIZ32WtFscBM/VLstfDrOgpLq2
MkdoCBa6eq78YrMgytZS6o/UEJgxBZ/rcljg3vb1jMjaIWhvvnz68jwLJGYa
pLy1hyC+lbM6jtAKA7eszz7TG4LHds6J50mt8Em06dN3kyEgVyaxNflbwWvD
77MaNkMAZGd/0xWtYFZ4oOqowxA8VKuFROFWkLFokb7rPASOX2tUWkRbYeTn
Ia9ijyHwfNB4aVS8FWqd6FV9PkNQcnXh1oBkKyQNHFkpEzAE3Sud0uqkW8Hv
MsvLMngI2l4maYTKtMLa6PaVr6KGIPqy/6e01a3AljtxriVhCAIrR/0F5Frh
W9bfz6SXQ3BnmK9n39pWeKHvKqPzeggoN9a7BMi3wuWarnOuuUNw/OQpdFuh
Ffbtd6+OKR6C13J1tEuKraDS3ivzuWoIft2sv2al1ApzZ057j9cPwe6rpeFE
5Vb4OTNQrfB7CG7O9Fm9xH4V6iVryxyC4X/P16iotEKQ2Ij3jU4cb60Ndvex
7Z771LwbGALFahpiYqtrjMu2T+B4Zl80EVZtBZ4iPx+h+SEY3bri5XpsqgW7
ZjtxGF5b3yxTx37z69Iqr+XDcGLpcZcYdsjxGZ9EiWHIsZE89xePd3gwoPbb
6mHQ3VHyOgFbO2Bu1ZzyMNzvsR7RxybxBfmqaw6DjWHsg0o8X1b0Yu1hnWGY
F0hp34idt/bG6jvbh+Gc6NHNEXi9d7J5zhda4Pd1dtEacDyObwup69k7DC70
XgUOjpdOLXGN9MFhWDhecFwYu/YLS0HeaRhOn3peIYHje+hbvup6t2GY3TMW
QMLx7/t+b8Pmc8Og9LmJ8WdNKwQ2uW40vDQMS3lFWq/x/i37baRjfm0YRket
K51W4f2nSBjsvT0M/ApA5eL9rmBUmx2PGwZx7+Q8fpwPNq2Jlh7PhsEg3pzf
F+fLn/YLe33Th2G49u1SLc4n3i7lQyEfhsHN1mTOSKQVLEdunX7VMgwN08a1
Djhf6WOO3u/bhiH7xs6/OnytcGZy64Wi7mHYzhWsJRBb4T7nX9C3qWEoFf48
eJbLgp+8FlEjUiOQGny68w6un5N8a+Jm5Eagmxx7bHAc9xd+9hMetRFguK59
CqMskBJKSxXXG4Ekhc37KnA9Hl1JKtQ7NAKxzHuKq9tZMCjbWgrHR8Dz59dt
4qz/+03Bp13u////ve4FGguSFU99O+o/Armmdi1vf7GgS6Om7Xr8CLx42dB9
q4YF3iiU9IU6Apsv//inlcmCm6dJdg4OoyDLl6BW7smCpGf1H1uOj8KxT3LE
xlMsKPr1YLW9+yiYZrfM0U+wYMRAttv20ihsvBqV13aYBceWaQdYxY5Cc+r5
S+m7WKCX7fDcuGkUvLcpbdyxjgX+/genopXH4LDj6pM+f5mgUZRpGpA4Bsse
nRWpscZe8k5+kDwO1wOVsy358PcntzXzSOo47MoYIz/mYcCIi1WeSsY4+Hq7
9PTO0yGnTrW25N04TF6Stn0wQQedB60DPeXjcEp18u1IBx22y1npQes4zHRK
RpJK6WBtpPpjVGYCjtftmy/zo4P2cAy1ZM0EFJw44LjXmw6iyTx/bitMgJu9
iEX7aTr85m2dWL1+AiLf5v8SPEnH+Rgjs0t/AsJGmA3BNnQ4foTn1IuDE2DL
cmJOadLB5zJrzjZmAt6meA+ZDNDgeKaTxrn4CVAI7QtkdtNgH6PDMeLpBNTE
hbtf+UsDTaOusqqUCYgXYcd/odNggDt0fUv+BEzVlfclfKGBexiXV5IyAbnR
TePKr2hwLE5xOU1qEupC5/h2etBgb12q0aTsJLw7EfzyrisNjGZUvUTWTkJ9
5NZHLc40WHVkww9LtUn4pFhZff0wDWhrtj4s0puE3u3qoGBFA7s0C4mnDvh9
ynKBXG0amLXUmX90nISrRwymXTVosJm8++Jv50moIJ2/sHY9Pn94Wrcs85yE
FLHcs1mKNPihcejx1YBJkDtx+I6CFA125XusdnoyCVvNtDYlLFJBSj5O2f3Z
JEzozP9hzlGh8+5nDZ+Xk/BX76qGGocKQS5y22++ngR/5scu6gQV3os1H0sv
noSsSiWr1D78/BqP27vySRDaE75Bq4cKu/q1zhVWTQK7vs/u0z883qc71+rr
J8Hk46lm3g4qSPuaPB9mTMKOA07K8y1U+Mc6+2q6bRLkF3rrfjVTIcfyybul
v5PgbpzolfeLClby7AqxgUmgFn1eE/ODCtcaX3fozk2C3R/+tB+1+LkhrdeE
OwmFT+qHpqvx+K9IY5a8bCi0MmNv+IzHu+bMc3QZG9ZUJz/Lr6BCl6aU4vVV
bNDaoj62u4gKuQlm6uFr2XBorvZLw0cqXCf5bo5SYkPFgxtyRz5QQab1m2nK
BjZ4J7x7EZ9HhW5Lzu5sbTZ8aaAu7MylQl6+ql3BFjaEWN7UIeZQYc+9YJc6
QzZsf/Q5Nvktfn/m7ZkmEzZYK68YuPEG/74Ly49uxoZOf+NAr2z8e4Z6twas
2PCxtyz5zGv8/ivXe5P72CBQXe4WlInfF4+OXbBjA7d9+eenGfj3+gdThR3Z
sGg/9XQxnQo3Dsq+WenMhpXnzHeaYe+t2lmg4MoGjqlFd2waFWS1Lpape7Ch
gMEfNZFKhZ6ElzVbzrLhTqrUiePY+aSm70Y+bDgp+fs0LYUKwb4LFIsLbBBm
EaqcsPe2qrdZX2aDy6vTgeMv8Xi7HLoPXWWDtmrjqxjsnvzQYecbbDAns4+Z
YufJ50153mLDeU7y+8UXeH73OhbPh7PhflZ83hfsvTMryFfvscG1ISkwGVvW
1VA49CGOp+BlmdvYPY0e0pGxbLgnOZASgJ1vGLc2/jEbgp+WaF7BDn71WS05
kQ3+Vm/rI7DFs3vaXZLZkG14ZU06dtr7ZY/VUtnwO8z553dsvQJtm4FXOL7k
M1M8eH5fi+z432WxQSnmVeL/8z1a7l95/h0bOniUmh9gD1U9vaybx4biDf3Z
fdjX6yo2zn5gg9ipaV0bHA/Rhs7esmI2fKupuv4ZO6WJ/CK4nA3TQTVRZjie
OpQNhy2q2GC2a69/E3YdfZ+oQC0bjnW+MjiN9+Nwm9/Xhq9sGCMrdYvg/Rr4
Gx/88Dsb3p5ffqsaO6inZNuBn2xA7Tlyoa+okDzK+5pJY0NitrufJs6HTWy1
k89ZbKi8JW4qifPlM8dK1qUD5+feXF3BLBw/QmxEfw9e33Nu8SqcbwHkQtO3
Azg/n+86ro/zcdly1qzvCH5+vWz/yXdU0JZUPsOZYsPN5jKbNpy/n2Qslcpm
2RDhsc9rI853O7mzzBuLeH8FyqYf5FPBXy3fip9vCh4w+Y/743qp2GauIS05
BfS3ngU9ZVSwNfb4x1g5BVUxf6+l4XrrNL2X+Gz1FHQeGa3z+UQF8p7m5arK
U3B/Nv2Pdg0V9jm5Dm3dMgW002G+Nt+p8OdkeNqM7hRkD0RcDGykgp979rFS
gyl4OFfJm/uTCvE+k9/NTKfgfbZI0i7cP9pu3nq733YKunNNqTK4v3iHZbhJ
2U/BK24nvPtLBZ57DXIMhym4LLNnzLaLCiqPJB6ccMbjXy4mVvRTwetVqreP
9xSMmkkI6k1RYeFb9cbI+1MQIK1/KFaYBkn7FoRToqbA2lr/jqk4Dbb/1hn5
+GgKtG8umXBxP73GSH/zJ2kK4nR9f6bI0YDbG66u83YKzNdFPonTogEP315l
1o8p2CVmeotsSwMSUKTVRaahusi8ZfgZDdI+r5g2lpiG09Xv1VRTaWCxc0eL
3cppuHqd+swtkwa3rT/GBslPg4OHiQwhnwbkYwmiPzdOA1EnazbxKw0EAo8t
u2w7DfcNVv/eMEUDofyuxZroaVjcmPKbsp8Ofk0SkY/ipqFBVS/b1oEO9EGz
NaeeTMNj/l1GP47RIUXlpSHx5TT4DN5L+OJBh23xTpdNc6aBUcecKLlGB5dA
6lh54zT43jthcOY1HYrg67+Py2cgsuXiSXcuHeSOzfiFicxAfFTIzftEBoQE
qPEekpiBlAvo0RsBBljnhipMrZqBDcXPmxniDOhUMnXaumEGknuTw/+pMUCI
XEJ9v2sGXGn85ZHWDHD5nl2feXsGpkyeGmx5xIB05bBNbhEzENF0ce3WBAb0
XTnxWDFyBtq6ftWqJzHgnLqU29NHM8BXtGkZJ5UBAWHXee6nzsBo4V5NaXz/
fYj26/tUzcDZ54lBlk0M+P1Y47lG7QwsVd12SfzNAMlRPr6+rzOw/pjJ5L8W
Bjx9VvL7xM8ZUKhr77JrxffhOWVvu44ZePB4V+GrPgaUFUyn6S7OwI+giBtr
lxiwtPzX8gkeDjRf7X1aRGCCmWu23zsSB+a2renbSWLCF7ETaN0KDkhu9CIj
QSb89q5nyazmQPXHfSpp4kyQqks1a1nLAbGwpScdkvj+LHf9dbQSB26L6iOR
lUxob9hyedkGDixRV63bs5oJ/euTxBe2cYCUTU/SVcb38WD/wKLtHHDzPdwi
rsoEb5rtn4uIA7KDyfZdakxg3+Z7N2zJgVVWCjtPbWCCfluHZNYeDrCuPvsi
rsmEKzolV91tOPCp0/fdBy0m8Pzz3t1xiAOtAynf6JuYYG64OyfxKAfuMHaI
HNnChLBo5ZWHj3MA4cPPj61MWI7oXT/dOFCuMCYep8cE6WemwZ8vcuCY5jmF
RCMmeFzYJPwzgANrsx0Y9O1MKNotn9QWxAEv/6BzgiZMODq9UMgJ5YAPM8TN
HDEh+/vgDnIEBwQ8zvbtNWXCQgqzWSKSA5PrkkJ3mzEh2aZoVDsOx0e7a+ca
CyaMqWZc2/6EAyKevPcnsM0W4pZbPeNAXrn/+rIdTIj9HfrE4SUHtokraAbu
ZEJX5oV1bukcuLiBkKVuyQTdGy4f/F5zYP82wscf2GEH95sHv+XAG5MRV7dd
TKBpoF+RuRxwRfFfxrDX8250TvzAAXv0he2zmwmBdLnhzGIOOJnaLHVif3u3
4urHcrz+nQtzu62YsPr2vEBNFQe07ZLm07C9HAfif9VyINdjUZKNXb6ZodJR
z4GaiOGj+nuYICzwNW/oBwcsSg3/emOfaP+I5n7h9S3llT7Fzi1Ib+SnciDy
kgq3BJv33qNjUkwO1IkElTdh25+8NaDUzgGPFUiUgZ2u7xewqZMDEUcrVtCw
p4VOkk16OGDZb1Ffj23ZZfNozwAHyjIUj+ViJ5SYKB0Z4QDhdgorErs/SivH
fYIDm3yljjtjG3qsMbk4zYFTh7/OqmLfM17+/eYcB4o0BWv/4vW0SswdecjF
829VpcZgaw309SbxzoLKIS9zA+zrn2iXssiz4BexQbkFx6spvo5YtGwWLN3e
3XPHVjj3IbpWeBZG9M7GDuN4V8vGvv0jPQsJdUXtrXh/JMduGo2smoUDKxX3
78B2r/Otn187C9wfEZ9S8f4KXNjXLb1uFtQjmZNmeP+P7Da+oKIxC2/Sb/bc
wvmRJa9J2LJxFpQtMraWmjNh73dBOWv9WZjaMmQohPPrWQon66jRLNjFflNe
j/NvJKB3myfMQuaT9BoDnJ/RqrX2tyxnYeGOyn1TnL/U68H3ix1mYX7ZZF23
ARPWHfRZ9cVxFgq8pgjF25gQoHE8k+I8C6Em6Tm39Jmwim5UM+oxC4IBD+uW
dJjgvHlmXjVgFnrV17rGbWSC/4tWg5Grs2AlZBoG2ky4L/L58scbs5BcuZ3R
ieu1aPj+5M7wWZD0TToshetZNEtp0CN+FuaM7T5pqDDhs9I+5uuCWSBIG+zT
xv2DHr1Vxq9oFo52EkQvSuH18MgeMiybhW7rB2oFEjg/O/79+laN43frw2Nl
USZcTAysH/w9CwHTcX5VAkxQk0wv0hqfBbkMlpXALAO237o7PcWehYaBpeD5
aQbYTfjoVHBmQfyDuPwAmwE3fhrm7OOZg9Mx6yjFYwyg3/+Z4SMyB+tdBQZU
cP+8y7cQn6s1B4dP9c7rUxkwPG13SffMHGzfYRJa/p4B4t17mfu850C245g9
+S0D9Jp3gqffHDiOn+XuyWJA8HtDwcQrczDG2aXamIb/31PpGc+9OXjUH/Ti
/RP8/4zxmobsOTjk3eU0HcKA66VRki7Dc3Ag4owHnz0DRIIb8x/4zoMlwf3e
+Uk6iL++MPbo4jyQIs91Xxmjg+RvGa3EgHn40XTlR+gwHWRUXF9lBM8D5472
5ae9dFD4OpPwKWoeprXzrzWy6LBJVPH6RM48xDrkl7nW0MH2xYVdh8bnYW5p
1d1H8XSwq5e5fWxqHtC5cqe6WDrYT5RXuczOg42c7Za5KDocthAw8iEswFX3
pmWe9+hwoi9J647YAsiETOU4BdPBd1OdeMnmBdhv0PGw5Awdoj/JtMn5LcBW
lWnhO6b4/ZCC+vZLCzC6pnLEAPD8LGw/JgcugOQ778qR7XR49yX8oeLNBTAe
EXY4uY0O3xqnTVWjFiC8zPDw2Y104G2jvNJ8twCFCTYOq9bSof65b+xw7gJ0
N5w9vbSaDlEnVgS/+7AAVhfWz/bK0mFtl/mRTeUL0BATUFAtRQejwbzlOt8X
QN90w8NXQnS4OBvlazSwAL1jQlcVufi+W6rptDC8AE6xy4PNFmjAe+3r7vLx
Bbg3NxLpMUeDKB4eZZhdgNyj5J7yaRq85fdpMRNYhECj335JozTokbI2tFJb
hLndH46s78TPaX1qyzcsQrZKcVvkHxpcfBIq8V1rEfd5+fGZdjy+XNmQte4i
vB4s6GWwaLBWRSN5v8Ui2N804qG20MBhiyDpiMsiFNpSfn74hu/3F4pXnnVf
hEvNLKW99fj9gtMa184s4u+luUcfvt+/0f1m99JvEXqmZEa21OLnBvde9ocs
wuarG0lin2hADzT6MB+2CN9/hs3SKvD8Sga/Ct1bhMGO5RvTy2lwePvesc2x
ixAqFHbTrpQG70AIrqQuwten/o2zH2kQGlxudz8Dz9/7xLfJDzQ4UnXO/Xn2
Ioxdi97LLsDnRfPGyM/5i6DvssQriM9/jFvXX1IKFyES0XbK5eHxarQ/9JQu
wp5zmpu25eL3dz5sXVazCIyaUPGQ9zTQDoexNV8XQWJWaXXuOzze11Hixu/4
/QcX+3re4vd322ocoCyC9JjHmPsbPJ+7POBGX4So2jTD3Gw8XkOO3eXWRVAQ
afDkxSZZi11J7FqEI2LLoopf04AZWRX5tm8RvJrLE+Sx3zeef1k5tAifPWPT
7uPz61Hb31//sRfhMetD19UMGmyKDmmd4ixCbkCsMvcVDfh+bxnjX1wE0wvq
18Kxcw7ErtTk48KnX8Kx79NpEPbIXMNEkAsbj786vA/bsWXSxFaIC1JPwvaw
0/B40ml2LmJceB9/wPclNtnB3v2iFBfgbG7DQWzWY9KVMFku8GlYuIhh59AL
IhPkuGA68H4bBZ+3w2TdXmYpcmFLecKB59iOR6U+lKlyQbYopdAHe1Ni7ddG
dS7oj54/vQub3Hqp9Y8WF775Z51bj81aozY2sZkLEq5jX0Wwc5yoRD49Lth9
7b3BTcHjPw9budKQC19KdB6zsR079DTUTbiQv++qxAT2JoVeEyMzLtgnOM9O
Y5NPPraz3onHG060JuLxWl9aujtbceF2U6vkSuzczpnA8/twfIKX2W75f/7K
mZG37LgQOrZ9yR772KnDL+MOcSFK+L7SDewt6QIfMo5yIeWbSEkONn9P0dfi
41y4Ivmntv//8dVOtza4cIHGkty5Accnz0N2rM2dC5dF6wz9sPeafsrPOsMF
4dQkhTLs3lUely97c2FfQcbtFXg/QthCRhZ+XKgsmzvtir2msYAr6s+FPp3X
Pz5hf8xw/NwWiOMRV5ejgvd3/03esKxreL6H3CUeYofp2ApZ3OaCS9sVh8s4
PxSEZ36KRnBB7pG0wRR2ae+zR2338fiRIU8DcT6NPR1cffkRF1o1ZNvicL7d
vRjTYZ7ABbeqMxVaWTRQ3WeQKprEhemrTPnv2EcJ4RuyUrlgvdzLZQ3ObzZT
a8Q/gwsH0KBxI/bDAkqueTYXcgYCH4bheqjxUDJoy8NO3Buy7P/6aSy3FP3M
hcf2AarOuN6+Zpxa3lbLBcVVKpsscD263lze9LqeC+HWw/c24npN0DlyyPwX
F1TnjqvI4vrmTWSf8v/DhWu2vg76Jfg+eTFxvXkXztczRaf34X6gv89sSKQP
5+OgRubZMhp4EaIuvB7lQs3qNY+LcD+hemiEtHK5sNvp8pvEahpk6bgkm8kt
QWlhjv6NRnxfFBZ0FVFcginFZflTTTTo6H2v1qqyBLpPPOjnf9FAMnHx7SXN
JbiT9Gz+CoUG1wlPyjKNlqDPn5vUxMT70djEED66BGetzmgF9uH1dSpe+uq0
BEK/+fdvH6ABmrkgGnJyCSrCH+qShv7PVxnLKc8lGBBvFErB/VnU70QB6/IS
NFSujpGcocFPqfEHmXFL8Hr3SGQ9GX8PncQtzH4twf0nvqmC6nRY77+BZqjC
gy68jbdUvESHwUqnbUiNB62H090/LuPvlWD0kx3redAzBw3Jq1fooPNsxtFW
kwcJbOKvot6gg2lNzR83HR50p6E1OeouHY6KOw9EWfAgctC2NE4yHe6/i13s
OcWDbHg01Mbr6WDDqTs+5M6DKlacTQ3+jr/3ZnOV4548aDzqcbFQEx0SWk6E
LHjxoD97axwVKHRIX9DiF7/EgxIyf6qottOhwuqrqPFtPD59za6n43QY71lQ
jk3nQWddDxrlSDFA+ppG26UMHpQjaFCauRKfjySOxh9+zYOuzBxRfSbLgDtQ
KLD2LQ9KTy+NCpRjwNqE88OZBdibqO+WVBiwd3fPx4pqHlStvM5521YG+HVI
+r6sxb/fINwxoMOAx5fM1UO/8KA12c1ZCXr4/vzyReLuBh5kxK9O6DFgQODc
0WDKbx50L/3i7E6E76vZTbsH/vKgzJ/5InJ7GfDdlMv74x8e/zN1x018v56g
aZa97+ZBOvcX3f7sY4Ax6a72pX4eFLTM3vrhfgZQjllI8IzzoOO5tWveH2LA
3ITf984JHiTbSxYZcGCAfMTL27VsPH6sZb38EQac+cCducvhQUPeBx9cdWQA
Qbi4VYqHgJ4u3lZjOzNALa03jkMgoHvF6Sp8J/F6DaVtWEQCerHuL0vUhQEJ
7heqXvATEFPfwFvmFAO0K7VeaYgQ0FqO7UivBwPsDx5zFhYjoBLJzTcbPRlw
ZfCuzLg4AVX37694f5oBtSv77n6UJqABU6dtLmcZcMw3xcd0LQEVJqw6GO7N
AMGdjmV7FQjow4GpXjsfBnxcLSl4WImAOMr9pjK+DBD9cjvFW42ADDY9sYs6
z4DyJJPRwPUEpMErKWTuh9fnN2N0ewMB7ZVSjR/FrpY73ZKoTUBEjfDVehcZ
4DupqJSxiYAeVMev/om9pp7pnbeFgDbVF4+7XmKA/8W9AvV6BPTKsnBdoD8D
lK34DlK2EVBvVN69Oeyf8hUvOwwJyPLDrZ+XLjNgQ8NGo2kTAvrZXy12NIAB
tBd94QRTAvr08a1MNXao/0vKCnMCWvzhI6UWyIBNe48qyuwgoP5IS6Fb2G2K
Et7Kltj2fnxM7LszDSXauwnI+aYWUeMKPh//COU33ENA785/XO6P/S/F2H6H
NQEZhVqplGJHBUy/sLUhIM+V6+zmsI33vR923E9ACRERT7deZcCAsqehxwEC
2mjwntcD+/GsQrjfQQKKDm15+AjboonRfM2BgBS+GViWYY+nxShEHCEgU09Z
7Xbs51f2nHvkSEAHy3N3z2Fb2ZJKkp0ISOe3X7JoEANmVMvJ2c4E9HbdSz1F
7LT5Swc+niSgC1lcaU1s21/aL6pccXxWGu3ajL34qnfouxsBSWqRf2/Czgp6
YUD3IKCIDJGyDdgOdkfC/p0moCALfmF5bNJ68eaRs3i9VUlNQti5i9/k584R
kDjrhsAMns/x5ltefL4EZG1z4hMTe/nr7cWifgRkyBrmFmEXXZ/iW3ORgFS3
0xuisU/Zv7Nb509ARzc2abthi23wSN4SQEBqfiEb/49XxZL8kPEVAqJVvWyZ
x/E800LftjuIgIpYresrsWuCrX47BxMQuLpN6WKfP0SUPxtCQHZ5G6/34/1b
q1l21j+UgCwWAimPsQNoWnyRdwjo5HqiSDfOB9W3PfsT7hLQ4XM1fKHYv0OS
n6feJ6A1FRtH5bA1tMW2lUQRUPouwUoznF904rfQ2hgC0u2eLfyB8y+UEfLr
5yMC2nDgydcD2O2h7DO9CbgePfsP7sf5G8OiPZN8iePXOaoscYEBKYv3zBZT
CEh2/rVVCK6HXHnU251GQCub1c4M4/r56Zq5qTCTgIwn3xYU4voSGgqoPpJD
QE+O+TnL4XpcI6zlaZaH6+vKVp1z5xiguenvCo0CAjK/2Wde7IXz4eLuQwuF
BNQVsl13J67nOwuy/c8rCWi8eXSnDq7/hLWNkeFVBPS5PJ/pjvtDBgrZ4ltN
QM3c8ME4dwbUhQ5cNf1CQAGCqen9uJ8QhUqFuxoJiJL118sT95/rcsd01NsJ
aJuaWfM33L8egChD7A8BOaWf3F5/mAHPTtZcm/tLQK+dpd/U4H5Xlq75paGb
gLz1S6ryDjJgVmvxiPcw3o9eVpEX7pcXTZ7fyF/A/UPzu7/zLry/zn++Ga/m
ReImBcuu4f7dt/YMa40cL8p5HFWwFfd39/bJwfm1vGjXxJ/7fZsZ4OLEL1Si
xIvCrhr0793IAEdHbRu9DbxoZfzerYQNuF86BDVrG/AiYDtKysvj/mgj0yrv
wIvokt8NPARwfZnYDhNiedHIS/ViKp0O08anogXjeFFy4kCNLo0OC9sDdMUe
86L6VRUDj1roQDZ6cU0hkRfZBVRlHPhNhzX6Y0KQyotSHIzamhvosHNjlHZQ
Pi/q6hTo6amgw1P5nz7TzbxIuEtnKjadDslruyS4LbzI80OEKH8aHdLkOIV8
dF50eUbN4WoKHd6vVuCRauVF2wp2h3vg73HNSt+orV286IP3nkM2T+gwIiKa
68vmRfPqN/xdI+lgzmM7MSBJRJU9MUea/emQtcd5pEmaiC7tUW+MxucD8cfe
AwUyRFR38Yus3UU6dGpFdl5fQ0Sb7y63pp+nQ4jjt9/iKkT0b2JHzbwXHT59
tMg33EpEuvSb/amu+LzBa/9eXpeILkxVXwhxwfdZa9dskj4RXXH/rul6kg7O
XTdTGw2JqJU3BTSc6cAVq4x1MSOiB05Bl6lH6WB8zuDi3f14fnduZT6zw+st
2uXrc4CIbu1RufVyPx1WkA572R/E/193szXDlg6tT/1PrT1CRCqS9DVl++gQ
9DXfPu8EEX0+8NGauIcOJcraukwfInqW4GgiakEHJR/jzZXniUjOIVXYxJwO
d0v2aqVdwOu/sz3V24wOR/afVfW+TERNUec30BEdONczpXhvENHGKFWpH8Z0
0GcqTas/IKIPg7yHTfH9Xs2t7LZ+FBFt8zMKeahPB8mxg1I7YojovGKQ9l89
OkzwReiciCeiE5svrH2oi89bm0f94p8TkfeNxBaprXR4VnaHN+0F/v9NfWHB
W/B5ylIpJjeFiGJvKDNGNtPhjNPB3O+viEhc4+FZ6ib8exGlo7zviUhxtWP8
L206SEkevCGaS0SGisbPjmCTkkeE1+bj/dI44dithfevQFHboJCIkq7FCAhg
/4LS8p3FRHTDWW/xuSbev2/21valeLwAiwID7Od/wr18KonoZvDXi1c06BB5
VnEhqIqI3gs231LADpouuXe3moiuLvie+LYBnwdXjGSlfyGimCHdSHXs3Y/D
DfPriejFhqI/7fj8uU1J8dunBiJS6P4hkIAtvc2+n9VERHeNSUwpbL7q4YD+
X0QUJP4jlLmeDmzrcIGZZiJi/wrkT8X+R1dIIFGJyP9xu4sP9m/XknXidCIK
v970GLCrRg4UyjOJ6E2KQoYEdk7g8E6tViLylH8VPbgO1w8pnGrYTkTmojqH
v2A/eKjgvusPzq+o5/OvsK+tKpk62ElErmXFQXexvdIP3HbtIqK8d0daz2M7
bhqWPN+D43nLbrUTtlVpWNr1PiLyOBhguBfbYKeCzv0BIqKiZEPAXv+ruPrJ
EBGRTiau0cNeeezAgYwRIrr8C/3dhE3uHeosGCOiaaNTERuxp86H+X2eIKJg
5wbJLdhdC/K8P9m4npYkQ7ZhN4cXR7dN43zeTm0yw/4sfkBxkENEvw3SFmyx
c58N5XDmiEhMRpLfFfvF+jBEXiQizdmS4QDsh/nyPyWWcD5ztd7HYF83KXZW
JJBQhhWvVQ72uXq7UW0iCTlzv5f9wj5mP3R9Ox8JpRopk2ew93TcFrbiJyEF
lacqCji+hmfknzsIklAIo07aGlt9qkjLbTkJXbpmwrqGLRNsV+4nREKvNsf7
5mFPxd1ujRQjIZ/9hgLr8H7bVbBp0RIk9M7NjeKGndPj2hwnRUJTcoW7MrG9
9M2+PZMlIfURX5VtOJ++OefWvlxNQtFIMOI29ro7ClXpciT0YrDsARW7k84t
fKtIQhuaZ71v4fxEBO/8XGUSultqbtaB/Vy97d0HVRLqF9bINMH5feRKaXq5
Op7PvgNy/9fDz9UBsT82k9Dax7GWtbh+tC16H/zaSkKLxnZWxhtxPXodutui
S0LeSzmfi7Aty3VuthmQ0C/1n3wluB4rjo97D5uSkOKttb7duH7XhJ84M25O
QjJuHiUBuL6vvG9ym9pBQllvNjiJ6NBBl+fdscXdJAQDlfE7cT948/KMlZAd
CQkMuem24v6x7Btjh5g9Ce0Lr0+NwP3Fc2KXqdQhEgr4tWe7oQEdlM3XbZM7
SkJVJYqUNEP8vej6p6rlQkJHWZZzz3F/urPOiWDtR0I/U5U4irjf9dh8X7C9
SELDKZloCdsiwIhj709CCebnbDp20GHpq+zosSvYilIvMizp4H+G2uoVQkKG
h2M2Hcb90/WtTdH9GDzeKFN5ywE6qCiVLPd+REJ9E5Ln1exxvsarONvEkxBp
XW3JmoN0OBU8yyf+lISWBinqIg50cDuQeuDxSxJafu/Gm2WOdPCYnR55mUNC
m670PDiIvxdndzxXLWzE+fJOeZKEvz8X2oZi/i7jQ3uSUS0hEffv6L+Bgyv4
0Mo/bWb7k+jAu5N6YkqYD52P98578Qx/X95VagtK8KEkvfPG8AL31xsx3zat
5kOxAhptgfj7OaC4jTdYgw9NiI5Ktr6nwwn3W+fX7uVDd+TsY1bU0CFzVcDh
9fv40JH84MM7a+kw2ugFW2z5kN+NjY3X63C96B8S2mnPh+yNOS8Hv9IhUUD9
9bljfKg2rGQh/wcdqFmNf8q8+BDBysuQQ6WD9aisrWMkHxrUhRzpPnw+GBV8
aPaQD7We25LJ14/rc2z2h3o0H9pByEybwGaPM/ZwHuH12B2LqxukQxL7iWVc
Eh8aPdJQfXCUDkOzstCUjedvMZ0hNE2H+DnB6x/f8iH19N+lTGw0P1v27D0f
QmK1D9Jn6PBogWHolc+HOn3EXHRm6bB96YmeYCkfak+0s9FbwPlMWqVt/o0P
UefrPL4S8P2Eb9m5Dd/5EHPnviYfXgb84ZvLFmvEz0GmVpLIAB1+pvqfX3zo
n3bdfgcSA1oFn6peY/Ahn4wv2RVkBoQtu3vqFIsPOQqkmNrx4/vR8iupe9r4
0KNFF7t/2KErjiqu+suHNjmVsBbx+UlDZJVcYR8fenNz5Jzkcnz/FVl27PkA
H3oOPnmx2NdF557eHuJDhtU2nqIr8PlajCljP8aHxKRjVXiF8H1U8qnk+Awf
YtTQauuEGaAidfcAfZYPpd9dHrRZhAGNUldiKuf5kOdyt6Qn2Eorj4o+WOJD
17YNrXQRZcA32VUrNPjJyE1ZoKtZDN/HCjs+CgiS0XGPfK314gxYOJh+smcZ
GW0P/8kJxNaK2VT4UpiM9FS0pKQlGLBz0/TJG6JktIp8wOME9vHG0hVO4mR0
IbJweyZ21DJLFxlpMhI7JHhhkyQDMjNXCE2vJCP5hVaKL3bVzt+FzbJktFms
rPQd9kSIk9BDOTKa2H96lbIUvv8oKhd5yZPR6U652CPYKpV9LlaKePzsrJhI
7IPzF4r4VMmoJUd2/Qi29xMD139qZMTe31mxShrvh/6SUNV6/HufvdotsJNb
aoqebyCjOrr0HS/sogt3XYM0yahz7eXyaOyfYrbCR7XJKPqhQnABdv97qWL9
TWQ0pvrqFwWbdx/LVWoLGa1pe5o/gb1q6IXw5FYy2pITvU54JQO23nUv/qlL
RjZP5Tauw967XvPUO30yior/1WCMfapuXPi+ARmJv0BL+7GvnSosPm1ERpP4
IuiKHc977ZSlMX7/S+KmC9jvXpiJqAIZmbPebg7G/mIiUMJrSkZDfXVNd7H/
tP449ceMjDwHA1fEYs9eiRWpsCAjStuR/gRscdkjJYk7yWhv6axHEvaGwrVu
gbvIaOT6UMQzbPODXSIOVmREU661/f/5scnXJTp7ySiySLri//cvRvu4ie8j
o+KDv5pjsCM36oqO2eD3Da8++v/3X/2YK/mxn4yEvsTy/j+/irOf3LIPkNH0
4acK/8+fJhgmGnGQjO7YCI//v76xjD2l7g5klCbo42+HLbBTzN3iCBmt7zHK
N8FW7KKKKjmS0ZQ5+/V6bMOQpNKlY2Q0cHOlkyi2nYKLe9txMurlqjRN4fif
rVgnVnqCjH7IJvEysEOPDZcmuJDRlc0Ls8XYSXN57v6nyKgxraYwAbtRz6Rs
sycZDcvej7LB7qEQPUTOkJE/IyJnHfaSX73Y8FkyUvMdfrGI82nTe3uPTB88
3vN/CynYu61XiYedJ6OMV8Hn/LBdBjvKXC/g908rFQN27Lqz4vKXyYhf4vRI
M87n6eSb5XHXyYj1UlzjH66H+Gu/5hODyai2MWJ9Eraeo6JhSgge74BvhR22
v3TVx3dheP8rZquLcL1N3efJ+fKAjLTCeF974vp8dMZ25EcUGX37y2kVxtbZ
9UKTEkNGjpZG3/JwPV8kotd/4skotBX+TuJ6ZwfeSJl9jve/5fEtR9wfHjk0
/Vl6gefXZcMzhvuHjq68PDkVx3PfeccQ7ItjFYniGWR0dKXwpxe430y6cx9p
vMfzDwv+WrMM1+eBa+FOlWSk3xHG/w73u5jNP2pdq8go5XJBthL2FhE50plq
MtolUhkUx8cAv29lwf5fyMiPal9yCffLcbQQ+LAJx2u+W1cR99cxrateVR1k
pHmcUrV+kQ7D/IH7VXn40bMgtXz5CTqMba7pFeDlR67mtr98x/H9wVHk+hCR
H+nrOI18GsPfk/fpWfn8/Ohc0U394/j7wHP4N9FMhB/dV5O4HTmE7x+ZGh+P
r8XPj24lV/fg89qu9lUJ2/nRg81+nq+ZdAi7Y961LJAfrbqf/se5ig7VidFF
alf5UcT51PigT3i89x33za7xI2NWtu+TSjoEtlzVvXKTHzXJmGQ2l+PzmVJB
WH8EPxKzkqq3KqHD/jIV9a9P+ZHwiaqhXfn4/DPG5327jB/x7Lw4m42/v4eJ
9mYvK/gR/3d7Qzq+v8ZJp0iXf+JHMure+/mwhY1NKtk1/Oif91ppF3yfJdz1
Fz31gx9lHTIMVcP32R7l3jyzdn70gxixuyMBn3/0dcOP/+FHs+W5aDX2Catb
jlc6+RGcdnY6/JgODF95Ul4PP4qarV1FjaPD93KHg4qjOH5js/J/Yugg8Ctd
3XicH4UEP6lSxd7RNbl4eJIfWe1pzfaKxue5ZVGvomb4kfu0zVnuQzrMy7Vf
eTPLjz4LEnfvxt62WdPm6zw/elfuFBz3gA4XLa4ody1ia7yU+ofv17kOX2eW
lvjRrnPCQluw/wNc5gEX
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.32},
DisplayFunction->Identity,
Frame->{{False, True}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->{Automatic, Automatic, Automatic, {
GrayLevel[0.5],
Thickness[0.01]}},
FrameTicks->{{None, {{0.39,
FormBox["0.39`", TraditionalForm]}, {0.35,
FormBox["0.35`", TraditionalForm]}}}, {None, None}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->25,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 3}, {0.3208297751656169, 0.49251550147308487`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]}]], "Output",
CellChangeTimes->{
3.710381311655034*^9, {3.710381720000657*^9, 3.710381739199018*^9},
3.710381902505272*^9, 3.710382363012937*^9, {3.7103824232103653`*^9,
3.71038244335632*^9}, 3.7104961154205523`*^9, 3.710822025123342*^9, {
3.7108224202050257`*^9, 3.710822440122488*^9}, 3.7108226956772013`*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {
{GrayLevel[0],
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0., 0.3851588557168754}, {0.0019115984256825318`,
0.382819282323714}, {0.004554517677139836, 0.3795889232844668}, {
0.007178861164129035, 0.37638556451409566`}, {0.009784628886650134,
0.37320920601260044`}, {0.01237182084470309, 0.37005984777998124`}, {
0.014940437038287971`, 0.3669374898162381}, {0.017490477467404744`,
0.36384213212137084`}, {0.020053623221047555`,
0.36077303032838126`}, {0.022661555388210526`,
0.35772944007027097`}, {0.02531427396889369, 0.35471136134703996`}, {
0.028011778963097, 0.35171879415868823`}, {0.03075407037082048,
0.34875173850521585`}, {0.03354114819206414, 0.3458101943866227}, {
0.03427490217722325, 0.34505463184838814`}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.036730392837026095`, 0.3425350582048633}, {
0.03924966307511195, 0.34000364075407424`}, {0.04224684379163194,
0.33709736357557873`}, {0.04534119154753763, 0.33423244185734713`}, {
0.04853270634282897, 0.3314088755993793}, {0.05182138817750596,
0.32862666480167546`}, {0.05522592690124444, 0.32591601444365514`}, {
0.05876501236372024, 0.32330712950473783`}, {0.06243864456493335,
0.32080000998492375`}, {0.06624682350488377, 0.31839465588421273`}, {
0.07020251346118928, 0.3161605447564495}, {0.07431867871146766,
0.3141671541554787}, {0.07859531925571892, 0.3124144840813003}, {
0.07935496503982704, 0.31215563438223193`}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.0826851630387827, 0.311020867668717}, {
0.08303243509394309, 0.31090253453391437`}, {0.08660005045652942,
0.30995811590749595`}, {0.09025584307933687, 0.30929573377492336`}, {
0.09399981296236545, 0.3089153881361965}, {0.09783196010561515,
0.30881707899131555`}, {0.10172589889527585`, 0.30907840883936333`}, {
0.10565524371753743`, 0.3097769801794229}, {0.10961999457239989`,
0.3109127930114941}, {0.11362015145986322`, 0.3124858473355771}, {
0.11760143518796973`, 0.3145629826383019}, {0.12150956656476167`,
0.3172110384062987}, {0.12534454559023908`, 0.32043001463956744`}, {
0.12910637226440191`, 0.32421991133810807`}, {0.1300993341136002,
0.32538351017493417`}}]},
{Arrowheads[{{0.06249999999999999, 1.}}],
ArrowBox[{{0.13232800584796192`, 0.32810378906690935`}, {
0.134133503046948, 0.33051877693333276`}, {0.13648905170180872`,
0.33409479858414987`}, {0.13873925586572794`, 0.3379552128037701}, {
0.14085662147161238`, 0.34206802129318087`}, {0.14281365445236874`,
0.3464012257533693}, {0.14461035480799708`, 0.3509548261843355}, {
0.14624672253849735`, 0.35572882258607946`}, {0.14769838790002462`,
0.3606423559125114}, {0.14894098114873394`, 0.3656145671175416}, {
0.14997450228462525`, 0.37064545620117}, {0.1507989513076986,
0.37573502316339663`}, {0.1509482813608783, 0.3768699972654263}}]},
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.15137592686505913`, 0.38036199056628284`}, {
0.15150516153479046`, 0.3815038868776958}, {0.15177359109480207`,
0.3843467802109718}, {0.1519855702857908, 0.3871619811949986}, {
0.15214109910775664`, 0.3899494898297764}, {0.15224017756069963`,
0.39270930611530497`}, {0.15226898335951694`, 0.3981458616386147}, {
0.15207198768224275`, 0.40347164776492805`}, {0.15164919052887704`,
0.4086866644942449}, {0.15100059189941983`, 0.4137909118265652}, {
0.15012619179387113`, 0.418784389761889}, {0.14906492760389564`,
0.4235457874485489}, {0.1478557367211581, 0.42795379403487754`}, {
0.1464986191456585, 0.4320084095208748}, {0.14632748177159524`,
0.4324292727709063}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.14500222768094576`, 0.4356883548198223}, {
0.14499357487739686`, 0.4357096339065408}, {0.14334060391637318`,
0.43905746719187555`}, {0.14153970626258744`, 0.4420519093768789}, {
0.13959088191603963`, 0.444692960461551}, {0.1374941308767298,
0.4469806204458917}, {0.13531335184209756`, 0.44894994144420924`}, {
0.13311244350958265`, 0.4506359755708117}, {0.12865023895090466`,
0.4531581832088711}, {0.12410751720069585`, 0.4545472433600702}, {
0.11948427825895622`, 0.4548031560244087}, {0.11438595073818905`,
0.4549015961507503}, {0.10943921584183625`, 0.45413399947292576`}, {
0.10458199721159307`, 0.4523448253251716}, {0.10134299337509667`,
0.4506875757125706}}]},
{Arrowheads[{{0.06250000000000001, 1.}}], ArrowBox[CompressedData["
1:eJwBQQG+/iFib1JlAgAAABMAAAACAAAAr8qL8fk3uT96Q7R3tLbcPwwvKuGm
+rg/gLvSu9Ko3D8yt5Chv3G4P6iF07HngNw//IWXSa3xtz//ANM7alfcP3Mx
zn0wbbc/vyPT+7Uu3D9g84oEPfC2P5EMeFjwBdw/7dfpHYSHtj+fqXSzYtvb
P7owI6XiJrY/Xihhpx6w2z9nT291NcK1P0W21c41hds/3PQs40BbtT8+33ba
vFrbP0BWlbDg+7Q/6RDZExIw2z+Wc6jdFKS0P0ZL/Ho1Bds/2Exmat1TtD9S
juAPJ9raPwzizlY6C7Q/ENqF0uau2j8vM+KiK8qzP34u7MJ0g9o/QkCgTrGQ
sz+dixPh0FfaP0UJCVrLXrM/bvH7LPsr2j9kVMYSLBCzPxrGePu41Nk/KPPe
feEFsz+1e/NMgcPZP+v4oIk=
"]]},
{Arrowheads[{{0.06249999999999999, 1.}}],
ArrowBox[{{0.07378852458946109, 0.3990780917607912}, {
0.07368071750315805, 0.39835664238346846`}, {0.07331079658511049,
0.3931786547925861}, {0.07335575484655874, 0.38807459357224644`}, {
0.07379540012944194, 0.3830913075431456}, {0.07460954027569922,
0.3782756455259796}, {0.07579817528533053, 0.37362760752074853`}, {
0.0773613051583359, 0.36914719352745234`}, {0.078539761706409,
0.3664263579113943}, {0.07984749498415025, 0.363859233527131}, {
0.08128450499155968, 0.3614458203746625}, {0.08285079172863721,
0.3591861184539886}, {0.08637119539179676, 0.3551278483080251}, {
0.0904087059736289, 0.35168442308924047`}, {0.09061204889774696,
0.3515652492216059}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.09364739217242726, 0.3497863154366654}, {
0.09480080115481437, 0.3491103331766891}, {0.09938495861603389,
0.34766006894942536`}, {0.10416117835728742`, 0.34733363040744913`}, {
0.109129460378575, 0.3481310175507605}, {0.11166748905250426`,
0.3490302226837937}, {0.11421726191298742`, 0.35036853809693835`}, {
0.11672279027399765`, 0.3521326227135934}, {0.11912808544950808`,
0.3543091354571578}, {0.12140087885437884`, 0.35688146861942144`}, {
0.12350890190347008`, 0.35983301449217414`}, {0.12513487817230828`,
0.36258026616821526`}, {0.12658599940130727`, 0.36550807816137443`}, {
0.12786226559046707`, 0.36861645047165165`}, {0.12896367673978765`,
0.3719053830990469}, {0.12987395748993127`, 0.3752957622904777}, {
0.13008980780302967`, 0.37634379353785785`}}]},
{Arrowheads[{{0.06249999999999997, 1.}}],
ArrowBox[{{0.13073442937813828`, 0.3798010797787475}, {
0.13107230171467452`, 0.38214351910619826`}, {0.13136036518927413`,
0.38560089673048803`}, {0.131447466651317, 0.38900304675420283`}, {
0.1313400498467612, 0.39227240876581493`}, {0.13103811477560667`,
0.39540898276532405`}, {0.13054166143785337`, 0.39841276875273035`}, {
0.12969454840951164`, 0.4018951953619793}, {0.12863622512847595`,
0.4050052556714333}, {0.12736669159474634`, 0.4077429496810923}, {
0.12588594780832277`, 0.41010827739095634`}, {0.12252955011438124`,
0.41369073437351567`}, {0.1188057526836389, 0.41572152708132754`}, {
0.11491801838456739`, 0.416345224321629}, {0.11106981008563846`,
0.4157063949016574}, {0.10745258952551383`, 0.41404351311304427`}, {
0.10711691333976849`, 0.4137915218265294}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.1043032748765837, 0.4116793303567907}, {
0.10413810592495967`, 0.41155533843129966`}, {0.10119798754601908`,
0.4084202554947186}, {0.09870386265073518, 0.40481664894159636`}, {
0.09668481289388028, 0.40088253721403144`}, {0.09516991993022678,
0.39675593875412235`}, {0.0942345990909635, 0.3930117737790333}, {
0.0936923322582305, 0.38934905914438045`}, {0.09354311943202775,
0.38576779485016377`}, {0.09378696061235527, 0.3822679808963834}, {
0.09438726949038831, 0.37896246084944063`}, {0.0953074597573021,
0.3759640782757364}, {0.09654753141309667, 0.37327283317527093`}, {
0.09810748445777195, 0.37088872554804425`}, {0.10185595834848198`,
0.3674888229928541}, {0.10477834923709206`,
0.36663366089736726`}}]},
{Arrowheads[{{0.06249999999999999, 1.}}],
ArrowBox[{{0.10821733484437479`, 0.3664851652492144}, {
0.10960978796029347`, 0.3666762849499072}, {0.11289806182330335`,
0.36838959143753636`}, {0.11584913015395953`, 0.3712380798603043}, {
0.11822549645304263`, 0.3751086397259152}, {0.11989575045954617`,
0.37960755368737875`}, {0.12072848191246376`, 0.384341104397705}, {
0.12082053822929964`, 0.3875144656764835}, {0.12054134848517496`,
0.39052690118906064`}, {0.11897545727713499`, 0.3955933674270647}, {
0.11637181718673933`, 0.3988695322767423}, {0.11246948377407202`,
0.40020067978210677`}, {0.10858688349650696`, 0.39884433427707194`}, {
0.10538387944743371`, 0.39550998867097253`}, {0.10501945337172329`,
0.39472621481342335`}}]},
{Arrowheads[{{0.05145105508965449, 1.}}],
ArrowBox[{{0.10353611054379266`, 0.3915359784176093}, {
0.10326461454062309`, 0.39095206995469656`}, {0.10248900053288978`,
0.38604642844504333`}, {0.10305360339653777`, 0.38154654431122004`}, {
0.10590112422344973`, 0.37701253921444605`}, {0.10996387520807768`,
0.3762743003040998}, {0.11358875937251312`, 0.3792751769002444}, {
0.11500881668995891`, 0.38238517590277177`}, {0.11559285564569831`,
0.38583907297438835`}, {0.1152602101014045, 0.38901392003329277`}, {
0.11349035075148174`, 0.39210937986556815`}, {0.1109596872152753,
0.39279562064294277`}, {0.10856859697533869`,
0.39132466036878544`}}]}},
{GrayLevel[0],
{Arrowheads[{{0.06249999999999997, 1.}}],
ArrowBox[{{0.17639942456681418`, 0.3}, {0.1773525937559305,
0.3023786857734791}, {0.17870969888826208`, 0.3059450273457443}, {
0.18002174743193822`, 0.3095742715352061}, {0.181288739386959,
0.31326641834186464`}, {0.18251067475332441`, 0.31702146776571993`}, {
0.18368755353103444`, 0.32083941980677194`}, {0.1848193757200891,
0.3247202744650206}, {0.1859061413204884, 0.328664031740466}, {
0.18694785033223232`, 0.33267069163310814`}, {0.1879408582937885,
0.336723941979869}, {0.18888152074362471`, 0.34080747061767047`}, {
0.18976983768174085`, 0.3449212775465127}, {0.19060580910813696`,
0.34906536276639566`}, {0.19090384807610938`,
0.35065301188498266`}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.1915413072690496, 0.3541129458966379}, {
0.1921207154257691, 0.3574443680792836}, {0.19279965031700513`,
0.36167928817228856`}, {0.19342623969652112`, 0.3659444865563342}, {
0.19399980104364611`, 0.37021412807447085`}, {0.19451965183770928`,
0.3744623775697488}, {0.19498579207871042`, 0.37868923504216795`}, {
0.19539822176664967`, 0.38289470049172836`}, {0.19575694090152707`,
0.3870787739184301}, {0.19606194948334246`, 0.39124145532227306`}, {
0.19631324751209603`, 0.3953827447032573}, {0.19651083498778765`,
0.3995026420613829}, {0.196627054372245, 0.40254326337639484`}, {
0.1967219501809264, 0.4055575473003772}, {0.19674707045874504`,
0.40657774261117713`}}]},
{Arrowheads[{{0.06249999999999999, 1.}}],
ArrowBox[{{0.19682286108678107`, 0.41009513105241774`}, {
0.196847771070961, 0.41150710297525334`}, {0.19687869615231426`,
0.4144423747261471}, {0.19688829765789154`, 0.41735130908601137`}, {
0.19687657558769273`, 0.4202339060548461}, {0.19684352994171794`,
0.4230901656326512}, {0.19678916071996708`, 0.4259200878194268}, {
0.1967134679224402, 0.428723672615173}, {0.19649811160005842`,
0.4342518300335766}, {0.1961974609745725, 0.43967463788786204`}, {
0.19581151604598243`, 0.4449920961780293}, {0.1953402768142883,
0.4502042049040786}, {0.19478374327949005`, 0.4553109640660095}, {
0.1941419154415877, 0.46031237366382266`}, {0.1937842168722236,
0.4627209286655301}}]},
{Arrowheads[{{0.062499999999999986`, 1.}}],
ArrowBox[{{0.19324702378893333`, 0.46619774793623564`}, {
0.19260237685647066`, 0.46999914416709404`}, {0.19170466610925596`,
0.47468450507255266`}, {0.19072166105893718`, 0.479264516413893}, {
0.18965336170551428`, 0.4837391781911153}, {0.1885243347915827,
0.4880792254522688}, {0.18735914705973788`, 0.4922553932454029}, {
0.18615779850997982`, 0.4962676815705177}, {0.18492028914230846`,
0.5001160904276131}, {0.18364661895672388`, 0.5038006198166889}, {
0.18233678795322605`, 0.5073212697377455}, {0.18099079613181498`,
0.5106780401907827}, {0.17960864349249062`, 0.5138709311758004}, {
0.17831068316162496`, 0.5166429113546082}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.17672559353730863`, 0.5197836714164009}, {
0.17524522066703813`, 0.5224663273227373}, {0.17371842475606078`,
0.5250037004356776}, {0.17215546802717022`, 0.5273771940805984}, {
0.17055635048036633`, 0.5295868082574998}, {0.16724963293301892`,
0.5335143982072444}, {0.16387293179859852`, 0.536912819904966}, {
0.16050090676168527`, 0.5399084229707191}, {0.157133557822279,
0.5425012074045032}, {0.15377088498037988`, 0.5446911732063189}, {
0.15041288823598786`, 0.5464783203761657}, {0.1470595675891029,
0.5478626489140441}, {0.14371092303972505`, 0.5488441588199537}, {
0.14036695458785425`, 0.5494228500938948}, {0.13621509881021066`,
0.5497584754516037}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.1326984052866656, 0.5498334341081385}, {
0.13143137925137707`, 0.5498515357543984}, {0.12712998267516978`,
0.5496119630058969}, {0.12293951349365007`, 0.5490697798715597}, {
0.1188599717068179, 0.5482249863513872}, {0.11489135731467327`,
0.5470775824453791}, {0.1110336703172162, 0.5456275681535353}, {
0.10728691071444667`, 0.5438749434758561}, {0.10349767477964988`,
0.5420487279618296}, {0.09964314549193903, 0.5402743220188501}, {
0.09591920291005629, 0.5383962969337767}, {0.09252172709274364,
0.5362592239934681}, {0.08926081562345446, 0.5339690757282892}, {
0.08593859589604823, 0.5316977662456397}, {0.08449955155389052,
0.5306592828688516}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.08170275874231198, 0.5285280103137524}, {
0.07984593076428947, 0.5269855982375763}, {0.07747243056017825,
0.5246463935856805}, {0.07532028263326603, 0.5222951940197725}, {
0.07325667561723342, 0.5199391964882596}, {0.071148798145761,
0.5175855979395492}, {0.06911524341864983, 0.5152424701686608}, {
0.06728272930228282, 0.5129091599743699}, {0.06553063143021354,
0.5105797768107183}, {0.06373832543599538, 0.508248430131747}, {
0.061921884415105904`, 0.5059186431485173}, {0.06017779770732027,
0.503597866102729}, {0.05850606531263849, 0.5012860989943824}, {
0.05690668723106056, 0.49898334182347714`}, {0.05392499400721627,
0.49440485729399153`}, {0.05123271803578738, 0.48986241251427187`}, {
0.0496321058682377, 0.48690220463972345`}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.04801468886075615, 0.4837784371393253}, {
0.046586554497533586`, 0.48089548791617215`}, {0.04460020109254813,
0.47647346952580233`}, {0.04283833326365695, 0.47209241374121913`}, {
0.04127698425682328, 0.46775161368154106`}, {0.039892187318010336`,
0.46345036246588645`}, {0.03868394244721812, 0.4591886600942554}, {
0.03765224964444663, 0.4549665065666478}, {0.036649191091679204`,
0.44996774164497244`}, {0.03588405816368087, 0.44502432013507537`}, {
0.035337507700510695`, 0.4401355096890096}, {0.03499019654222775,
0.43530057795882854`}, {0.034912826065318404`,
0.43309068646474297`}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.03482141074670856, 0.4295740372476586}, {
0.03481591950055978, 0.4257894212543319}, {0.0349502672972929,
0.4211117315841226}, {0.03520648175914952, 0.41648499123801014`}, {
0.035597612155885104`, 0.4119089128966109}, {0.03614667465870019,
0.4073833461724068}, {0.0368492764598214, 0.4029077641152494}, {
0.03770102475147538, 0.39848163977499024`}, {0.03869752672588878,
0.3941044462014808}, {0.03983438957528824, 0.38977565644457274`}, {
0.04110722049190037, 0.3854947435541174}, {0.04251162666795184,
0.38126118057996633`}, {0.043759517365778544`, 0.3778899874938965}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.04507540780215363, 0.3746276274984085}, {
0.04576624902073989, 0.3729601738678703}, {0.04763587735745817,
0.3689024276157248}, {0.04967100131261777, 0.36490955644520495`}, {
0.0518745840198875, 0.36098383811557877`}, {0.054249588612936224`,
0.35712755038611416`}, {0.05679897822543277, 0.35334297101607925`}, {
0.059525715991045954`, 0.3496323777647419}, {0.06243691153108672,
0.34604964287934886`}, {0.06554095030921736, 0.3426645138342171}, {
0.06884270922263386, 0.33950308122922024`}, {0.07234706516853211,
0.3365914356642318}, {0.0760588950441081, 0.3339556677391252}, {
0.07685935313565928, 0.3334796170717763}}]},
{Arrowheads[{{0.06250000000000001, 1.}}],
ArrowBox[{{0.07988322434889442, 0.33168125195531145`}, {
0.07998307574655775, 0.33162186805377425`}, {0.08412448417307701,
0.3296161272080523}, {0.08848799722086186, 0.3279645358018328}, {
0.09197444774311579, 0.3269815123298744}, {0.095552189207121,
0.326285965166638}, {0.0992158721653236, 0.3259518630728696}, {
0.10296014717016973`, 0.3260531748093153}, {0.10675906408518941`,
0.3266364971645497}, {0.11058667277391268`, 0.3277484269271474}, {
0.1143782359669976, 0.3294336928708771}, {0.11806901639510223`,
0.3317370237695074}, {0.12165901405822656`, 0.33465841962303833`}, {
0.12514822895637062`, 0.33819788043146987`}, {0.12688106901449053`,
0.3403598881506959}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.12899764543828696`, 0.34316562297041187`}, {
0.1314333256639386, 0.3469236176052083}, {0.13281942786466186`,
0.34942653646176}, {0.1341314612749177, 0.35205804914355854`}, {
0.13536942589470605`, 0.35481815565060404`}, {0.13653332172402685`,
0.3577068559828962}, {0.13760796016254445`, 0.3606774901168623}, {
0.13857815260992312`, 0.36368339802892957`}, {0.1394438990661628,
0.36672457971909767`}, {0.14020519953126348`, 0.36980103518736673`}, {
0.14086205400522528`, 0.372912764433737}, {0.14141446248804806`,
0.37605976745820824`}, {0.14186242497973187`, 0.37924204426078023`}, {
0.14220594148027674`, 0.3824595948414534}, {0.1424923102272112,
0.38653940191019553`}, {0.14261015574009214`, 0.3905461733051059}, {
0.14257431848825677`, 0.3933279534331004}}]},
{Arrowheads[{{0.0625, 1.}}],
ArrowBox[{{0.14242534851411906`, 0.39684227913988224`}, {
0.14234027706369334`, 0.39834060907343144`}, {0.14196243419920407`,
0.40207666642559436`}, {0.14143583075024216`, 0.4056364740614211}, {
0.14076046671680761`, 0.40902003198091175`}, {0.1399363420989004,
0.41222734018406626`}, {0.13898394041094494`, 0.41523491789212913`}, {
0.1379237451673656, 0.41801928432634494`}, {0.13675575636816234`,
0.4205804394867136}, {0.1354799740133352, 0.42291838337323523`}, {
0.13337244720457767`, 0.426082787260105}, {0.13113987736727567`,
0.4287279204693262}, {0.12878226450142916`, 0.43085378300089877`}, {
0.12629960860703818`, 0.43246037485482275`}, {0.12119243226869869`,
0.43433955467308094`}, {0.11605161288833321`, 0.4345892680674568}, {
0.1145276328326228, 0.4342517952887847}}]},
{Arrowheads[{{0.06250000000000003, 1.}}],
ArrowBox[{{0.11109261934210313`, 0.4334911399619134}, {
0.11103027681930608`, 0.4334773347258679}, {0.10628155041498169`,
0.431271574336232}, {0.10181600754688375`, 0.42814069965760604`}, {
0.09779798535565794, 0.4243451887253096}, {0.095964918586488,
0.42223869472092385`}, {0.09425998013176796, 0.42004704176689844`}, {
0.0926831699914978, 0.4177702298632332}, {0.09123448816567754,
0.4154082590099283}, {0.08872625936658371, 0.4105333919032922}, {
0.08674004364368351, 0.40552699189588304`}, {0.08581342548653345,
0.40257727125315057`}, {0.08504955591331494, 0.3996551650526318}, {
0.08444843492402801, 0.3967606732943271}, {0.08401006251867263,
0.39389379597823626`}, {0.08376404722718411, 0.3913595372196097}}]},
{Arrowheads[{{0.06249999999999999, 1.}}],
ArrowBox[{{0.08362868987007309, 0.3878450736180868}, {
0.0836714368061959, 0.3854588506832472}, {0.0838840587365668,
0.38270243113601193`}, {0.08474807266829926, 0.37743581156538475`}, {
0.0861641295741499, 0.37260640215801644`}, {0.08813222945411872,
0.368214202913907}, {0.09065237230820573, 0.36425921383305626`}, {
0.09359313770970468, 0.36098551854967226`}, {0.0968231052319092,
0.35863720069796295`}, {0.10034227487481936`, 0.35721426027792835`}, {
0.10415064663843517`, 0.3567166972895682}, {0.10946689309681448`,
0.35767022273500093`}, {0.11205014674525575`, 0.358897966163826}, {
0.11458348733986481`, 0.36062636339672344`}, {0.11487105882822407`,
0.3608913341810879}}]},
{Arrowheads[{{0.02551974928835288, 1.}}],
ArrowBox[{{0.11738659846693482`, 0.36334269971223465`}, {
0.11907876321231578`, 0.3654333923566606}, {0.12093528195134007`,
0.36847409235418155`}, {0.12253105455889696`, 0.3719395826967374}, {
0.12381491528234863`, 0.37562585247633684`}, {0.1247356983690574,
0.37932889078498855`}, {0.1252934038190232,
0.38304869762269256`}}]}}}}, {{}, {},
{GrayLevel[0.5], Thickness[0.02], Opacity[1.], FaceForm[Opacity[0.3]],
LineBox[CompressedData["
1:eJwcmXdczu/3x1OSEkUqKkohI58oSiqvqGQ2NBBJ0ZCMaGipJEk2LQ2kvbXv
7tHdRkNS92xTlJTIqNDv+v784/F8XPf7us51zrnOeR1WOJ4/6CQoICCwbK6A
wP/+fhz3vz8UaP7/n/e4GB7KULChQNxRNoS94T36udsyzaUoULJlpHuseQ8H
wX0mDXfL4XRjvcbNZe+xYCTcrOVeGU7faK+3E3mPI2Xusv8VlqBgGU1NiNcP
natXvm70LcGXOaJ/TNr7cTSJMvutQQnu67afu9nSD8rqtbnv3xZjsH/7WdGa
fqyZECv8b7oI+/cvXvorux8OCwoubTtdCDP/LdOVgf041WIu7q1TCBGJ9LtT
Pv04n6VwZJtYIZRjuYNbLvbjmexR+cO5LzCz8pR+vnM/SlL+VtZNFuB189y5
+Wb9CDN4c6vMKh+TM99dx1f0wzbcSEtZOB/l126zDRT6EclwVL9cmgfN5czv
92X6wf26ZmmXfB7a74vv0ZnXjxfulMT94zkwtu3hJ0z0ISY52Pl9bRbkjgWF
ljf0weHPAsfAwCw0+r1szK7qw/MkyT4h7Sy4pgupPKP24W3CnsamnExc9ro+
fT+/D5yaZULznmfAX3XbjlsxfVj0KF1iVXkaJJsDQvtd+rCW46535koamq0u
uPx06IO34awVvsZpyE2CmfixPhw81BP6viMVq7UKVbeb9+HTtHdx2UwKuh6V
fqJs7cO5EzqKqV7PIdT9Z9FCsT4MKizX9DR5jmABTr/R7D6ERru0fF76HAv/
vcj2+9cL9wTcamYm44RK0aqRb73QGnNTXieTjNxHKhmDfMJTPjc4XU9xYVWm
hU5eL7zv0u46U55ioZSdw62MXsiX0raGRj3F0Q9n7fuSye+vyCc6mj3FEWfh
lfdjerHRZtYp5YdPoJGaRRMJ6cXRoWSrvzmJuCnHiTO36kX9KcUb1pcTcTAx
5ZKSWS9M1/WeDDFKxMpkt+/je3rxwpgXvr8nAYbPmvrj0IvueMds/+UJkArZ
e/Hvul5o7yraq/c1HvWKxmd5q3pRkPTEt6o6HjsVxcUoSr3knL0qi9ziIZQx
tNpfphfJvccPJVU9hmaod88iwV7EVG29Yxn3GBuulBVPTvZAP09UgOlBeF7n
QOtYDy4K6iqUr3yMdeGyP2/we/CpXvzLrwdxiJ989EKxqAeLRwuvO92NhVel
YsGgYw9UzqyIYXnE4tzUcO+Xwz34yVd2/WgVi7MWL/V+m/Ygva+9o18hFsp3
8jxkdHswbPWmQ744Bsz+8aLLUj2Q/qe00Tk+Bv8OL1sRJ9qDcyYHd+8KjUGS
q80L2kw3bG5XL62xisFHm19a80e6wcjoW3z3XzQyQ5dT39V2Q0Zmq4bLcDQW
cntXzqd249fLfZ2NrGjENdMy97zoxv7XR69qvYjGw51NAk2J3VCsLbm17Uk0
bsiKvV34qBu+VsKKDbej8TToUrntzW68+lsy29s9Gp23e17+8O6GkW++e/Sx
aBz0/jJmcrYbFuZvwnQPROO+t/66xJPdWMMqnJDYGI15hhXt5ubdoDoPDNVP
RyF1rHagc203EsY1bNW+RsHirEiKj1I3ua+0kdhAFLbPCzSTlu2GWYNQuFpr
FHYbOrgdmd2N9qU7Hc7XR0Ehe4Y9M9WFS0sDy1TpUXjWslE9c7wL4fvMeT+y
o6D6ISt6dk8X6FIKa8RSotD3XCW1tKMLD4r3TdxLiAKl4k7cmaYufPx9OSgi
KgqRErMvqdR0ISFbX+z7nShoRsRv7KZ0oclw6F3TjSgMdLm/jS/oQl/2m8Uy
oVEQ3XXH6lh6F35KP9nQEhiFDb1yFMWkLpz56hUxcTkK+hrq/wYedeFZ5sWH
NzyjsLr6o3J+ZBd+5ReVRlyIwltph9X+V7vQ4nHo+C/3KKgVlYns9e3CdbuA
H62no7BSaW69/IUuBPUZfJR2iUJy/7kTX527sMS9JqnuVBQeBc9lNdh1ofCM
cniPYxQGg8ZXJVt1Idc0YN5JhyiEOu8yC9rXBbfQsWizE1E4XKFiYb+zCyaX
Hz9KsY+C+ay0dTt1upAWH3/egfChqiGe6sYuDBxd+DCMsG3wPAdJ1S44q8q5
SZLvDWtVadPLuhDh3m4/i+wvIHX089Bicl7c8Z5D5Hz/b1VfePO6oLGMbSlF
7Ev+dLm6RbALX69T1DSdoyDVlOBaN9kJXcuTv0pdo+CScqCH8bUTmrWC+5LO
RGGJRe4q6sdO2P+NYHw6FwWVsq5tFd2d2KX8+VPUxSiEUQWW0zo6cd5miUOq
dxT0DLe2MJs6cZIuxJDxj4KxZtrelzWdyPB7Ej0UFIUnF9wftFV0ou5FV8iy
sCiY9Oak9LzohOH1ApnCm1HQdYkIHsvoRGBUZ+x0dBSmTZPuy8Z0YresXHF+
YhRqfeXq1O904l5tcXs1yZ8WswrG3rBOUNRfh8wuJvl2f0Qg4lIn0jev1dOg
ReFUQ7VJjlsnNn3PPUSvjcIJPSOLNodOrJH+Nn+YFQWJy60Zq807Menf1H2z
NwpbVZR+WJl0oj5ocVT4cBTeHcgQuL69EzsWjj95OBOFV3n/LL6qdeLU5fAz
yWLRYK+Xj167shMX1e+KictEo7JEPNpJnvjP4GfB6IZohAfOqx8Q7cS7Vr0V
ww7RqKmobJnzkY8lu6oEJi9EY21M7am4Lj4WbYjefCE4Gqe2b12n3s4H/auP
bvTTaOwuWIJTVXzEvp+FsoFofCq5fHEino/1dXNcZn5FY4F1idPTB3z892As
MFcsBsOpDUFmEXzsSb7I2LYpBuWGm1eWefNhEObsuZjUJxNmomSOBdk/p/Dv
9dgYVOr/VvDYzYe26uis43kxaNtWaqIDPoZebq3ayiffP1aZaFPjozDTSDhB
JxZrd26OXD+Xjzvsxt2Tc+OwPke64UIlDz5BFW+frYzDPE6GrkspD5fmNS3J
NYiD+ocv9BO5PGjqzqd/9o2Di9i5j8fieVj++a/93PE4ON08/cLXh4eZuss1
lHFSz+s7txlt5GHuo9cjkVLx8M7ZLHFGlYfA/hCpqi3xWFb4offRch6uH7hU
Y+Ufj/ueuy6Pi/Ow0vtZ1Mp5CTAz7rdtGeJC9/ldaqB+IvI3KSyQSeESPz4/
2eWYiAFjr7UCCVwoXW5ZHXUjEc+PXHs78pALy4cGr+d3JGJNyIPa5lAuPniF
LFl7MQk7eZJKeSe58O18dXoz/QnMZ6dNflThImOpV/yGT08g8DokeEqeC+pB
v+9M0afQSzEOl1jMxe912feStjzFkjLXhTtmc/HMa4XstbtPIVx2WrD6AwfL
yvhXlPY/w6+V1Znb0jgwo3ivjzz1DJofJds8kzhw8dXB6sBnaL3de/ZFNAe+
7e8sR/OeoUBo6M+mcA7ijmdrNS5ORvm3z47mrhwENXzb0juUjNDXbkmz1nMw
+8WJByrUFAw/L7ioUcjGO2Htu0mdKchrz1gol8XGo/Z7V47+S8H4mfD7s5PZ
6HazYSXsTMXYy6eG/ffZ4MR91t3Tkopt208MMz3YCPqUNJX5LQ0Z1evaJTTY
2BSYU+azJB01cz06VdcR7vYOu7M9HVkS4qqGymwwpt8eiYtMR0AqOzd0ERvG
9/cu1libgfXF2TkbvrPw6q7o4MDFTEQe9u/ZWMKCns37/aGJmTBxZ3VfzWUh
4Pej4xdfZqLC57EwN5WF5sAVPSaKWajYr7D8QTQLoxZNXb2tWdhg4dOkc5mF
d/E7N1ka5eDZzcalXnosHGZLV1h65uCIylnu4i0szI58U5OfkgO3ScqZig0s
nMyR+BkwJxf+ImvSZRVZGE7xkrvSkouOMOO3ywVZUA5g5+ZeyIfmptsxYa86
YGQf7VeWmo9guktHaXUHVoXn3FTh58Pxs773V2oH7jx8cOGBSgHsy/ZXB+Z1
oIa2xmv0fgHc1D6GiTzqgGmkOH12XgGkk31irt7uQKjtu2umrwug/z5HaG54
By7ImDEChV5AddaT7xp+HahI/IODl19AWGBF3UKHDtzXg7J49Ats3GDZ+9G2
A5eH/j6bLnqB97Uyr15bEfsUVgcHfH2Btvt795fv7sAV5zNj89wL4TnesVFv
UweUtq6qvHm2CAdfnxzaIdyBR3pbA0vvFCHYf03fIoEOlN98GChXUISWa1b7
f021k7qQFxn5vQhzBhb4//naji7Zn45SgcU43GbvNqe7Hb0sdwfBp8Uw2/za
IYTbDgtp3ei1NWRecGhSWdzRjrcH2VuUxEowXVB9IbSpHZvNrVdmPy6B9pwN
Ko9p7Yg9ObH/cGUJhufI3/lQ3o4UCn+z3ocSvDO9xdtX0o5rVyo+p/1Xijer
Vg5eymsHPeqAxAarUmScPSGuld0O6wUn4z/5luLr8N5+2Yx2XFnnpPuvrhTh
z+gR+sntsJszverQSCnuUzZ+vvqkHf+8IqzeLyrD3aIj8z8ntGN/CFMtWacM
8XIfKN6P26G90XzxwxNlaPH1r1gd2460m58ulISXweBYI2c6qh13nampc/PL
MHpKsOfnw3asUfz0KZJVBhepL0+XPGhH3/rYvdv/lWHp+IMph3vtmPIPsjiv
Uo5EBbOdX+60kzypqW7YXQ6HqajzCbfboXmhnbfrXDnS29S3XLjVjgcCSqzP
D8tR+OWD8enIdsQ/kB4voZSj7mGg1Y2b7fjNdT2W0lMOK9fT0i0R7bifzJIq
FabAMdjRUJdwMbN8zvB6Cnptfse13miHV03YShykIL+nqP0O4UGd4mPFlyko
WrA835uwbFFF0u4nFLSwKz/cILwpRIQ3VUdBo8KaTfWEXSUthl6NUBArImWh
TvbPsLLwLJaqwK7HHoJ1hAs9dshTtlVgZMcGof/ZZxppe4XlUIFnZ9QX+hL7
t9d16M+LqIDvNYfhWHK/7YYjk9YFFbg9mbP/E7l/3trd5iXsCpxZ2PfD5W47
nuzTf6E6U4Ewub6nS+6T9aIlLtmrqeB8yhOeJv792jaHut2Uiq3HNnVKkHgE
ym3+2eNFJTrYrPNQTDvcp5scbidSce7FGP1dXDt2Lfy3y7iOikCHya3XSLxb
AlL7hL9QsU/7iJAbyQfDDzc3Ni+mwbRe7GUYyZeh5R4r4vRoOM5N+o+T2o4f
QvLJLqdosNRN63bIbEeS276nWrdoECp7EaSS247JvZmNzXwaav3+aFiQfPXr
H86/L0TH34GiCAalHeL5iw8cWE/HEb+be5wZ7fB/derPMz86vjxeoO7ysh1n
5uZqaiXTcWLg9+mqZpLvx1ecK39Fh2uH/9bD79ohz+MPByxhYCigKVq/h+Qv
v6WGAgZaYkwnbg20o8R6/SyeMwPfFxY+lhtpR/giwWeUYgbeqn7Bt8l2rLOn
vU4zrcSawrptCUs6MBV3qjjfsxIpxxreDSp1wNCtvvna40ooN7ZXe6ztQJfq
G/fwgUrM0z6nvUe3A9JmRY6HhJlYeH5Lf5RRByI7Ir6+lmUi/JuPuIppByp9
tHfs02Nil6aa9T9Sn5RztzdZmTJhlhDw3373Dqzs2/hK+wQTezKE/3K9OzAj
HxQfGsqEnej6+8W3OjB2YHvx7JdMGOb/MTpC6ucyW0vbhTwmXmmuGkp/2YHr
TKFlfZ+ZyHr29YE+qwO3kpe+rFpQBTrluvC2bx14yYyJa1GswsWW1ndJAiwo
Jc0+Er2xCu6PeYW7JFjoNFDMNLWoAl+/j29L6r3oyR9HdB2qQBuDRy3pDxYb
9VT5F6rg5FXVd2Y/Cz+4VHe1u1UIKZhDO+fOgs1X47T3DVWIXaKtK5PPwkvd
4we1Oqrg4/PNfieTBZ+eyyr/9VeBUVH1LuktOV9eV1tkugrKk06PeidY2Mi4
7T8wpxpH/pmxquawYe49LHxyUTWqbg5taVzCRqvZkJL2mmqceziKA/psvHKQ
tIjUqIYGZf2JKjM2LlzQFPLTq4bff3MjrRzZJA9CPyubVePFP+OQlnA2nF/w
PfiHqmHs/9it4DEbn9SVPq47UY3l9LSC9Fw2RP8Kn488Xw2XRV2BTe/YWCu8
7Ei8dzUKOT//TQwSnpNTicBqhN9kd66ZYuOvs8h/l0OrsUah/a7TfA42ndu1
0SiiGvLm9LsZShyI54b4Pr9TjZ7bv83HNDkQeKM3EfWwGvzjy/drm3CQr6Rw
Vz62Goe6uFOBthyUj9Zs3ZxQjSgVFot5loO/xgW9PU+qkUk9ceRvMAc6HyQT
lz+vRoqK5KxNjzigDR6jfE2txtPOG3ZH0jloyOu5ZpNRDd+GUAHPCg4eJ34w
Nc+qhlgdxf9KMwcKjgku3dnVUE59ccK7l4M2qb+Gs3KrEfpil+mR7xyscS2O
oBDeaZY/s3IOF+cC6/tE8qrRXDlfk72Ei18e2j9GyPp9o2tpZ9dzsWf4x9nT
hIUubFoyqM8Fw81Z9koO8c/oBdvt5lzY+ah/XE/OK1/455SnIxcW2jkdlzKr
4WkkrXndk4vat9p8m/RqMjf/q/S4zoWr1uLxjpRqfLm6WmRLLBebqx9v+Pas
GpFtqctaMrlgNua9ykmqxi6mnpEulQvZlxoCIvHV0Npzt9KviQsjNVFxwZhq
eLvtaL/ZxYVn5uiaJw/I7zVNG06PclHTm5bVc7sa3fKrpqVnuPgPdVHmJH7v
cnaeb1XkYVFtw7YhEt+Wisaspv940GlNXqx1uRrPz8i3xOjzoN0+emj8TDWS
13vnRNvy8FyTZunoVI3sRmrCS1ceyYuA2FvHq7HENru4zpuHmAUfVReZV2O9
xFLOsgc8fJIwV7iwuxr+zMQjPk940C38L+uWQTVMjtr8jM3hoePA6zkiG6tx
Z2euoEY9D0dl391zUa3Ga7WizRltPGx+bapxa3k1FtkpqX7o5uH9RQ9rVfFq
rFu06VX2Tx6idjx6/lSwGsI7tpdrCfLBrr2e/P53FfTrcwfC5vMR3Ght0/Sh
CvcNzvafV+FDS0Kd68mrQkN4lb3Yf3yIi7pnjbypgsupAEvXrXzME1NoM6uo
QoeMhui5/XysjPn0TT+/CoXmR7Okbfi4ZZI7LpBShRiVHdeD7fmYWh87e97t
KrxkPV/21IMPsdzaaGu7KtiLPbcSfchH7vO9WZKkvsw+7OTT/JgPG6G/R7KN
quC4c9lP62Q+Up+Cfm19FeSMGEolBXysUOz5Vre8Cr/W1wbcKuNj8ybNjs8L
qxBZoxS0lsHH3Wm1xOFfTHRNxfaUvOaDps74XjfMhGRd69y0Vj6Mrs1vu9nF
xFpDLw87Fh87WP1vOqqZePdV751KHx+CF6uNjpeQevnyTYnmIB9PzrYMtKcz
cazfrFj8Mx86nlI/791i4veBpPUKE3z8faAazrnChKjJo3LL33yM+S+9uciD
CfHw/yJs/vBR9Z0lYXCSiZM2IaqrBDoh6F+yytGaib7nsipMoU4UibHrfE2Y
iImE9BqRTsyevP0hXIcJ523yMXZiZF7eS+rPMiZannrnaUp2IvKIW81VCSbp
R9u8OxZ1Qmhfn7PnLCY8zvpqmkh3QqlzV0D1YCViPp4Pj5DtxK/Dnjsfva4E
vFdJJS7tBPNq1Bv7vEqYBR3yuUrm66w3E22rH1Si0LXGatuyTvSWdE4Pe5H1
2NX765Z34vpU5GTukUp8VT38T0WpE8uOZSTM6Fci5HX5eYsVnSjNvyhrqVyJ
Y+lHblsrd4LSJ92UOacS+w22ft2oQuztpikIf2ZgqezBTR/+xw8enHF+w8Cd
3JSh82TeXz5cJfemiIFLYRsK2wlLL52JMIhlIEcrbqXUKuKPyrw/1AAGvnyt
4K0nLCemkLLTgYHWDMEzioS1J3e96DAmvCn3zCj5fmOkurX3OgZO2f+6GEe4
j9HBXCXBgLDwctkVhK8+0lg18J2OtA+nRsOIPXuiKOklHDqujp66+5LYX2AZ
Yx5Lp+NMmOqtIXK/4qRTKneIvsitFfYaIvc3M65QiQ2nI7rhMO+lYicCZDZZ
l7nTcTHTd/8N4i+dPgfqiAUdd8Oqjq4h/gzSMz6io01H+r2e2Ezi7wqRrwpJ
CnRo7W+9Ly7XicLY4m55QToM7+e0WCzpxDUvmwqnZhqOXFyiGba4E1reS0M1
i2hEDyq5eZJ4W6VVpS+Lo2EwY/bs3SQf7jl8PbTXiYb0N9KBSfM6Iewzz/HO
PhpGk7afUBbtxCj/VeP4Jhr+C1ySf2tOJ3o2yngtnaEibKXlNZlZndg7JiPZ
M0DFvaYvs7X/8fE17mlVfRMVV3bkDmCaD8X3DbNnHhP99/twkfgPPgqunw1R
1qFCdseNOU8+8iFVm71cdAUVDdLD1hIf+Jg9/8IBGVEqXJzln5zp5WPu/UvW
adwKaH5Kahvi8OHJ06nNCKhAuI9ej8grPmqFNu9udapAhYDF8fe1fLzYqfBq
hVkF4vQDxfOYfOh+e7TKSLkCtdG/zy0q5+PXqql/d15TIL5obMWKNPJ+u4O7
A1UosJ69NDQ5iI/rpgc+lcyn4JaG72Y1Pz5O2ItfWvm7HHr8MtsMTz5u5ve1
pzaXY9RF5LTvaT6y4rMM4V+OZuEw/RsH+XjQ/KVxo0s5HgefMM4n9U1+umCf
rWU5lOK++jTu4uN5bEKytVo5Bk1eRX7YxoejmGnt194yHFCIKX6mzAdCactT
W8ogLL7rsJ8CH25Gj/Y+oJXh+GWjoL0yfKTFWurJxpVBsyrBqk2UD0mplrAm
KzL/dMz5e/0rD8PB+leHWaWIjK1poNB46PT6OFv9ZSkWnJi1U7WUh7atDtdz
KKW4pbftw918HjYFdl04mFgKk0xbD8tkHugXJxJ2u5RixVG5txnhPHg+Np+0
tC3FtHZx80QwD9sPzP4Wc6AU9QbvT+r78WC0uzPg1eZS2IhcEK9z5+F8laji
W+FSfNL5MVhowYNQaVDIk6kSXNUaMPy0l4fIgItDqWMlOMY64SdvxMO6i4aX
bHklaN/oNjdAiweagcScE4UlCFuUnLNWnvSvDHuVkYwSmGVGvbFYzEN/svLN
/Ccl8Fe49P7yfB6kg12a+LdLIPbJ166W9F/1N78PNLiX4GJ8pYzVBy6GxdLz
bzuVoDXwzKsR0r8r75oGhB4vgQHruFMYm+iDk3em/piXYDBqVXHpay7ur117
JXhvCU68C3xkVstFkGq1pKZRCbw1VSmf6FwcoXyfs2prCWZEfNYpvODi2so7
eqc0SpBS9CylNIuL0oknK9vUSmDcephukUK+v7s7R0e5BA+3v1a4GcPF8VMp
fzdLlOBjdOA74Stc7N83uPYjmc8PTkhdTffhQsAzfk/DnBIExVRd2uvBxYN9
jkILZ4rxBjcuPjrFhe/hD+5+08XY6XQ0Xfc4FycOhpxe+LsY8rE3z304xAVt
+iStYbwYJcV9M9v2cXE5uaN/cLQYjQPTY5+MuKheWaGnOVKMn4U2jNjtXOhf
US3MGSpGPz4H7t3Kxa0szfWWH4uhU1C4498mLqxSJ+6uHihGhmqaQjHRZ9pu
wS9Xvy8G9xVjhfsqLjgTIzTLvmJ4V/w4uVqRS/S+uXVuTzE2LDP62U/03cAe
pq9mdzEypZ9/fraIi5h5losGO4vxoGHeoZPiXNwNXiRSxyfnP9qzT5Xow+Q3
I2jlFWP1gx7ulxkOBi6eSxUhPCdkg3TZJAfCjfpKZ7jFOG/QIRFK9GXB1llx
U5xi7Mu/3GnxhYMoBfvfJYTDcyi3VT5ycIL9d3Ui4fmy27R+E33KfBU6v4Dw
y+b4T294HJyyink0Svh5fnBZVjsHv9ndKYfJ/rfib5bcaOFArURAdZSw+4Wj
P06/5CBn/3OhfGLPhvlREabVHKjOuKvEE/sZ5txrWjQO9m2Yfb6Q3G+u3OvJ
FaUc1GtLvJnoKsYvE9FpyQIOjIM2qzkS/3hRtsYLZXGw4a3R+aneYuTGJo9M
Pueg+I1XCL2/GGlp8bMmEjnY3ZS3L/tDMUTrJ76Mx3AQFve2tGawGJsG7tZ9
v8/Bha9HpTw/F8O4U+q60HUODimGs+aReA/eY0YvJPr+2GmV7uavxaD90+pX
8eNAM07reOvPYnhUzvW1PseBwUqPDMkpYu+Y6oinKwfdi1N4fn+LseN+7FCs
I7HXw+9x0+wSiHz80TZqw8Gi13caREVL8Lt609EUcw6uLO2q9plfgtVC12Lt
95L40LIKBmRKMFJ/NO6jPge2sfLOA/Il+HTreFSxNgdjCw08pFeUQDevqjh8
EwcBSVnic8h7Kduf0GqwioOdiyaO128qQeO523NUFTkY+vDrZql2CUS12tqk
lnLg5bplYhV5jx1/9zybReaj95pl6fr2JfD0idu26QcbZV7Rp3ydSzBd9sLE
bIyNgOGHQh/OluCPZGOb5xAb8/8TPGIcWILMI6VDrC42TrukX9qcVIIMj11N
U/VsWN08Yv0+rQTdCbv9Dlex4b5dYKoyvwQ3tzgXM6hs+Ldd+jOrugQO7ous
UgvYuPVBeTLlUwniamu+d5P5b/x84wz9Wwn4BzSp16LY6OYseyz0twQXBA+u
3XyPjUln7lupRaVgRax7XBDGRt/Zo7sMt5fiwiFVjZUebGzsEXxP3VMKlZCx
B/LubBz1uv7c3roUhQuu8pe5kO81dTmqZ0uRNP6w1tCOjYXVVWMlSaWgDHee
XbqXjRVJ6S5Xs0vx8qz0A3djNpr/nba7XF6Ky2MHfzcasLHH5V59T1sp6sby
TQq02VC+Xp4dJVoG88+l8otXs3FkK/u/dNkypLt1+rasYKPt2bB276oyFA3n
PIxexob+yQW9DTvLYKO+ssxcmo0zX1Y1OF0pgzblqe5FYTb8no5xTt4uQ0fe
rZwXs9hYerIvPSyhDCdnuQzO/GVhaafXBk1qGXT7aoNf/STzv8DXDLWpMmwI
3/peZoiFtQ/DvSBWjmz7rP/aBlhIryy3vyRXjqHOel5iPwu1h1dp6+uWY+J5
/SqXThY+RDvPOnClHKU/9e81tLIg9+Syj93dchxx3dYyr4WFlMwjiZFPy7H3
s56yYyMLLadXKaOmHLUn+z4Z17MQ4NEdVdNejuTfr169q2EhSVHo/cnBclzu
Mk70rGLBXEpN86coBWUd136P0VgYy/q396M8Bd437oy+rmDhhmiv07cNFGyL
+1FMKWdBJyrVzeogBYFxgvHvisn5Z9dJZ52iwHexwZqZQhZy7fbbyvpQoG66
wgkvWDBJm9LUSqBA12j/y3+5LBTfNb8xmEdB8/P2o1dyWLhcyPqZXUX0yNwr
vlLZLPxhefSEtVMgU/vxECOThby6OcmXPlIguubFhqAMFqZ3+SV5TlEgeN13
k006CwdUXmy+Mb8CT9R74wzTWJBRuVebq1SBAO9riSapLNQt+JP7QbMC2jnC
lxxTWDgte+qAmkkFzFY3WT56zoLpam5vqG0FToZ0enUlsxB+QTp2+GwFrB6G
i2wnXK1fn2wfUoH7WuLapc9YKO2I3dj/qAIRxpkauwjLBW/z8MioQPbjxDWj
T1lIuHb4kTitAi6Sa0zyCH9d9/RV4ZsKrA8Jp10n3FDBMDj5nqw3TJX6EG7z
d1i77BfZj848FUK4vmRLUY8YFbO2L5l4Tvhowaf5Wcup2K5i8LCH8PYi1dP+
GlTkm/hc2EzOXznn6cTBXVTUhP2hJBOuzuf2qNtSsWpgQdI6Yn/3uM3Oheeo
+FXz1KSJ8OvURIWfIVRQDFJY4eT+bUOzPbuiqBgJeeVqR/yztfP9gfpMKqTy
mPIHiP8M4+/n59OpyP2sM/8Q8e82Y6ek2LdU6DoM2PoT/zv8LlEMJvrYYMsl
5QoSH6fv68Z2zaeh4MHPqHAST6xpr2hWpGE+c7x6isT724OtY2YaNBhlxR4L
y2PhaqqpreEhGi6I3t/SR/Il5F8bq/A0DfvlKVGFRSy8XTFjIRdAg+hEwdP4
EhbOXTYubH5Kg//LusZiCgtGs4+2yBL9b5et//MDlQXfeRKHbOpo8FHR7VVj
sDBff49C7hANuc8CRGaT/D8XLOKdsYmOQSn9za3NLFz4HTEQYEiHNr6/Z5D3
9UNFLnC7NR02MgPH6t6R97vP62jYZTqGX704upTHgrjyK/rcm3RYpqtWOHex
sNhRL8grng5PDYmHjb3E3ncPbEQYdDRannbif2ThTO+/8HVv6Pgx7K19/TML
8uIJZpq9dFRvUtuye4zkm7c/Z3wWA+qtNacW/iL541E7KGLEwBYjunuJCBvP
zz+T1rdiYDqdd0ZGnI3s5r6d5qcY8DR6fO62JKlHgUpc8WsMyK6todKWspHp
/bS8tooBuxzJ5fIb2JjNW5/0ppWBNb+C36/WYCM9ccGfgh4Gbly+rGBC6mPb
34GU738YMCw8XFyzg420W3M/n9hSCVux/p6UQ2wc1OtKEDGsROtCieJ9pB67
/1b5GWheiR+Vijdmn2Tjv1T/bSy3SshpLfyRdY6NIb2m68sSK+HVMOdj1XU2
pOf9270usxJLnBTvjN1iQ9wgw0OgpBLvRXYfVXvIRpCIKuY0VWJV1ouat0/Y
0FSTeXnqVyXeBhqYMylkfa9F8U4yv+f+fGf+mcnG1T25OflzmJiWCddb+ZKN
CdfTwssXMtErzrxCZ7Fhdl6vZbkME/p1b2MVutnIcmqdmJJjIiqAvSl8gI1l
wo90jVYycdCt4EzABBsPFb82Fqxhotbhz1vhP2y8FHd+/EuNCXPehp2xQkT/
7Pz9dtEWJppaNRo7FnHwYtoge3ArE40SQZlBchx88chJfajHxFfj5fIblTnQ
nuh0vWzIhCLPUCKZ9H+N3M/j+buY+FlvaOiow0HsefvFzD1M3LK857Z6Bwf3
6m/kZ+xn4oBzTveX3Rxs1y9PPm3GROaA3GQZ0R+vj29vFjzIxILy41LXDhO9
UXpmgacVE19qpq5bnCD6wvdiUPdhJt58P8T7cp6DTSsqctm2TPxw3Hae6kP0
12dtTsYxJnKGD9SHB3Fgd0Bj1sHjTGx5mKh7MJyDfPrYunf25PtTm9fL3eVg
fmHpITUHJspdlo13R3Pg9LQ5ws6RiU0pJ4eeJHEgqqNX63yS8MmC88fSOGg6
dkxu9ykmEh4t75PK46DxwLL8WU5MDG6mJNeVEPYTTXtImGHkI+dB5+DWwWzl
f4Tbas3ypOs4aDW8vXuHMxNvS3RqC5s4OELX0bUjfHqJWrUJ0atDG3SXHyRs
8mXZgnY+BztmK0grEVbYMmfBofcc3I8J39NA9qNESaxtHSb7PQqdNCF86Fj7
2+3fOBC5NOWcTOwbb04LSib62vsa6x2L2P/3GDdzSoALe3nBqwPkft/8GQ27
5nIx66ZLUQu5v0lihvl1CS4SlMczH5xgwlNzmFouw8VF7Yj0TcRfYwUdwV3L
uPjI+TGabcfE3eMfZSZWcpHTONQ6i/h7ZE7Wv2kyT+T/9s7QJPFIDflUO6HB
RWFDe+sOEq/07bq/unS48H66LVXNhomu3G0qZQZc0Id7gicsiX8RxAoy4WLP
gj+MOAsm7jk+S9I25WJzsPebQJIvMoq9zy8e5ULtmI4dneRT9saRmQkHLmzk
vN7ySb65lJRVnnLlovuz2NoyAyZSKpRE5nlxMULfPuypT/Jz0dwuA38ufs0k
HZDaxsS76zuLHEO4OGYRW/pdg7wnL6O/rre5uDl/cp+POhPdZd0Tnx5wcVTt
9cK+9UxkHDxqaxPLxTrf5zWu5D2x/mol/07m4vXGD77hSkwE5wgqbsjgIt1s
w4/bCkxICQhsN83lwpa1543lYrLe5hpjXcbF2wbr31KSTDwbM3DXpXGR2yvl
T5/HhLOj3ZL5VVxk2I5vaRFkonDrMdtLZH6dNaUQ9KGnEpPjK7bt7iT2VHa8
WciqRBNfSC2il4vgNelhS0g9ybTUnywm83Fz3MMg4grE2fqUNI1wIR/31PdA
biXEB7gh5V/JPPr6KqqTK5F2X7v7zgQXmg8lYoxvV4IVri4/Pc1Fy6PuTuur
lchzHxu4R+bvJ48bbXb5VEIz68fihUI81BUdNGs8Qeqh6BrPVlEevlnEKwVq
VOL4Gk/OXhkePvk4vk5bXQkLtomp5lIedlj4nS6Tq0SA0hnVOQo8tChK9d0T
rMTZ6NSlZ1bw4G1t7nz0JwPBw5X6f1V4iDf4rSM5zIDE/rpu39U8CDILRPTe
MhCgObdXYz0PWmKX44trGdh1cpXz+Q08iK3LLpIrZ0CS3V4Urc5DoE11SmES
A4HdmeOpmjyIL7WTHbzPgLhCvsidLTysWPZ2h1gY6SfjwpsctHnIj4z/rHqG
gVetdtKvtpH7eEh9UT7OQMjcb6LH9Xj4sHyyaKEFAw3W6YHd+jwkf1n8b8KQ
9K/g5Dt7wcM+HfWIZi0GzM3mHk024GH6mKRUwloGmDf/Cgzu4OFtUfARBwUG
pKbSkqQNeXBx2Sj1jvQ/2oNMHR1jHha6zRIMmSD9lmF+acMuHnY71z1d85H0
U36m0gITHt4xtiS85tIx4qjpyif86tfGJJcmOq7nuV6I2s3Dzqgoc4FKOlqX
1Nnr7eHBWn6nXdQLOgT/1BxrJSy3QPqcagodVoW9ty328pA5PqJWFk3Hn6jo
pUzCXtECd1fdoCNKNkpQZR8PV7p12Q986XDKXO50gfDBZlrXjBsdNxlrLmYQ
vpbV7Xv2GJ3oK62jjYQ3lf7x7DxAx8cSOxsu4Y/G624dAB39E+8ftxHOs5QM
qNpIh8j3Efsywre5h2bpKNPhpZzQGU448m0mp1iKjj0/Fu82Ily4JZ+xRZiO
511+3BFin7DAwgu0nzQ8OzDeEEI4Yt3lzD2faHAsi98rRNgk/7ZqN5cGoduJ
sR7kvt7Nkml+jTQ8kPEeaiL+aTSVbVOk0xD3VsxHmvDya5/3t+TRID5q5L+P
+FOx+GrZdaKvthiPqJ8n/g9Y1Va45wENtgUvW4JJfD4vf9Mje42GurnJ94ON
yO8/nusZ96KBoWpQeI7E81Vt2kGOCw23B93c9u3k4cm/M7zGIzT4LR/+LkPi
f/y0f1anPg3qh7Y6+m/n4UzbkZXT6jS8UqFQF5N8kvkzNW+tMg1WiV9bEnV5
eLp1zfaSOTSEnMoVDd7Kw9jQ077EVioW9F5VjtzEw7HPIoG7aqgQfdEVn0Hy
XST9SrlgKRXnTW0Sy8h7KL+2dqAsngqvvq8K2Wt5kGyWl1vhSsVlzhb1USWS
T11OApeOUqF3O0sqaTkPmp23Z/imVMzfmLZjB3mf84xY/ya2UHH7rpKtoyz5
/QfR+APCVFh77bgkPZ8HZ5rB6pOTFdize9NTJzEe3GxkaQ++VMBxdlF9lggP
v04edd7BqkDQ3eftiwV52P6qQ2KQzAu9QdfKz/7kYiLEclVHYgVqdQLPn/nO
RV/tFWrvgwrcvrCCZk/q0xeutZ9pIJlfyh90qg1zYRrhWxJpWYHKmwapx7u4
mI45uzNqTwUyz4q3reKR+st0It6tgOyRwZMDLC6ef4vbelKtAt8UOI6mrVwo
tUc7yolU4JPS9qtN1VxUFGy8svgfBRskhW8dreRCpVH/yoYfFPTnzbL8QOXi
rvvrQdp7CtIKs2rfF3PxL0bokXU1BfbfhEuS0rjoaHr8374KCqwEGjcIPOfC
of1U04lCCrpT7NKOPeFCP4cWOZJMQc+ulxoipF94FmVdiAijIF2QOr06gvRP
CRvfq1co4OrtLTkVxoVyx7RbApkfjec/SU4i/Ujm3p4Dmm4UxByUTxPx46LO
Jnh41JwCN7PR/wrdSD8ZuSU7vpeCFVt0nDqcuWhbQS9ZbEzB0aWmwz8cudA9
lhjB1KHg24rD59RJv+Q/75+bs5ICv2ODK27s4yLrsOIWqiIFX/qZ9+NIv1Wx
nFg5IkfBRfeNdpmGXFRV7nAuWkjBdS/nG7W6XGjMcZLgCFBwmWtNHfnf/+da
7/r94085DP1+PZhQJfGp/K9ly2Q5PCTUXk6rcJHnsFJD/ls5Eubk1MxVIP3H
YE85c7QcZ+WU6hcsIf43GJO/8bkcX4sDkhYv5qJk4suZgIFyVPQZ7FES52KF
6XHzzP5ytK16e2g10Sf90kGCv3vKYWwVX6w2m4twvVnMKV45ut/993bbH6IH
d/jV5HHKwWUpNe/8zUH6nlWh11jlaJ1SurtvgujLIJ+5UW3EXq+FbPsRDmZP
NC760lqOxexrPvmfOPg867yZ45ty+G6LWSUwwIHWzS3FE83luPfF5rdFHwer
zk1opTSVw39725zULg6m7wQ3X2gsx1F/WddJLge/m/PO2r4uh+m3zZpmLA7s
xa3mO7wqh/f41qC0Ng481hsnX3tZjm/1m07OtHBwQfyQcl1DOfqZG34eaeQg
4d7xUGXCrht0zUobOJB0F6xIqCf3K5IJW1zLwZxjj0o1CQ/x+nI9mRzc/nba
9WNdOaT9q3tYNA4KqziMMsLj7t0bdSkchB3VykwhvCDiaNkzokelDnJk8ghP
pttHiBVy4K69+Nc7wjuSJeleRL8mJkJHhuzvY/7I9X0WByUyBU2ehFUjJZMt
0zmo2Ux9Okb4/brsoPrnHHRElKZcJ/ZunXtTVu8ph+z7q0GH3K90ui2oOIED
rGifnEvu/6Uru0U9joM2jRVrJwhrm8rJ5UVx8O1qscE08VdZbImP+gMOQgf8
1i4n/pXnyPwtusNBkebxpmPE/4stOJW6kUSv79q9qKylHJa7H3XUE/2e8kv5
gxqJ3w3BAUvraxwwFDnrGG/LcbL2lPnHYA5ktvlWaHSQ+HvYysn4cZDbvbVD
ml2O6sHZUkXeHCy395u7mFuO5d4mvZaXSH4cXnfMoascb37+NX3mTu53YL9Z
Ack3gc9p8qanOWAG8maWknx8X7xBasaJzCfmuxT1P5YjzLaHfdaeg2eam81/
DpXjtEvkm/XHOPDXO1jzaqQcXs5yJqNkfskBJhjkPexOfC8WcpCDkXDmsp6Z
cvxJ1Nzaa8xBt4zUX2chClaNiFyt3Ul+/5q1eq4IBfPGa37kgoMDSm1dUQvI
+w75kX+PzFMds+Q2XF1EwWf9EaWbWiTfw7/vDZehIFSqWTJCk8TXrfAsfzkF
TM8d1TEbODh4plBlnQoFj7Nac9PXcaA+3C55X5UCdqGXO12Vg8sGaSNpGykY
CIwtnVrBAd0pQH3UkAJL1skGhgwHqbsWTLvsoYC2dktmrRQHOx18yv+YUhBU
77SuTZKDzC+T2t62FFRKnfOaPY+DT3d1Hz6/SEFS27Ilr2bYeFbBUhu7TIFX
iFjPgr9s5O2f+msZREHnwbCldlNs7PcX0nO9RcHwr3gzqR+E23T5RekUNF2L
vD00zMZRka0DVXkU/A5RZXh9YuPN/gULP5aQddZ29XmDbLh2edR41VIwscJG
52AfG4OiwiaJ/RS0TjyrsOSQeVhBQ9xumIJnAn9oamReVtAwrt/0jdy3UKBR
op0NQ8WG5iWCFQj3nHGeeMPGCbluuXblCpiZ31i7jczbu2x7fDTWV+DDpS9S
zvVs2CyU03yuWQGnhZ9qEmrZ0H4ycLnCiPQXlYdv11Wxscay0e7EgQq8PMCw
u1rJRtjWR9ayNhUwP+opPkBnw2n6vEaZSwVKDW//11TBRlxsvPuTCxXYfUr2
rTmZ/0Mjrh2J8a3AoMahr71lbHAoP2nFkRVY63Z7TKWEjUnlze7cRxVgPG6Z
YBWxsU0zBuJJFTAQPVoVVchGcIJW7eOCCnxR/zylVUDWFVXzflAqIFqgc3tp
PhtBCakb7GpIf/zrumluHhvzecXHzUm/lnw4Mymaw4Z47eRufk8FtJJfGC7L
ZkPgz+ZtHkMVEJPgDellsbEx82cy7U8Fnt5XiX6WQeLT/tLMYw4VvP90qwfT
2bD/+eykuiQVKd3f728lvJJtcubnUioUS50kY9JIfKKDv9epUHFvdcZuQcIf
rBdFJG6gwuBZm7FfKtlvc015gDYVl2L+LJpJYePGwSMSJ3dQ4eGnT71HOKv1
8VLzfVQEU3P2qBNmBfdte2xFRZ3tnb89z9lool33GLKjonY1XTCB8DvVant9
Fyp0Vxs4niT8n1NjetQFKj7ZL1+lRXjFEt7ncV8qInjHrRYTHn+/qsUilNwn
Ye7k32Q2es8Mfi2+RUVcrrLCd8JalpY/5aKpuCZVXP8/jpB8Ghz6hIq5VvWz
BMj3/S8m1UYzqMi8E8+SJRw4rvrQtpCKeaVLdusSdiqZt/8llQqhH+42boRT
34d91aqj4ox3w6xUwrsdfZamtVCxxOnQ3s+Ej8hW2UtzqOj7vG+jPrnv4CfD
Y9f6qHiypb3oMeFJWm/6t2Eq1pxV7BAi/ov3vcy3n6DCin7s0WXCnbNH7jb+
pWLSnDr+m3C9kcLxLSI0jB10+3KN+P+U4nB3giQNC0ZjwxVIvKr8tLJnydGw
/oA3s5LwwL6WiCo1GpiCUwvWZrJRd5vfLK9Fw8e8fyvHCN/7NMz0AA2nX5/j
MUl+BD6YmCtxkOhnIU2lcJJPXWfEQ62P0tC47voz/1w26Nr9f6NO0RAYFZ7h
T/KvqjB4v5APDVd4Z+WTSL6++pi6Tz2YBooIPJgv2JCW35lsGUH0+vIYpVGS
3yY3YnNC42l4l11sf4a8h/m78yPvpNCg4e3MrShlo3vhzyX3col+fuMTLF1O
/P2m6ZFXJQ017ffXjZD3JrCHknf4JQ3P312XdaWR+sG507zxLQ27RYqFx8j7
zFoTfYHRT8PPLQGUZeQ9PyxTTDUk84ilSkj0nwbyfXa/dc18Or6LMmtbXrEx
zdrzarMMHTuXyh7LbmTjNavpxOfVdOT3wj2U1BOe67KNCSZkXjrCT8xhk3hI
+b1LMqNjf/O2p2+4xB/fxebdO0RHS73M4T98Nq5QSxL1XOjQvm12/WIvG27O
ekuKw+iQqGE6twyxcd/Jsmb6Fh0nj9Lvq4+wsXU0aUD9ER3CZnEqcaNsXCpf
qXcsmY6XL9IEwr6z8eiX8kcqnY5ju+V30Ej9LROVETxeS4dmkoyRnQAHSyNV
R4Zek/nuyKsSYSEOlpjLCzPYdCzIu7PPfS4H9S8vDZt9pWNxzp+/kaT+G+wQ
7936kw7jGv7WU6Q/bGy4Gyz6h46s47eydy4leqmlrviECAOHP8QnLFTkYGXk
6M0eMv+u9p975jvpPzkPFvv9W8GAbaWv4iTpT5b7AsSEVBlY9+G/RqFNHBRM
JtjRNjKged7ZRlWbg9VDgt+HdzKwdP2y48mGHHyNW7RIw4SB1Az66OtdRH80
Xzlvt4+BJIH0Rb/2kO9dpzRPWDLw65ON4xFzDljPzXdqH2LgS/PyLXctOVCd
d79r3JYBHy2NoQYbDmbtkl2w0JHYI65hsMOOgyN/eE5eTgz0pWSGhpwg+70v
b6G5kvOWfvpSc5LoBZ/ZtybOMdB9516AqRsHrrQHtA8eDLSJDRpGn+XA+1RA
aZknAwK2XJ+eCxwoSzxnCPsxMPf0hTNePhwUZwlkBgcwcCJlprmK6BNJ/tTi
7isMfM8Uer/gCgfz1easMwhloEpsh1sW0TfPBrTzjcIYCOhzCvpN9M9F/olz
68MZsKGV39pF9NGBPeduPLnJwEUxpTd99zkIlDCcULvFwJTD8sz/iN5aOJWd
nXCbAbkD3tV+sUTfKYyXjd5hYFey8WhdPFmPtFVWucfAuHbWjMQTDt4e3jih
c5+Bex+qXh1O5uBJXIWW5gMGYq5kKT5NJfF12PF9wUMG/DpD2gcyiL014prN
hHPanahrc4j+1Lm7x+8RA16hBhaF+RwsaCmpnh3FQOQ60yNbizio07DNcies
c8PgMbWUg5dLbcQLCb+2fcXTrSD39Zj81U6Yv0Kwr5zOQciQ9oMOwvOqHbw0
qjhwCdwvUkx49+VZThlEH980ORF6gfDYzRWBci85UHRM0JhH2NZAMPIG0dd2
H9fuuEbs6et+f/Qb0d9+45v4fGJvX84c+iGiz3Med6ktIlz6Ncu/vIODtX+t
HVXJfSlfJZ0WE32vqlmbLk/8YfT98q4znRx02VisHbvLQOF2lS+0Hg6Cr66W
Sib+tF9qvlr0PQcmre73NxN/p75CpdkgWT9h2poWyUDTbo2we0McHBconD0Z
wYC75IxxI5lHJk/N9lp/gwG9mf9YM2Mc2NzzcN1+nQExTY74f9+JvddWrda4
xkDGK8kq659Ev71ZuIwexEB09I1/98j883pt8gerQAZuzJ3YkjLDwQ7rtQ9b
SL7dtTIxKRDkgr26qcrViwH5b38tC//3771v0Rpxkdwn6Pbf9HlcLLOy7b99
noFqOzuiM7loD2P+Z3CagdEhpYQjZD6LX7BEeIy8B6q66QZ1WS6Ma9csv/q/
9zJv84k/S7mwU6i8ZnOUvKfRdK1ARS56PU7fiCXvTXX9jycblbk4bSujyyTv
UdLVV4u/ksx/e6uWVpP3+mV/qrf0Oi4eCX+YTiDvWXqd+GCKGhePKQcnjxsy
0OmxZsF6dS6sL9kVxm1jID17Rkp+MxdmMS4WE6ReNA5rjl7X5+LOoXc2i1QY
eJd+ROMVuCjSdwmVW86AsM62S7N2knldIm10WIqBHV880y13cTFk/HS6aAED
Px5/v3x2NxcSWg5NrqKk/mh4CwXu5YLB6bCO+UeHm0brTIApF8c7OJ0LJ+lQ
Wt1kdtaci21KO2p9v9ORu0Ra2vIgF/PqVKykPtFxgLuI8c+aixDxUQvfVjq6
hJJjO45xcZ8t/6SN1FeZwSAz6+NcSHqZPF5eR0fpD8UnjfZcXLWWnbxLoWNe
FetnPJnfb6pPzystoqPgjvDPHye5WC12bH1rLh3xuasDdjmReXtMarTvGR0q
QhfmNbpw8eVelgEvnvSbfQXzZly58Lcf+NcQRew3zAxZ68YFh3FUOSyC9J+t
ESwHdy5iZ5/fbB1Kx74NYbTzZ7nYXC4poRBIRyRVe6XnOS4Crk95371Ah2dw
0/UTF7gYUGcW6LnR4ZFSfGO3BxfPT0mI95+kQ0DfXk71ItnvtnGwDOlfQWki
0w2XuLglmWWcZk5H1al5Fjc9udij9zBMfS8d2y92GRl6ke+zR5vV9em4bf1b
Ks6bi7FFFqHpWnSYFjb92uLDxSa/BWJyG+kYlZ2584rwOFW6KHwtHbuOO7+3
vMxF9fWDb74q02ERx/7XTnhDREG+tQId4l2qn/f7kvh5yKeWStNxSV+tkEp4
ztgVgcUSdFxrodit8CPxyK9fdG4uHTopqb8CCY86dKvVzaLjXlttxFvCWcUv
niydpuHa2ZFlCv5cWNmo0c5M0CAVMU63I+z/Q+cd9QsNW3UyL0UTzjKo3yL2
kYav9z/trid8dpC2+VAvDdrp10y+EH7xXGLFcy4Nn8KO+84L4MI+fP/e0TYa
ziqWDCsRpgq5TW1tokEnTzJrA+HVssZ+oXU0hM7qrttEeDazYlELg4brnyL2
/2+94k+6+NJyGvw1Qvb/7/vsxqGCUy9oeJy3sV2M8Ob1drtfZNGwTE342wg5
n7G0R37mOQ16fmeK/2dfVtR+T9NEopdcW9fGEj6WePXxk2hyn7qnJxwIa6sf
Z3+7S847scdFmfCTPbRLu4n+shHV3s8n/vk97Fv+9CoNvXdYy24RTlnoOTrt
T4M989HwZsJvBJSO23oRfqNR1UH8Pxoa832FKw3n3c6+nSHx0mRnx0Y60GAt
MLwhgvCXPn/fSVsaDqa2cMUIv1B6O9J/gAZFyh6nXyQ/ttjE/DtuQoPm/1Vw
3vFctXEYRkYUaaGpjIZEqFDxGNmtt+y2LWTPyigzicoIRaSEhhHldw6ljBAq
qmOERMgoZVXivf15fYrOeZ7vuG5k/IatBXiNdrJ+pxpN+tvfTlegnsRM26N/
KdCkcr+5nDfqzdwyzGoKvhpmrp9TiHrkqD95ef46+F1cSdkA6nV+nP3a3SI0
mWyQX01Qz8fypFY5LqSJhfLS2COo9wNut+Jv8NHEc7KC080Zz994TUgE/pyj
EasYgn6JdOLOtBynyNECeakL6Kf7N4Wrn36nSNPuNB9fB/Rnwcz7wC74eNyP
iP32zWQO9fpG9CuKbI9+JZlh1UxkFZcpy76gyI2oX6m26O+CsAfeLcgDfpmJ
OyTQ/w3Fw6WGjyhy51vo9gjMh+HhpPvtyBsvmxX4ucxxX0lDVz7HID90hOyP
NW0mOhp8nSMXKfLCN//sKpNm0vEgPXFnAPJKVfPUKsNmMlbO4va1o0j4U9cT
LXvR3zkxTYMWFDlxXvjlzj3NpFcpMcYZeWlJ2aO2BMy/0TNbw9IPUkSvqyFJ
TaeZaFTJm79UochokQ+/iVozsXz+4nyBEkXU83x/xqg2EyLLP1agQJG8Lwnm
lbuaydSbepWvGylyTOeniIQy3pf5KbhEmCJnbSIXPJTDPJLfrXRxEUWC/Lvq
KzHf217pP1koQBG7M19aWjejH3g9NY24KKLsl6Xyd2MzKdZTGsobZZGdor4D
C7FP7g6fWlf0g0V+GDm9XrAG8yL6z7XXgyxS4xP/nG91M4niWG6/pYdF/Msi
dk9iP+04zQr5gHz7dgmn/eOF6J9fu7L9G1kk9KqeeeaCZtLaKc2n/IZFxh/L
bL/O30zG27nyuqtZRLvan8eDt5noll+YFillkSc3g4OE2JuJfPw9G0OKRbo0
Pij/nWaI955wl/SnyPdlkdHt2McH9x244VXAIvXpXo5pkwzpCHFNYctmkT1X
xQ8v/8GQ+q7/9r3LZBGXE1EO40MMcY0/+7XoDp6n7d6rtwMM2SPD3fk0jUWO
WLmUhvYy5MW9aL0PqSzCpdASdKKHIfZ3n+ZwI+97bnPtVYZvvDRRPXUriUX8
DqcPD7TD79Iq6nkTWeS3+h9WOXzFKFl9V2gCiyzq+uN/s4UhLg+zdj6NZREP
81qN2a9XVhqGVjldY5GetTccNjQxpPVXpNH2qywSu/dZOzv8aPiesg1bDIu0
nxcbK6xjiGbIWAd7ND6f9djzGPgVRy+7vtBlnM8RtQ2O1QwxzetLVYlikWUf
9hDdKoacrlL45H2JRUJUrJZLVjDEeb7Tv/JIFtGdaajjeMmQMMvVUxLgh2HN
Tp+fM+Tzo7dNCRfxvpo1AmWlDMlsErywCpx4c6A8jWaIv00Ke1EEi1jnumdc
gC/a9jdqnQQvF29/bvOUIYOcLzVEZ/9cSH2zAfyyPfzMwPdwFul/kTe15TF8
VItfoRGsf1JLQyQf580bPr8aLCO1cCF7LkMc7vw99RasaCx1duABQ3b2e6sP
gvlW343/mMOQqIz5F5bh8xuwEt0rshgin1ktZgZOsVy+rjCTIVPPSxfngDMP
qpTdhS9TZX91F+D55z0XNk26jfzkG1MYAnbqLv0XncaQI08u7RHA+7tN6lSE
wb+Nyi6xZYGVL1NlQTeRx/affmaE80sdPMXlD1+Xa9vpsQTnK7hqTfrZRNxf
4Dhvz+x5b0jPOpfAkL+GqQ5VuA8doaebg+D/Yy6KwRTua/2PDWph1xjSMvhM
tQz3qV1K/YxGXmjoVA5lrrCIQoSiSXI0fPMKt91O1MddRe5zLOSLnCZDdpc4
FmHpdlt/j8DfFwlLKIhnkQLXV1/WhTNk6Yyrly3qbVmiMXMTecUyfPHNj6jH
SN8Wh0/nUQ+fHP2Mb7DI5N/XdaJByCc25v8CUM/CwTvlH5xjSHfKQQ8p1LtG
xLr9k2fgv+uVtb6ks0iDgL+zNvJR9ZbEhIC7LMKWdOD7gBdDFp9c5XbiIfot
K+7oUeSrQUM26TO5LLIme5znxWnUf9bJkNv5LCK/MVBUCnnMQsK2eOUTnHfD
txrOU7N5ZL6VUzGLGOfP8/W2Y8iAp45+Lfr5cjJTNWSDPLRZx/Dhc/S3R6xX
D/Leq5+uKgov8fzHFg3bWDAkUvzfYHkFixzUNN82iHwooMAmJVDLIpXD1hYc
xxjCy6nXuxXzxuKsauAxU9zfSp6Glc2o9+5Pz2aQN7/50FcF21jksMyFzXeM
8Pm6hxRXdLFIa92XsqmD8PlUY+PiYRaxm1j8p2MvQ6Zzp69NjbDItX7z1tt7
kBdfnUzTH2ORob5yVUcDhjSVx6RyT7FIIe+yx3zIv+wSIiZ/eCli8sDCNWA3
QwyiV6vF8FOksMvirB3yc4Df/s+yCylitPyxmbEG5onLLVakCEUmj0/mqakx
5GPx89s6KynSoHZRRYUwJHmPc/b8NRTh6eoqUVVlyIVJeZe89RQJSzSnD+xi
yLuvkh0xmyhSVS2vf3In+JVFrY8sRYyHNQe9djBEcZHXmZOKFDmke+FSnhLq
xVKCuaJDkf05ccust2EeGMir8O2hiKhiT87lraiHEyNrIg9QZGH+ofOlCujH
9rNhd8woMnV+20o5eczTBLfrqsew71YlDrrLMWTOglTtDuyzRuntq0q24Lx8
O+O3O1Jk2a0vTy1kGZIdLVw16EIRl8CPW57JMOTh3ercLE+KGNbViomBLVZ+
eb0d+5L7ztnLf6UZ0nfDMYo7mCLjOSuXuoGdLArF28JxfsLBst83IV+yVQ8l
XKVIz1IX5X9SDHl+pODRuQSKuJLmbZfBv4KvnrS7QZGHzdYdkmCJvP4KkzSK
HF/1U6l8I0MM57inGtylCM3Y7rYHh93sy9XMwfs1585ZCn6Wxgn5x/19L/Kp
2sAQNvmgUFJIEc5eyzuBYAMXkTcaLIrsjE6LVANn+Acf0XtGka1FZpt5wPwB
AcMHyykiKeV1qWk9QyKuvdQ9Xk0R7eLO7Hvgle18MqfrKfJG7sLFC+CqwAUn
Axop8vukzmZrcNTNyIyrDOpBWDhuL9jVWJnK/ITzEWt7uQvsXffOthR+Y74v
kJIHFz177fihlyLul0fOyYLFebgufh+kyEj7mXkK4AWqHIG8PykiYil1UgU8
Lyp/gcQERZo/FZ3ZB763kvOP6hRF1i1qNbGZ/X7E0p4ZM3b49IsDP4PBfLc0
uzy4abKh4K1ONvhnN79F9DyaPL8jbPQB/Hy+vFqWIE3uHW0T4sX7c6mlqLxY
SpO3N5sjNMAHM9VWtCyniczG6uzz4B0OPEk/RGmS+8LKqxq893GnH5ckTbQ3
2/QL4fxX5rD8RaRo0r0pjM0BvHX3xl+KW2ky8UNAYD3uM1b0YbemMj6fV8G/
2fu2e+TwZ48qTa7GNgTO1sPvnivJRro0KevasHoY9RKek51jCJ99cbpwnQvq
6V3arv79B+H3Z06mToJ3HZMeVz5Ck0cNRSUrUY8ymjv0N8CPD7o/+u8pOCB+
7fuFNjRZc8BG3hz13F3Rdv29M00eOD0oykW9/47NWLbsAk3q1SffZaJfOj/V
pUWE0aTLK4HdFv3ksaPAcDSSJnlb8xw2od/M9MLPP4mlibt//MuX2xmy3Hf7
2Pc7NNlRNLFDDv1qt3xFjTTyQ9ONHdMi6OdGTjszi4c0EfQ4m8qFfn/YIPi9
qIgmdhvI3iEVvN+kzxBbFU1Ul8QIjKljPt8wuzRdQ5Pe41f8ODBvLu1mefyq
p8mAnZn1EsyjesMPQS8+0OQcafLR0mYIT6HHnpEe5BPtJZ0t+gz59PPOQEY/
3iflWSQf5t24VE7yPuSt1y8rlVQxD09fS7l6AXnMvlLcNG//7PfTJJKdOUrI
1bEno+WG6I+WHwENXCXkz2Tnr0WYtyeKpFQleJG/27K9rEwYsqxTj5WDPDih
Jli60JwhIYc0/GWRH78Wa2pfO86Q/YKZFfKiJeScY4TZX8z35v7wsY3Im91N
U+az899EOzXp1/oSeIXtp93WDJk/sLTuh3wJSale37jWgSE/Gi02xWwrIe+9
ivRTHXFfAV8ixJRKiOFRu+Wi2E8Pzj3sFEX+PSL93k3SFeeXINfvp11CTvwp
fKnvzcAjRv890i0hvJ9EXzA+DCkL9vX8iPycqH/S0w77sMrBVvPfPoyI/tJ7
l7A/BQ2Xm6Ubl5AHMvI8Xy9gft3e+vi4aQmZu8fxqHcIzje0xWOBeQm59969
mDcMvvgskVf7aAl55eGwVe4iQ9rSxRteH8Pn2yIuXYl970ov+aR1ooS8vC3f
ejgK+ySbv1AAeV9xqlcwIgZ+wBvqcsyqhHCEG7msucoQmyJtk1vWJaRKOFvp
KfwiesH5iD+2JUQwJqGwL54hejpOlYvsS8jU6kmNoOuY91+CFq46VUIeT9d/
W5bEkPMqGTSPYwnJWmC4w+Dm7Pd3dVf3gflDh1lfUlCPErciWU4lRObh6rln
b+H+15ziCThdQh5uHxJYko770LWN3eZcQuTqLegc+NWLSZNt7eAj4uH/NOBf
By5PDfq4lJDGbutnzXcZkm69tJTLFfm/jPO78z34SatFTjBY3tbJlyubIYv2
3HkyBrYMuWeQBN9zWXKzx9SthDjXlB6UgQ8uvsKn9BD8p/vpmbKHDLmx+mHe
GDjzQmrBIfijz+8kI1l3nM/I8d7uPIZskpgnfRh8Z5ib07OAIVc2b1f3BVtf
njc5p5Ah2iOn0iLAv5rm5V+Br/boT5peAk9V3lmzGj7LJ7TZIwgsY+8tn1WM
95ExnbEDKz1f/UGewj5xfsWtCX71RvkPC36c+/h1/ALwpVSbKHX4M1tLAVWP
51OQ0/SvfIb5wHodFAg+ddGJ0itD/8jbjEmAOx9dUKh9wZDSVQ1iNN5f8674
e/1yhowaGwtpgzXcBi6/gr/PP+XZ9gLnKcvjvH83/J7DuDdEHvzsVBpX6Sv4
YvzJ9XE4f5uLO9O31TCE9erR+2+4r2P6O4RykBdeu4/nOOM+hXeZ6UbXM0Rh
Xei/FNy33nb3vn8NDCnfJfKozAH1erJH/NRbzENet5DPqJ/atootO5FPTk2+
aWy3KyHTo5u7U98zJL70xPsG1JtKw+dx9o/oZw11rSjUY7H5mumSZvx7TUqf
zFCviq7pTcKtmC9Jf/2Xo57XCnXWn0Y+av1I9vug3kc3Cf5b3MEQq48aMlno
l6YmxWHlbgbetujKOPppTZdLZTzyV4OEce92kxJiGidQ9/0rnj/u7FTMoRLy
7Xb5+vh+huz+fp4j578S4m4+5+iXb/CLtxoXn+4vIVpOv85LD2I+WO8sfGhQ
QmIDXljnD6OeaO37CXolhOu8GN/37/D/ivAqD50S8rZe3HH9CEN6c5cvma9Z
Qn6Hz98V+YshqlLmmQXKJYTRC32zCvlS32TmpIZiCfG3Z1uv+Bt+VPTwWuVW
/PvGaz4b/GGINZcYd64s6jnI/pAt8ulqBbtbSzeXEIFbRyec/sEfd1+3cpXC
+dRGM87Is6aHt6ybL1lCShZuV7RmayaPLxgFGWD+eS8avmuK/Lv5Y3tZEOaj
3TcHJR2OZhKjff1h47IS8uib2p2lnM1kQGnaeJEA5ukT7q9ePM0kuuvGP/55
JWQnV8ZtjbnN5FvjMQ6OuSWkqIlvLy/ydXTz3qFG9hIyFuJuEsbXTG5Lx2/L
n6bJDJdRgeq8ZlIasS4t4i9N3vGSHz/ANzqM7kqMzf4+mQEObeR1KWHB9L4R
mhzWvNzYBzb8oBtyd5gmOU6TfqECzUTQ3rFSsI8mteSLZj7yvsMZt9CSbpp0
hmieUBNsJmNXN/+0+kyTN6+k9KrB3/ysr2W0wDfmTvrULmwmE1Zj0iofaVIV
OvR896Jm4maZqPS2kSYtvVbvn4Lvta08NfiaJtzZWvZXFjeT1vG/I+7VNPFS
tB4YAztYDT+aqKAJD5s7MVrSTOJ95l8dLaWJYnKFBedSfHyposhpiiabk55v
NQRzJ3he735CkxFpofYUsOPbCk3TxzR5aL/2RDc4QWWDQXUuTaJtVGgJoWZi
kLSqU/EBTVJGvEePg6+8VlDIyKKJ3E9l/niwb4+3u8Bd+MdSjXlV4IzI0Qav
dJoM6+z79RPMOZq8c0UqTU55XjQVFm4ml47p/leaTJOK++amiuDJARnFE9dp
4tp1ffwgmKckeDF7HM6PT1TxFNjnp//8tCs0Ob+8atU5MOeDg7pql2lSzeXw
MBLsyL9tqP0izrOsezBulrceXnsOfrJAXeBTMviFxh++FcHwPd+y8zfBUmY6
b54GwgdOMJ+TwA/c4hKMz9FkW63d9DXwKvtdoaO+NCkqFG8PB6tWFz676kWT
/zw2hfmCuUotbOXcaXJG/8aMNfi0W8atN/ClnDNX9+4Duy5su+ziSBNjAylv
eTB35SmjhfY0+TkVcH4RWILKEy6wpsmvxkeewzif8hWLfhtZoD4WfzCuBH9e
NLTyzzGa/JsRkE6a/fn42tt3Uw/j41u9/tqDnVwSirVNaSI2sLF2GzhyE2tu
0n80EcjrulCG+xOLuh+pvY8mpd/X+gaBF2RNS4zpw3cmOsNUwC5fQ1aY7aZJ
/zq3hdmoFwfJqScC6vC5Q+w3zME/upZ8q1ShiUPf1eM84IdLcqOIIk3mGyrm
GaHenO+6q7LBVxfJ8eyfQH3WjByeU74Fvhl0SCsObPljpa4R/DYivNW8EvW9
oWw7j/h6mvBpNUWYga+HTpiOisP/Al9u6Uc/HLvQIZ++iiZfNq7hnkb/xB1f
OekPn/YNCNO6AH7SOe/VcWGaeD4dWs0FTng/Orp5IU2Cm43Kp9GP0RmXzs1w
0kT6z1BzDfr394upqzPw+w1Rd/q3gcej5kRxzlBkH39S2030f9jmquRVvynC
3sLEWGE+pHepikQPUaTl+uZt9dzN5BF/kUrxN+Sd1mWWa8EhyTqL+5E/ztZe
ee7K1UwOz03ZYI580mO0VZ4P84hnt5Fr8EeK+LrlzV2B+cV8rmi900SR0peG
5rqYb1a+3TX1bykiPuBOu80w5KpCbpbia4oozJHtKcV83Cu1Vt+ujCKnXSIU
t2OeJs9pp1+VIj81Wfvtxbz9elfMT46miBmPmaIF5jEtk7p55ROK9CssNgoe
xzz16+s3fUAR6e0v4u//RH5usRGbzkbeildbm4f5/k/wjcn9exQZ7Jh7peAH
Q7ijTrJJZCAvf3Iymd0P139emXs+mSL8gR7/rmOfUM2Fky6JFLm5VljuMvZN
2uNFdvbInwEG5ElQH0MYypnT+xreLyh7xBL7ac7GvB/clyjyvKbnhlAXQ9bG
DlzWvEiRb1N1XTOdDDl66MCqi8i3BVtP9PVi/5UIBMhtC6EIFVpi9/gTQ9Zv
omsSL1Ckgvfu9HXsS5U23jNzz1NkjpX7xbPYpxO7SnQ4kZ8fO08Uq2Hfds2P
975yjiI/I2p91jLwz3zrng1nKfJ3zzPL2f38Pb4hzcsX75urNlqKfZ4cssru
sgdFhvZN+8i/YTB31ExOu1Ok8kv2QgH4gNWrJQWmbhRROWGu3l+H/Ods+mwP
8rzUcHxSCnzCRGu+t7EzRfJPX273gW+Ipv/OOnWaItOPjw4frMbnC+aNyXek
CI+r6V1u+MoyQxf9rw4U+WA0bNcJn3mpJHJZAlwvLi/Ngu9sfeho7nSKIkcP
LPh37SXybaHSg+f2FFHLW9fnBD/aMqUVvBrM4yb8Rwf+FCZz7FOoHf68NJCI
PYev8n2Y721LEc1M5YSPJfDjHxZB3OCv120kKuFnrNIu4VQbihj6PuMthL/J
Hg2vVwMvEoz8L4OF/F0QenvAmiIZEoLcsfC9m1mCcangSP84uWD44Pr1ZmlH
wAY9J9s9njBkbPG1SjGw7RpayAb+WC+7hOOnFUWKizq7TeCXP9fI7KsB6+bf
PKj/mCEJa2IycsCGb67aq8BHje37p+PA9nXHFeTyGVKzrd84ArzIJqNYEv56
6bnq3RBwizEb9wr4rdLuxK8XwXuOLBZb+Ajv9zdzYSJ4TP6c8Fz4cO6a5Wtz
wccTPn2fuc+Q/OEUgTfgpdpNjyfh05y3ehonwRl/2Vx+wrfVnW+eksLzx3nM
2TSUBZ9M8HxtBfZ0OvO9D37+5b9VvzLBDelzq3oyGRKh7sH8Al94ZEV9gc/v
aNXz0MX5pQz/ft8F3xc6XULdAbf7Bot+yWCIiHPr7Xk4/7NlrFvdyAfkUO5a
P3D+tkMWvcgPodG6UiNgSpvTaSCNIQPXc/NdcJ9vrIKrfyBv2HePPpoES7Nd
DJxIhU/3rhWOmL3/iNqkGeQT6x7biReol3USbSuWIL9srk00d0Q9fRISiV1z
A/lp19e/q1B/U0/sr8ok4/6vstUlOlHEtHL97v2JDEm06P1qiXrlW8LOa4F8
5H1l+eLtqGe+t9VeXgnIB3G9bj9R7082ezhnxDHk8965EW2u6Lc7nHylsei/
dzt969EfPzotnJqRv+5a3MiqRj9ZjrrdX4p8FusTGb8C/dbzXu9TxmXkTc+L
1Rp+qKeHudF1yHerAlabu56hyMCPYu3JS7hfptKoG/0rwp3SeQh5sOoJlbYB
/R3McfpdMPIiXzk3v0cgRXqpmq9PItAf6/TnrMF8kM1bGicRzpBzVyYdA4PR
fyHnVY4hb7oYpuf1Yp6snoqUSAplyPayu+dqMG/C/rpXiiCfpujnTLVfxn1e
ucoufx75cWRmmWMMRc7rMJVBQbi/OauVZq7g+V1cuhoD0e8uk9KKcXhewW0K
AQHIW/To6ADm48lN5s0/zzKk/4LFksybqBcT/+9G4MCtirdsUymSdvdfOHUG
eedTQeZkOkV+qa82uYw8HSlYt8IU89jsQP6bg8jbX/sqtHbdp4hbS75HDfJ4
asn+LZIPUR95ifRusETPghHOfIq4aCrqqnsxxHFK48bfAorcPTN17aUnzieR
LX+8kCK3psqv6YLVB5ZU/S6miGvT2WfmHug3a7tkduyLRVl+v3rdsS+GSDA/
9gnfi+sD3uAVA+Y75V6gHxx8FG+5YX+UXcu5U0OR2pGyC4tcUd+7792sxX46
WaO6scgF/XRvWf9oPfpxt27mEXCmnMzm/xopUiVfsS3fGfX09dj4hfcUyc5P
0j8Jzk3iYRVjH4Z+e662GBwj2vZ2cxtF3l5/2RxwGvkjIG7coZ0iV5dzBO0A
F099LrrfiXl+ymjRpBNDlLv25WzrociWl9N/z4AFMo48Oof9+2OLr6kG+O3G
dcNV/djn9j/vzAPfX6b01GIY5yeZviTTEedz4O7Cgh/oP1Hl7b7gz10rNLh+
UWT5m2i9fWDDpzlbzMZQX64f9q0DhxTZlT+coIiAmoo2O/j6S+turj+oD89R
2Q4HhjyqKPQ+NkUR5b3S85+Dh9IdrJ9OU2Q9x9LW22AP9aTYxfANtYb2GxfB
dmGGg85zaOLzvfg/D/CA+YNDdVw0Kb/54fcJ8Jr0J3mb5tJk2VLruAPgjZqh
Qxf54McxcRKaYCkJ6eFv82lyX/96phLY3OB6ksECmgQuT1otBx6RVmq+D/9Z
UtgeLg2+v4r9isASmrg/j+qWAu9XVTXLEKLJqOTu07N/vkXytduOZTQxf/3S
fvbjW9/XlbxZQZOjpalNyuCWQzbLbVfTpJDb4b4WuDj9qd2/NTRZnvt02BDM
Vdkbfg2+plWxItEWrFMmdHjjOpoMHlifdQ4877rds9IN8PGjp1cmgNv2ssUf
2kSTa+MXfhSAtb6yPevdTJM56/6KNYHfWUUtPwNfbBi3yZsAz697Fc6vQJM8
d/PE1Tj/ILEP/SnbaHIy047RBW9SeLNKVgm+ni3p6AV+WTs3wAB+qtf/7UIr
WLRLxvkjoYlV/9rpRaiHZSo3i05q0KRAewO1F5z8R/idiw5Njjjb9b8Gs/0J
tR/TQz7pCT6wEPVHec/p8N5DEwnB7V9Nwd/Wf/vmCZ8efr8iYgS8Y6Jo98gh
mrBWKlzSQD0n+BvPOWVMk2SnjKx4sPz3d9sOwc/5g81FddEfS/oz17DD73Ot
zKwb0E9z6w+YWNnSpD1v6V0l9Jv96Zy55cgDb8XPvs0AD0r8Pu1zmia/7x6t
CUF/nlKPOpjvTZPxQAF3e/T3lhZz23HkkZ/6TxT7wUcLO1dtP0uTxOTtOQ6Y
D05e1+fcQ55pZ28I9MH8cHAvpw9G0ES4rnhRni9Deu6NjLhEIj9ZvvXSwjzS
/jLzNyKKJg+2LNRtAzeVLdx2H/lKJGHu/IWYZx23DaoeJtJkIPvNgnh/3J9/
mWwa8toCAYnGXZiHFYtLiqNu0iR24uaTHvCW2gTGMI0mV0M4S1UwT79xfHlz
/R5Nxlo4C7mCMe8eB6zelY08Jfhyay54ncr8suYcmvR836R/BPNZtt2pYc4j
mphuO7GoGPP72ov0pIWFNNl4j1M0GPO/LZR/WWgRTYZGqw/uwH7o2WUeNIr8
+pRtpmkE/CNyUUspC/7fuTzNCvul5j/5bXOf00RnW+Ex02iGjCZPRemX0eRD
yeA8kRiGyGmJOYW+QN6oWfSMASdVb0j9Vo48I7Vi4VHsM/VNL8Ytka9/seeb
uWAfCs5wZ7rW0OROwc9NirP/f/vw7xSfWprMNZvzdBps9iJa260OeWV7yMdo
7NeAFrHExW9poqR+a2Mx9vFxC6ucb+AmgaFnwdjX+042VbHeId8fj3x5APu8
9Egh1IUmGu2nB/ux7x3Ytmiyv6eJ6Ibc6SL4gMx5C7dCsONncdNg+ML+0xz1
cz/SZE9rEksUfsEE+I5ngg8rJeUOgd+UUCJqDE0aVcqrKPiIJX+hxuFmzAO/
GAVT+ItUpaf27P9nXN4g47kOfvP095Jd5i00SeP8kTcKDhDlGNvVSpPXexrH
Y+BH3U/NHt8GD54ZGTgGf2rkTz86p40mK9dJFUnDr5w4Lb4fBlvOoQ3+gC81
rHR8AN5kZne7Cj6W3XXt4wRY8ZXe41j4mnpe+Ladn2iyb8TP8+QD3NdDOsIb
rOAp1L4Zfle6b+TjfXDO6Pae3+DrnH3ireAzghNBFfDBt5oWrhztNLGzd82J
gS92BawtFwNvv/Xc9DB8Ulu6V3QXONtoJlASvulJe4TvA0dI6a74Dv52O5Ld
HHz9WeHqp/DT1cZDl4+BkwstzgfCXyO1D289AjZ+YK+iC7/9ePhJx3/gbSGJ
PaLw33cSK3wIOH3/ZN44+PjPvRyS4HMPFRJew5c9f7RemH2+0vyyiDT49OeZ
Bm4Gz59yUTzAE7792i0+/g64M9nPSRc+fjQ5WdUBrLOnT385fL201oBvIziO
/TL/AFjIeDFXB84vem1UzuzXX6MvHdsRBR5fyLMiAv5/oCyxUAEcpbTqoHEp
5qe23Pl3uK9lf39oiz1Dvjx9JccebP7s9vdBcPPFdSq/cd9CA8YaRcgTLd9u
VbKDuQR3l+5G/kh5d+y9H+rjWdPzRl7kk8oJDr9B1NNMwkuHOvBzfVZBMepN
ypD+ux/5Zmm+u/VS8IPCdZ8FKrGv34h/tf+AeSJaIfEaPLbvxPV/qO/mDI5M
9Vfw+Wd9A7vArwSa3v8GX+A6cdCzkSbvVqhq5iJPVcktvvEW/WLNUmMJI3/l
fDGcVq5H/ek83/kG+ex+y8oKTfQbH6/wed96htj2vFyn85omd283VK1Bnrv9
amhmB/o1pb1Szh55z21DXMqm2X7e/12H7y36N8hNUugVTciCDvUssPnyZLXm
Cuwf6k5N5zv0h+memTzMgyZ9rX2+jfCnizN/gl/S5KuDSuoC5MmqasXpZZgn
DZmvrm57jzwbcyGEg6ZJWJemuM1s/jRizj3CPPredstjELyap+qISTFNlEd8
bFyQVx287klcxzyryPlvqSvyrJS+5C45zDu2up3VQ2Bx7+64igK8L2/JPLsW
1PPlcufOXJpk+VbJGiEPy7zNF7XFvOz9N8L3Ctyw2t+1/wF8QW3cVgn5uThS
2/wz5m1aRn3SQuTrG6HNn25l0GS1+ZWLd9rh63zxxQK30R/KgnYcyONxth7C
vpjfdtRoxRHw1gV7CzVTaMKIik3wIr+fKtosmXGDJodaQiuPgKtbfTzZsQ9S
x28LPADrb9UTKkhAPU+Mc2l/xv7LM4jniaeJ68OMgsvgQ6TAyCyWJryn/nxo
AgeI3x8ZjaHJxWtRZ8y6GLLoJeufajT2Z6PG3wSwHc/Ge6HYTw2s6KFG8P2F
oooLLtJEd13nut1fMD/WShgcCKdJ0pnDjj7gr3YXjkSH0sRi5bG12WDnqL/n
XwfTxHlEXKsZ/OvB6AeeC/AjUcGPXN14v5YRF/UgmsToNH+UBe/r8LfzDaBJ
wNXXuibgrGC3+u4zNNFXsQ1MASttHnYQ8cN8c8/SKwWrPhOv0PehSaWPQXgr
+HPpzZEzXjS58jRJZRysl/t17n0PmnTf7D4l0IN8LRwh1upGk9ZrXgslwNy+
C4x5XWmSwJUirwjOMuWktjvTZOuxew064Ic7ftpZOsEP5n7pNwKr3Lb0jnag
ySWX5PMnwf5CX/6x4A/BbKLJp8DxIn8Xf4VffBSntrqCF42GvhW0oUmQ+tsD
nuDwS277dlrhfULKR7zAEg1cadYWNCnTyV4+y24VpzuiT9DkxbHkejfwlE+r
KOsYTTbfyhV0Auv/8vXpPoL7/czRbQXuU/GZEYDvFP/ONjAHn7DgrFU2w/uU
lOnvBe88tWfEyoQmJnNOdKuAOY77h8cYof9vpayQBmvov7pLw6f+OMT/EgYH
bTO16IdvJe044czeM/v1sCNvhQ5g/nUtudqH89wsz8GntY8mtcp1x+rA9419
xDzga8uF0plHYKO0wS0Z+vDFvfc5YsDnerMN3uvi/vXmdzqBuYqEI3jgf8Yc
iR564CfuTv92aKG+edrKxcBx4wdb7qjDD80rsutRL2Wm6ac+wSe3M5F6aeCl
3WZBQqqYn5x6Ra5g+dzAK1E7aCJb3TtvPvhv1KP8Wvjp06v9/96jXvvrK7Lm
KaLfHcXe3AQrPV5vfwV+y+T6rl8Pvtej+HtUDv7dOzQxiH5wi5G3MYcPe7XW
T+eCa4SdhTfBl4eLMksVwEVbj17qgW9f6xXylUC/WauaFppJwo+2uZ9uQ7/u
z4uVewM/d7oTRl8FD74LMy+Hv8vRup5/0O9s3P8N1SynibjNjpYizANl8/9k
DyEPJDraCFmAO4Rn5NqFabJeXurNPPCVBpHcKeSJsld99eaYJyvcDvMdRf5g
r2g824t55HhGuWqKnyYc7v5SYeAdT0yyUpFXMg4tOycJzsy6Pvc7L3zmCP+6
Y5hnqnk8FoWc2Bcmp5c9xzwcDnnhPZuPPG2WBxmB3xzS4t3MQZP9PFef9H/A
Pij9WpM/g3z14O0dAbBI/8GJfuQxsWDD5QaYv+wTKcJlvylS3vsh8iPmc01d
EeeNSYp8mLd4wgLsEClqdXScIle6Fr71wjyf2fVgwYKfFAnpTZK9hn3wO0z2
NNcIRZ44HJknAn7MvfHjzHfkS/2L/DewPz4ZmvSyIU++sg1OTsN+WSDly2z9
RpG1SpZ+t18zpPPaRYs9yJ+bQ+atEwMf7tdRsOujSCSPkuQt7Kv0bxOs+18p
EpUwsTWphiHbLvB9tv9CES2ZcOUw7Lvv2jfuXuuiSMGvtXVjVQyp42ZPefGZ
IiUblr+2BCuGyypvQR52D96yURX70+6Ac9/pDjz/VGNcNvYtu9jpznzkZ7aw
zotC4OLh2DL9TxT550k2DWE/+/6QL0pB3v66SbjHBNzdLsI32UqR6e2Xdr/A
ft977FgzqwX/3mLvhfFlDFG7sXR3EEORB2tcsnfADz4/1rJjAx8+PmV2Gz5x
aGbi9+zXt8OMdfrmgd8eDHBM+UCRZ48iS9rgI6dd0g8ogAPlSxdpgWf6vtyr
e0+RjY/WWj6Av6xZcoxeBL7xcWihP3xHvbXbr6QJeTwj2v8rfGhG8VWBE3je
4BDHfvD12GprcbCM6Ly7T+BP/yxvX25vpIjK++TTa8C1cQukU8EeUoaWEfCt
tGWvdlqD+Xf2XfwJH1vVEUptAe8Wnz94ePbnM99zZbGDjWbco2Z/f9L5oWl2
5h1F/AYaPWXBmUulywvAP+Z05iTC/4ZUdIZiwSNWe7ZzgkeM+M6cARdL1a1w
hi/+t1fWwRYc7Cpk2QKffLDYhTIFRxm1LdIGp18Ptd8PXvDrnVw+fLShVtrd
AKxt87ByNfjdjZUf9oBP14oxkfBX908l0YfAcr9GHH/Db38Kr08+Dv64MirS
Fhxm4vDTBaxpzLXjA3x4fvKN6DDwoWOn/LXAxz6/drwN7vlVe6wQPm22USC4
fPbj3yt/lgR/dHVr+AbmeflyXgL8+3HxPD0hnMchP9/uueC6mYFv2uAk1inX
M/D1KQ3JR2fBLI3Mp8Pw+dXnq6OfgK+8VX1uARagv4VOgP9Jql/+iDyQ9T3p
8i7cV9t0yYa9YD3y48l7sKOyTesO5Adus+K6jbj/FpG8mfxMhni3LW07DzZ9
Qc2VBjvvT3quifqpObS/Yw3yh0OdWXAO2Hqt9pMbyCuff7xZKYL6c5baG7EM
nB+9KHMG/F+CxRahDPRDnDViNUWElJIiUpB3ggqXdPaBn8y5Xb8ezPYu2rCr
mSLC81dtVkE+Gl90YpE16n9Z2dz91Wk4z9+xrwbAgVdYTsbg86rb2LjQP3M8
rfPdkbeauzLcEsCWbM2dc8Cf3wU924x+EyjkWRWHfFZW4/vKGv0Y8Se2gZUy
ez7OYRzo53sVkv6Lke/cjkq+zgfrHGkLuo/8dyN+XqoN+r+GeD/SBofqvq1i
MB9unXoQN/vztw7nunkTuily3uWn4Urw0RfR+aY9FLFTczagkhiSN7pU8Cvm
iwVlOTCViP2SIpGX10sRTsmQ5FTwkjfyVwIxj2rfy8VogoW0Cr+ux/z6HBFo
OJtPb1juqk0ewvxINMrYnoD8nbd/d+Dw7M/Hz3/3BXl2Q+r9O7aYh3leNoev
gtfJtY2oYl6OynyK+IU8nEz+lstgnnpm2ijcBf/3curA2l8U+fLIUd0cfHSG
WAmMUSSxt+paZSxD1orVN87FPLZ5F9HmD54T/fE11wRFZMvTriqB/6wY28SD
ef5c4cH+3GvIo03hB9f9o8iOYAmDPORx++WiLxSmKUL6wnd5gifG+I9oYj/s
eTZ4fwe4Z3BVsx07TYw+qQvWXGHIi5djaf7YJ35KUlyxYGl5hRPx2De6eeHn
joM9epzDa7ngr/TlqT/I/yRfkenjhr8/2shVCz61bryPZy58KnBt3A1w4ZI+
EQM+mjgECOzfDS4T6l7lPI8mC/gn/JaD2d/YPorF/mOUxeV/RuP5vBM0uwXg
M3Kbte+CrVxt984VpEl/sZfhBfBqKan02e9fWmUc7joJdhdZ+/fMYvheakag
ODhiKO1rBvYvvaXjKjd46IXCQP1S5MNGrQ0Dl5FXMiP41onQ5MNR27an4JnS
snmz+/yZ16U/aeBt8w7+DMS+TyvmSr4EfrzGK+/RCppsWBle4gOWj7Xf1bGS
JtPXXp20AVv/sQ1dsJom9UJnw4zAc/run1cTpcnuJBMZbXD5iLuEG3yCb4mg
sRL46P3JYxlr4WO+5tObwMH3vSQ/itFEvmxg3VrwSOhGBz4Jmnzr8GkQnn3e
N3vEVeErKbVFEwvAHqtWqrvBZ377mqfygic4Gp/cXU+TO50ilZzgxKUP/Fo3
0GTv2F0HdrDgt56zglI0ufmgOHomiiGLlxbnaW2iidoMl/wsm26ymH9GmiYd
HWoH2fD3b7dXB+TCn1LNuX5wgA0GU6d7ZGbzjQwfD7hoqd/ZFfCtH6MaqfPB
8XfGBw/Ax5xSqx4sBt/8WqAZKk+TpYc0tq4EnxU/4EHB39bcU5JbB+69a+/2
YytNXm7fclsOHE2lyEluhy8mPAxXBa+7H3XHDP6Xe1K5c8/seb1sKouCH9rI
GN87Au43WORXpoz8EXexwwnsF9NdNgqftJY9EhwILmvtv7R+F/w29kBc7OXZ
r5dwn4mEf84RfTr2HNz6xjwE1UFue27XaAaPrz38eVAN+XxiaPQn2P1C8xED
TeTLztVhUqgf5Y2xlr67cX7ety11wQW6qhfvwn+v3jx+yxa8Xymbexp+HJ+w
Qi4bfMRkTGuDHvLSmemAOvDwFJ/3f/Dr9SvWS87W9+M1tUG34N8jvwTtCOrf
WV1Qq3IvzrOjkM1utj82G9V9g6+nDNn2XAErPVzMtgV+39LICu8Hf+1eH3vg
IPLkcaIhjH7cJe363Bl54IDbdRVt8JAc8zgLeeFBbPT3THDPlGMjnzlNyq9x
/fad/XnAcJ/925E/9L+HqxaB9bLVio8jn8Ql2X39BT7dILr2PvKLnIvQHnfM
k7qortGNljTR6uv7FYR54+JwOEQTeSh9rdi7V2CfDQ/Tza3RD7bZ3wUxv4TU
DxsGIU/NObTg4+z3wwS+b9R5hPzlLfmvtQXz0KqmaqTAEeetF6S8CfOTCVGo
KURe2/BNrOAsOODvt6Zc5Lnv58T7xTBvRcYGxS640+RWffeHM5jHxv2m/C7I
h+m/2KObwJH+ve/NPGlybqfFThnMdyHe6HZxb5qMOaw40g12m/e7OQb507OZ
tekw9sUaD4cyS+TTipSdoyywpo+WusJZmhyfOBq2Avtm45uDvVXn4ONJRZPt
4N8+WS2VgZgfmzo8TmNffRSNu34O+TfQ1XO6EfxUVjN/y3k8v/fR9Tuw36zY
srojkZdL+B+pzcU+LEoZfLIU+XrsvMxoNvbncOWuyofgSx0bWpdgv45qNvHs
DqNJVFzU1gDw/vxkQUvk81fmYhuMsJ8T2u/XDYKDYkSePAdfe1+V5RaB+eTI
lS6NfX4p8VO2G/L9Iuv9nlzY/0pRxRWD4JEXLgfdwB52SoMWkcinow88OsDf
lPqNNC/RpLrU2pUFfwjaFOLXFIV5EjP10A3+sSlY9suGyzS5fO9xQTN4ISv7
rS+4wOdJnRr8pWa7zK6F0TT522UvuwC+o8TSLDIBa9bNOHmBl8Xuzk8C2wo+
ePQJfLpcTFoohiax6sul7sOXzpnw39sHLgt4brYYfqXI+pd2Abzsib6fH7j/
4h+RQvD9BdJhn8GfbfnmfwHH5H08owtfE6657Md/hSZsXMmHHoE/SA5abwWH
eL7lFYLvmWpsf2MC/rtSM+ks+GFlIOUNztZjsX0B95l1bIwFM3rsynrwR+Hb
1qsegGsdulQfgQ301l9/Mcv/1gsshW8m/FK80QReve9Guh+YVy9n0xfwvBze
yQ5wwY9Y3eHZz2exg08L/nrnytyxMXDdy8mmLPCPd8sU/oBlVy4wFID/3jnc
xvkXrMXSueAGfv/O0nESbDLoeOwDOKbjpcPP2edl0/usDH/+ukGQqx8cqnWX
5ya43+jIjjawHO/+uhlwFj/N/xo8ksgvYwEfV5zQCHoKFtC+L1kOvl3MmTD7
818Nh8ceScLnd255/V8YmE8+7lUo+MjYriJ78FfdFIde8P4D66t1wUfG/eJ0
kA8GAg9HS4C3x8dpZIJ5q7L4/+E+VINNnbmRJ85bdOm+m+WVMiLW4J7rh3jd
wf8VsxrWII8EFkhfVwVPemp/PAf+KCY3wT17/waX97SAV8xMKV1GvXTk/XW9
gnxTPGAluRdc/Xts+SDYU1p5bC74X7WRuDby0L0s24PeqEcnt++ak+A31hb9
G8GqHNOGB5CffDz5vJtRz0ERK55kgndO3omQBauqSp8wLEE+cjVa9gH1r8Mz
lpoFXqhuUeQLXnlLRHwaXOT4YutT9IufjldfBvKagMBmiUORs1+PV5CcALdH
i6sMoL8m1f5L0kXe03jWxbMYvC2xUKwffDXue4U6+tX5uv7xNciHTZxH9z5F
fw/cKnjrAX77rubqJnCfa5LsK/A1y1b/uZgHZ+JvpDggX95ZJKLshg11y3/p
PQrM+zucYYJpYmFaFcWHPNrCEfz9BuaLfn5hewZ4c/op/z+YP//5RWr+AJ/w
KBY1Ap8oHvTeUc6Q+0sKqtkxr9Z7ndWqBb/4yz9/hz/m5acpmXbk36m+zQFB
mHfMAfNaUeTl9IYpq0rMQ9vh6+InwB6DNU91MS8Lg7r/tYE1m1pVQzFP1bq5
zyxD3i4XeWZb5ov9p78t2xC8csWad1t8cB5TnUuqqmbPo2CTNeaxaoO7wTQ4
crW/WYIXTRTSr0ltRZ5Pa1pnN4Z5vn/+50/JYCZzaWWiK3xMs+OveTXyeH+C
UqkLTWoce03DwH+Wr/jWif1wa4WwcT54jbghWXuaJvvq6qU5a+BT3Wn/VLFP
fPJ0ODeB9RzWbDmMfSPYXu19AOyd0rEu+hRNpBtrZRLAqduecmXa04T93C6X
p+B7tiNRJXY06ZW7rsfM/nx0tc+brzY0CS5TL1tci/468PTub+y74vptJ2TB
xms1js4DC+TWx+uBFzc0pW3Cvtx1R63WFxxQttlghwVNNsZqVEeDpaRc5+me
pMlR/p3HM8C/F+v8MDyB+/JXjXpSO/v720x4Th7H/jA8eagafCde/5gj9vH0
vyd5zeCaqWoO76M0GZb1uNcHrvjqzBGE/e1vaK00Ds4qeXzqIvb7cXs1C47X
DPlSKqB3Dfv//Zfcdfzgz+tHs5PNaCKmbBEqBF62q+3mbVOatB5kO7/69ezX
lwxkc0zw/i6myyXBv0aLHPON4e86zgekwLeWR1kWwy82Vu2TlAG7hO9a+9yQ
Jp872ZK2gFsaFAoq4SNGIdGP5MD/A8BQvXk=
"]]}}},
AspectRatio->1,
DisplayFunction->Identity,
Epilog->{
PointSize[0.05],
PointBox[{{0.11039083557420919`, 0.3858774664985039}, {0.1, 0.6}},
VertexColors -> {
RGBColor[1, 0, 0],
GrayLevel[0.5]}]},
Frame->True,
FrameTicks->{{None, None}, {None, None}},
GridLines->{{{0.11039083557420919`,
RGBColor[1, 0, 0]}, {0.1,
GrayLevel[0.5]}}, {{0.3858774664985039,
RGBColor[1, 0, 0]}, {0.6,
GrayLevel[0.5]}}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "TransparentPolygonMesh" -> True},
PlotRange->{{-0.005546780082173802, 0.2055467800821738}, {
0.2944532199178262, 0.6055467800821738}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.710381311655034*^9, {3.710381720000657*^9, 3.710381739199018*^9},
3.710381902505272*^9, 3.710382363012937*^9, {3.7103824232103653`*^9,
3.71038244335632*^9}, 3.7104961154205523`*^9, 3.710822025123342*^9, {
3.7108224202050257`*^9, 3.710822440122488*^9}, 3.710822695819227*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\
}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"Hopf", " ", "bifurcation"}], ",", " ",
RowBox[{"detJ", ">", "0"}], ",", " ",
RowBox[{"Trace", "=", "0"}], ",", " ",
RowBox[{"Lyapunov", " ", "coefficient"}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"+",
RowBox[{"+",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{"++",
RowBox[{
"++", "++"}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]}]\
}]}]}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"ge", ",", "cplus", ",", "beta1", ",", "beta2", ",", "ze", ",", "zi", ",",
"plot1", ",", "plot2", ",", "P", ",", "F", ",", "Z", ",", "re1", ",",
"ri1", ",", "a", ",", "b", ",", "c", ",", "d", ",", "detDG", ",", "g20",
",", "g11", ",", "g21", ",", "l1", ",", "conjP1", ",", "conjP2", ",",
"Q1", ",", "Q2"}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"**", "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "**"}],
"**"}], "**"}], "**"}], "**"}], "**"}], "**"}], "********)"}],
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"SSN", " ", "parameters"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**"}], "********)"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ge", "=", "1.041904796426249668606"}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"cplus", "=", " ",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "*", "Jii", "*", "ge"}], "+",
"gi"}]}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"Characteristic", " ", "function", " ", "for", " ", "detJ"}],
">", "0"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"P", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*", "z"}], "+",
"cplus"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z_", "]"}], "=",
RowBox[{
RowBox[{"Jee", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"z", "^", "n"}], ",",
RowBox[{"z", ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"z", "\[LessEqual]", "0"}]}], "}"}]}], "}"}], "]"}]}],
"-",
RowBox[{"Jei", "*",
RowBox[{"Piecewise", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"P", "[", "z", "]"}], ")"}], "^", "n"}], ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ">", "0"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"P", "[", "z", "]"}], "\[LessEqual]", "0"}]}], "}"}]}],
"}"}], "]"}]}], "-", "z", "+", "ge"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"plot1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"P", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "0.01"}], ",", ".6"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<P(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"plot2", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"F", "[", "z", "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "0.01"}], ",", ".6"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", ".6"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "0.5"}], ",", "1"}], "}"}]}], "}"}]}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<z\>\"", ",", "\"\<F(z)\>\""}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Blue", ",", "Bold", ",",
RowBox[{"FontFamily", "\[Rule]", "\"\<Helvetica\>\""}]}], "]"}]}]}],
RowBox[{"(*",
RowBox[{",",
RowBox[{"Ticks", "\[Rule]", "None"}]}], "*)"}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"GraphicsRow", "[",
RowBox[{"{",
RowBox[{"plot1", ",", "plot2"}], "}"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<detJ=\>\"", ",", "detJ"}], "]"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"Z", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"F", "[", "z", "]"}], "\[Equal]", "0"}], ",", "z"}], "]"}]}],
";",
RowBox[{"(*",
RowBox[{"Zero", " ", "crossings", " ", "of", " ", "F"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"\"\<The zero crossing of F is z1=\>\"", ",", " ",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"ze", "=",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}], " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{"zi", "=",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], "+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*",
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "+", "cplus"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{"re1", "=",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], ";"}], " ",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"ri1", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"detJ", "*",
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "^", "n"}]}], "+",
RowBox[{
RowBox[{"Jei", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jii", "*",
RowBox[{"(",
RowBox[{"z", "/.",
RowBox[{"Z", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], "+", "cplus"}], ")"}],
"^", "n"}]}], ";",
RowBox[{"(*",
RowBox[{"steady", " ", "state"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{
"\"\<The steady state of the SSN is re=\>\"", ",", " ", "re1", ",",
" ", "\"\<, ri=\>\"", ",", " ", "ri1"}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
"(*", "******************************************************************************************************)"}\
], "\[IndentingNewLine]",
RowBox[{
RowBox[{"a", "=",
RowBox[{
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}],
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"Jee", "*", "n", "*",
RowBox[{"ze", "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"b", "=",
RowBox[{
RowBox[{"-",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "*", "Jei", "*", "n", "*",
RowBox[{"ze", "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"c", "=",
RowBox[{
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*", "Jie", "*", "n", "*",
RowBox[{"zi", "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"d", "=",
RowBox[{
RowBox[{"-",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}],
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Jii", "*", "n", "*",
RowBox[{"zi", "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}]}]}], ")"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<Trace DG\>\"", ",",
RowBox[{"a", "+", "d"}]}], "}"}], "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<detDG\>\"", ",",
RowBox[{"detDG", "=",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"a", "^", "2"}]}], "-",
RowBox[{"c", "*", "b"}]}], ")"}]}]}], "}"}], "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<conjP1\>\"", ",",
RowBox[{"conjP1", "=",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(", "detDG", ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}], "-",
RowBox[{"a", "*", "I"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"2", "*",
RowBox[{
RowBox[{"(", "detDG", ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}], "*", "b"}], ")"}]}]}]}], "}"}],
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<conjP2\>\"", ",",
RowBox[{"conjP2", "=",
RowBox[{
RowBox[{"-", "I"}], "/",
RowBox[{"(",
RowBox[{"2", "*",
RowBox[{
RowBox[{"(", "detDG", ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}]}], ")"}]}]}]}], "}"}],
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<Q1\>\"", ",",
RowBox[{"Q1", "=", "b"}]}], "}"}], "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<Q2\>\"", ",",
RowBox[{"Q2", "=",
RowBox[{
RowBox[{"-", "a"}], "+",
RowBox[{"I", "*",
RowBox[{
RowBox[{"(", "detDG", ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}]}]}]}]}], "}"}],
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<beta1\>\"", ",",
RowBox[{"beta1", "=",
RowBox[{
RowBox[{"Jee", "*", "Q1"}], "-",
RowBox[{"Jei", "*", "Q2"}]}]}]}], "}"}], "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<beta2=\>\"", ",",
RowBox[{"beta2", "=",
RowBox[{
RowBox[{"Jie", "*", "Q1"}], "-",
RowBox[{"Jii", "*", "Q2"}]}]}]}], "}"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<g20\>\"", ",",
RowBox[{"g20", "=",
RowBox[{"n", "*",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"conjP1", "*",
RowBox[{"ze", "^",
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}]}], "*",
RowBox[{"beta1", "^", "2"}], "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "+",
RowBox[{"conjP2", "*",
RowBox[{"zi", "^",
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}]}], "*",
RowBox[{"beta2", "^", "2"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ")"}]}]}]}], "}"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<g11\>\"", ",",
RowBox[{"g11", "=",
RowBox[{"n", "*",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"conjP1", "*",
RowBox[{"ze", "^",
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"Abs", "[", "beta1", "]"}], ")"}], "^", "2"}], "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "+",
RowBox[{"conjP2", "*",
RowBox[{"zi", "^",
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"Abs", "[", "beta2", "]"}], ")"}], "^", "2"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ")"}]}]}]}], "}"}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{"\"\<g21\>\"", ",",
RowBox[{"g21", "=",
RowBox[{"n", "*",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "*",
RowBox[{"(",
RowBox[{"n", "-", "2"}], ")"}], "*",
RowBox[{"(",
RowBox[{
RowBox[{"conjP1", "*",
RowBox[{"ze", "^",
RowBox[{"(",
RowBox[{"n", "-", "3"}], ")"}]}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"Abs", "[", "beta1", "]"}], ")"}], "^", "2"}], "*",
"beta1", "*",
RowBox[{"te", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}], "+",
RowBox[{"conjP2", "*",
RowBox[{"zi", "^",
RowBox[{"(",
RowBox[{"n", "-", "3"}], ")"}]}], "*", "beta2", "*",
RowBox[{
RowBox[{"(",
RowBox[{"Abs", "[", "beta2", "]"}], ")"}], "^", "2"}], "*",
RowBox[{"ti", "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}]}]}], ")"}]}]}]}], "}"}], ";"}],
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\"\<Lyapunov coefficient\>\"", ",",
RowBox[{"l1", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"2", "*", "detDG"}], ")"}], "^",
RowBox[{"(",
RowBox[{"-", "1"}], ")"}]}], "*",
RowBox[{"Re", "[",
RowBox[{
RowBox[{"I", "*", "g20", "*", "g11"}], "+",
RowBox[{"g21", "*",
RowBox[{
RowBox[{"(", "detDG", ")"}], "^",
RowBox[{"(",
RowBox[{"1", "/", "2"}], ")"}]}]}]}], "]"}]}]}]}], "}"}],
"\[IndentingNewLine]"}]}]], "Input",
CellChangeTimes->{{3.68568525641619*^9, 3.685685298987953*^9}, {
3.685685342773551*^9, 3.6856853982668457`*^9}, {3.685685483259624*^9,
3.685685532771741*^9}, {3.685685567980187*^9, 3.685685629964039*^9}, {
3.6856856910018797`*^9, 3.68568569544382*^9}, {3.6856857718178387`*^9,
3.685685779073902*^9}, {3.685686043801859*^9, 3.685686085391303*^9}, {
3.685686158939683*^9, 3.685686499853938*^9}, {3.6856866052871647`*^9,
3.6856866091119957`*^9}, {3.685686653140633*^9, 3.685686913775968*^9}, {
3.6856869491797323`*^9, 3.685686997994083*^9}, {3.685687046299402*^9,
3.685687091575254*^9}, {3.685687488509405*^9, 3.6856875951587276`*^9}, {
3.685690852492889*^9, 3.6856908526931257`*^9}, {3.6856910220210342`*^9,
3.6856910854475718`*^9}, {3.685691152612183*^9, 3.685691528528521*^9}, {
3.685691565253765*^9, 3.685691576535327*^9}, {3.6856916067797422`*^9,
3.6856916113330183`*^9}, {3.685691666057221*^9, 3.6856917526591167`*^9}, {
3.685691791311267*^9, 3.685691802810646*^9}, {3.685691919149023*^9,
3.6856919554215307`*^9}, {3.68569199026869*^9, 3.685692136242586*^9}, {
3.68569217223094*^9, 3.6856921906658916`*^9}, {3.6856922651046057`*^9,
3.685692418859467*^9}, {3.6856924820162973`*^9, 3.685692483314719*^9},
3.6857010883573933`*^9, {3.685701227581622*^9, 3.685701250156178*^9}, {
3.6857013594477177`*^9, 3.685701418653027*^9}, {3.685701487748252*^9,
3.685701727518729*^9}, {3.685701785282844*^9, 3.6857017985476303`*^9}, {
3.685701831827784*^9, 3.68570184939762*^9}, {3.6857018797627907`*^9,
3.685701909025935*^9}, {3.685702014043806*^9, 3.685702087438059*^9}, {
3.6857021190693398`*^9, 3.685702120821862*^9}, {3.685702157951551*^9,
3.6857021742074537`*^9}, {3.685702225942322*^9, 3.685702260331818*^9}, {
3.685702340649845*^9, 3.685702355614644*^9}, {3.685702530970234*^9,
3.6857027245658216`*^9}, {3.685702786938746*^9, 3.6857028444409237`*^9}, {
3.685702902246871*^9, 3.685703120918825*^9}, {3.685703158823044*^9,
3.685703232843652*^9}, {3.685703263541829*^9, 3.685703390105021*^9}, {
3.685703451901897*^9, 3.6857035399848127`*^9}, {3.685703573672164*^9,
3.685703612062427*^9}, {3.68570364315377*^9, 3.685703682823354*^9}, {
3.685703726113858*^9, 3.6857038347475777`*^9}, {3.685703909942483*^9,
3.685703910611238*^9}, {3.68570401900578*^9, 3.685704021946167*^9}, {
3.6857040575585318`*^9, 3.685704063153735*^9}, {3.6857041196403713`*^9,
3.685704234838978*^9}, 3.68570429784138*^9, {3.6857043685209837`*^9,
3.6857043935591297`*^9}, {3.685704450028243*^9, 3.6857044725437803`*^9}, {
3.685704564538342*^9, 3.685704620945957*^9}, {3.685768254306973*^9,
3.6857683078309383`*^9}, {3.708158346364113*^9, 3.708158349060175*^9},
3.708158419379264*^9, {3.708158551370123*^9, 3.7081588228886023`*^9}, {
3.708158881354252*^9, 3.708158910759551*^9}, {3.708340153915351*^9,
3.708340288654563*^9}, {3.708340457596336*^9, 3.7083404815692797`*^9}, {
3.7083405196400423`*^9, 3.708340521456808*^9}, {3.709260725990506*^9,
3.709260745348625*^9}, {3.709262441880829*^9, 3.709262487552722*^9}, {
3.709263240627383*^9, 3.7092633215340977`*^9}, {3.709267472797971*^9,
3.709267482440415*^9}, 3.709267816569496*^9, {3.7092678609007883`*^9,
3.70926788899505*^9}, {3.7092679271781178`*^9, 3.709267956243635*^9}, {
3.70926798913109*^9, 3.7092680950803633`*^9}, {3.709268137923067*^9,
3.709268214750649*^9}, {3.709272578296995*^9, 3.70927261500238*^9}, {
3.709272683493741*^9, 3.7092726855067787`*^9}, {3.7092727897964907`*^9,
3.709272814520968*^9}, {3.709273128487466*^9, 3.709273173904454*^9}, {
3.709273242538546*^9, 3.709273336043355*^9}, {3.709606536954191*^9,
3.7096065492030973`*^9}, {3.709606591716487*^9, 3.7096065947494698`*^9},
3.709607206571515*^9, 3.709607237938261*^9, 3.7096074052426023`*^9, {
3.7096125434043913`*^9, 3.7096125457644587`*^9}, {3.710382488578725*^9,
3.7103825016411133`*^9}, {3.710382560673511*^9, 3.710382561697268*^9}, {
3.710382633602892*^9, 3.7103826345280333`*^9}, {3.710382672622456*^9,
3.710382722193716*^9}, {3.7103827669792147`*^9, 3.710382778388432*^9}, {
3.710382845139784*^9, 3.710382845533984*^9}, {3.710382878669442*^9,
3.710382881425934*^9}, {3.710383000974825*^9, 3.710383002748065*^9}, {
3.710383034498939*^9, 3.7103830531264057`*^9}, {3.7103830964182158`*^9,
3.710383248340979*^9}, {3.710383340819359*^9, 3.710383425183846*^9}, {
3.7104941929906178`*^9, 3.710494374358375*^9}, {3.710494405374009*^9,
3.710494432535804*^9}, {3.710494480138646*^9, 3.710494493633329*^9}, {
3.710494632010306*^9, 3.7104946489167347`*^9}, {3.7104946841308937`*^9,
3.710494703146681*^9}, {3.7104948200766687`*^9, 3.710494900036887*^9}, {
3.710494971735383*^9, 3.710495050205945*^9}, {3.710495097331377*^9,
3.710495109725463*^9}, {3.710495174154817*^9, 3.7104958668959618`*^9}, {
3.710822452937345*^9, 3.7108224918574553`*^9}, {3.710822564229286*^9,
3.710822620722199*^9}, {3.710822655469091*^9, 3.710822660890655*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.],
LineBox[{{-0.009999987551020408, -1.04190478397727}, \
{-0.00981290207609477, -1.0417176985023444`}, {-0.00962581660116913, \
-1.0415306130274187`}, {-0.009251645651317855, -1.0411564420775674`}, \
{-0.008503303751615301, -1.040408100177865}, {-0.007006619952210195, \
-1.0389114163784599`}, {-0.004013252353399982, -1.0359180487796495`}, \
{-0.00019451530612244898`, -1.032099311732372}}], LineBox[CompressedData["
1:eJwVynk81Hkcx/HZKZY2ba1WaDroYW2WzDDRqPZNdCztY9E2q2NLUUKLRz1K
ISupUI88aHaNo1OF5MpRSb7LNuWqJoPGMYzfL8Y0zpqhg2Zn//g83o/X4/mx
2Bvuu4/JYDA26O7/Tfj4LLHUxh/JPevZGVFjRHG2rN/16gVYFZ329F4/Rs55
H40IfZCFDe4ehqbGYyTFTxTHeZuDVr1se1bdKOmpuRVSfO42wmbP7h72HSUC
7uoOp+0lELsrgscUI+ThjedG6SVl8L81cD8rfIT0GboG7Z2shL0sydJGPUxm
puaNPtOrQmWy7by46GFiU1ad6MJ/hJu/vWA1jQ+R3E8Becuc/0E++0+XGSFD
ZJVQenn3w1rsSuF6BclUxIuZsyjb/19Qk1Uu11aryM7pwbI85WPQMVs71me9
ISOihJaKi0+wjaU041NKwkhKOfV+ZT0mZb28gqVKMlf27eavqhvgftDlbqT/
ILn+eTx7cUATToUvqD0TryAOpT/pMUeaEZrDfTp+c4B4cCY1/RnP8dGhIe9g
bj9RtSVVaxeLcaygOfVD9mtS1tWWpKbE4Bw085EIaLKmfnNW8L2XmE6/pUwP
pIjHiZP3n5xogXut+NwXzn3kfPHw5R9dJZiSl97lT/USQX1Cg5NxK/JMiwti
7GSEdbtDayJtxTxFvldsUCcJPLQtKrKwDdov03LTeK/I0L25NW9j2/Fprusy
iUpC3olOG/HXvQJZZPdLdYGYPKyyusYzkSIwOeS4gbKBMI+dctXrlqLIW8jY
kFlHku6a5qsudSCx3K3cZHkleSmRbvWN6ARjMDi+V19AhI/4c65xu8Dmdjbt
ycjF0gvaWRGG3fBO91/IV9XA2nq/sbW4G6ssl+zZ3lKPsLUz+9+nyWAgnR30
aOVLHHF59tFzfw9m2nQOWuS1Y0q7hXX6h17cCdrS9PWHLli2M2uvMOQYOqNv
uVYrR39IpF9ysBy8EgOfaJPXGKQbNQeadM6R7IKpAl5ix4qzK/tQ8VRg7BX7
BiNXo6MyhX2IOTyluNg8DA57942qD31gysN5oX+NodXBb8w8gEJWGKurPfot
7pmx14WLKIhTPO9f36KGU0iHz3dPKXjnuPH0dqpRWRW/R1ZPwUrtZx4cqOsd
bXFezRTmvDswzT2i60tRxFpCYfpNmqfsbzXKLURr5HIKwiGHRRGdapQu3+7s
M0Vh6cnHCVf2asCOmrHR4DOFNm/jTStCNShpvMMnWgr8xLPhNYd1Hao9YjeD
xpTEX0Ul6LrwRrnhLBoGATsy1+RqUMQZ5dQtoOGbJBh3GNJgRbzQ7bgZDRH3
Z32pWuctbj7shTR4MruTsdMaFB4WRFxeTONooyL/xZwJ3KngFUdZ0YjPqmuM
50zAVp+u4VjTcC7HfEcXnfPPPx/8nsaF+QOPX6/T9WTPMN+Wxh8+9js3/6r7
35Q4bbSCRnbcN+7M33Uu5BiJ7GnUZF9JfbBP58pOVgyHhuWLiY2HwiZQwEuw
dXSkYe62ar9t5AT+A/uhUSI=
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"P(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{-0.01, 0.6}, {-1.04190478397727, 1.4040950768431402`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {192., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}], InsetBox[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAAQ2NH0euDpT8AAAAAAADwP96+pmqv
i6o/r3ZVL0Sw7z+UNDvZNlqwPxlVMr41T+8/u6TODZewsz8npP4gzebuP+EJ
QGdi97Y/1kdvvTuB7j8EkajvzQW6P5RRYR13I+4/KrO8iDpWvT9zN1iM/77t
P6f7Y6gjN8A/fOGRS3ti7T84mNieX7vBP0Eq5sMbCe0/SwKjHZxgwz9gvGWD
w6nsP1z96LOo6cQ/8TyQlXVS7D/uxYTStZPGP9703jXJ9es/AImPg/g1yD9U
mQre8ZzrPxDdFUwLvMk/QivinCJM6z+i/vGcHmPLP6PzAQre9uo/MrFJBQLu
zD8T1LVipqnqP0Qx9/Xlmc4/5Wc7ErdY6j/r1Ym8/x7QP7NMFEotDOo/s9vV
ifTi0D8c+srrhcfpPzzITJtpt9E/1f1NezyA6T9EfYG4xn3SPwF9GOTFQOk/
jK/tnj5A0z/5OCoalgXpP5TIhMk2E9Q/3izoLurI6D8cqtn/FtjUPznS1IDA
k+g/ZHJZenet1T9ULPV7DV7oP+y3EL7yftY/k/Pq/XMt6D/zxYUNVkLXPzJq
TUvwA+g/u7oloTkW2D+cuMyqOtvnPwJ4g0AF3Ng/aGImlmm55z+Jship653Z
P0OUCO9PnOc/0dPYVVJw2j/6IZ1VaoHnP3jLupBjc9o/e9itXQ+B5z8gw5zL
dHbaPwVWvKu0gOc/brJgQZd82j9gHfMZAIDnPwqR6CzciNo/jh+rP5p+5z9C
TvgDZqHaP3MEX7fbe+c/oliuNJWo2j90q1lcEXvnP3tbMt0=
"]],
LineBox[CompressedData["
1:eJwdlQlUjdsbxk+DZhFhFa7KVaYbpZKmp1K5NF26xc2UkCYJnSIkNCC3MpVS
GpB0GwhXcU8ncQydjro06JzvnPN9p873RZlChpL7/f97rb32+q299/M+e7/v
Wq9p6I5VW1U5HE4JO/+33nw8pXbvMzH0Ug8ZZsUzWNv4deB4hxgfKjzuO7Ks
WiexKHghBj8h91gfl8FvV4oKG2RivLS74ufO8utUi2Nq/WIY8GoCh3YzMF+6
OORPNQlKRD4/r9/J4BwvSL/ERgKtbXSgbjQDccjyFR8XSzB7q0VIZRSDaepO
acscJehq5w75sFy8wnT0tZsEQWFRtSciGVzt6n/t4C/BiiR++5gIBnfeJ4va
IyRoeZ87RbyVwciZ3dqzt7N6CSNbd7LsYh/muS9WAieHPa80WW5K8uaZJkgw
+D30oPUWBkLdyVUxKRJwLCIcD4QyIGb9dUKrSALNjPZvPRsY/PSk8PHaUtbv
ViNONMsh0dnqNZclECYFygfXM+it5e4PrJTgFkQTv69j3w/X6NJ6CbJKx1Sq
rmUw+keHt1M7e783w0UUxMAk84dOrDaB1WEVtxf5MkiZbcoc1yNg12E3J8eH
QV+T+/3L4wh8mjX+5ZA3g2ufU/dJJhGIi010vrGCgdsmvQEvMwL9nfUFk39l
EGpjJJruSOCMXhGOuDN4+NThqr0LAf1Nwe8fuTGYG7EuNcCNwFeebY4Oy4OF
Rc7HlhHQCW0qOQYGRzTNqz8GEEjab2sc48Tgktg6SxhN4Hyyi5/QloEW9/co
egcBySWnLQM2DKLHxS9T2U0gr79cT5dlG4/6H3Z7CazQ7R52tWYgqEJsaSqB
F07XL2ZaMqCTfVbuvUAgLF89/S9zBhYWYRMt2gjc4S/p4BkySC6qDLZ+TsB4
uSt5fCJbD1M+lDh3Ehg4u0b4+wQGJ7SSF/5OEJiTu91CPo7Bu5d5vof6CMw3
rnUW6TCoqxSlSzhSxJ8dVtPmMDCYZdhKq0lhJ7j1pniURmRh8ORBDSlCyop8
bb/TmJbJXNIaK8VSO2efgG80Du1QabI1kiJ76PXRzR9prLC2HcmykoJu/Pz0
KUPjYsW+pedtpMhxtaqZS9MYMWs6XrZYipTgpycP99KonuhvxHOWYufMAVdz
isbET+F2r5ZLIXgQucdJTIO4XRDrESrFsMp9QaGQRoyzuvLLKSl0PLcFj1bQ
CN209hevHCnag46pF5TTCEqt5Z7Ok8Jc3Uq8qIyGiyhEw7JYimuNRbKVJTTG
redZbK6SYvMp0sIrl8a1/fGRokdSGB5V7Nc4TONSsajWWCiFR4bWe7eDNM49
+Hl421MpXqg00vH7aSTrPc9Q7ZCi3HbGPFE8jZUFC6oWK6SoT7fsmRNFY/Bu
39uSEVbveaVv/ioatBz2b3+w59fNKwv3pyFWy012UpPBkXressCHRpO3p0GX
tgzNx7hB5Z40TktKrPWmyHB+fc4kN3saNsPB3HgrGVoun/msMY0G10H0bUWY
DGYXTYgsqRInAgN6NkbIcLO0/GR5txKlsd3CuGgZvAomXa/vUOJpmbLgwi4Z
5m74oCYQKWE+cdRlMEmGwPF+7Uk8JTr7LY/k5crQrbOzm3teCfvCbN2+xzIM
7IzNmbVSCb+6yR9HhDK8ibvHt/NRYsvzAsKgVYaAA6OfXJYpka19tcqxg/Wj
jFpr46zES+49/yxKhvj8A4+uz1Yi32/wtN03GV483Pxh4HsvRn4ETEudJ0cj
4+ZpUNKLqoevxhCWcmzRzLCLyO/Fhj8PvbW2lsOVNFTcPN2LRuOaJtJeDu+A
QQuLtF6k2upEOHnJca53aSU3shf6UY23PoTIkV1Gralc2AuTzvn+oTlyzL/w
+YrujR78W3Dfvj5PDlMv98E7FT04vDnYbHyhHEd/2SpbW9qD3nfpn3gX5Sh+
XRO462QPrur2nDe6LsfoOUHr25geWLvl9bUJ5bjjFuM63aIHZp2q94o4JH7V
Tqi5l6EAtzwkaqkqidJ6a07tIQUeJzZMYtRIpH9udDmVoEDMjMRIS00SaRlf
HM02K3An/P1E3lgSG5uCrJOWKBAwLA8TG5PY+3xxw6QeCikmPL1JtiQm88q/
Os+h0DVofLvOjsS8mS/3aE6nMFewZ9M6exJxQa3JDeMptEXY/H3RkUS03mLx
x88kpt34a6O1Owm/028PJAtI3PTMr/X3J3E4bVaVynoSysiENccjSDyzVWQs
YvPSXDfwzCCKxOVTnwTPZDJUa4T65kWTEAf1+/veZ/NY6uNevoOEHqkueJ4h
g4bYdP5DLgkNlyPLzabKYL685YfKYRLBmD21zFqKMAvTK3vzSZhwto94ebB9
hptjqlJAYpXgj53aP0tgeV+34Ggh67dD/2wp29eGNgxl5xaTCMkL9FvTJEZa
jjDxVhkJ/drDy0XOYlwZE+/3vpb9n10yo7vzu9HX0/wpXEiipcvqeubLTuSn
P441EJFQVV+SVNHYCe95D/vrn5JwIh+JsnI7Ub3rHqXzjMSbTLsZf3t0Ik6l
TlT5gkRfTHx1VEEHVGZcvvxOSaLY1GWGt1s7jIMPBu7hUFjkfeTmmo3/ouX7
/jYTVQpN9Huhw4J/caAk0fuJGoVsmTZXPtoGso/rZqxJYXvPwjM7CttQlhD9
yz9jKVjK93gvr2mF9dk/xnCmUriUmW66PrkF3m2LbqXbUnhxUnDUoVGAzLe/
cgwXs3n3W2O2ZLUAbfobvIvtKZi0T0vjv36AIN+jVJ0jhSFPjwmhRg8Q0kyM
feXGxvc/+3UwsglxD1LDfPxY/V1LFj17zUNBXdcUg20UYieLurV41ZB1DYQW
hlNwfde08m53JUw/q1TPiWT3ffNFqz9WoMx2vof7draOBN59y2ZewbXa5Njd
uymQDuHm5a0XIKic86TjIAXOq5iQL4m+/DfF+xLzz1E4V+xYXTpwjT9vwczh
n/IpPB7cKO8fvs4P5zXvu3ieQnjS4Xkr9W7wFd1GByovsPGOT8nZvfAWv3NC
3cGGSxSu7XQIXphWz+enfExRXKOgfsLKabbNPX52+PasuU8ojJhciGtIa+aL
hgzH1zRTmN/gx6iaCvk6qf9kL2ph/WUmv+q5K+SnlOiecmqlECcITjnwoYW/
R3z1jF8HhXL9P92nRbbyQ3zovF0UBa2vk9bUOzzjWy3ceOnOVwqjaWdefjjS
xXcyzJoVMkzBySbj9kNFF9/rS0PZmO8UQlcpiFG3F/x1jT9d/Y2jwAXP0YRi
lW5+2m+yKlpDgRTLEdXaVDFfHLv+9gRDBdr26lesLpHy6xOnLiidrgDn/4Pk
/weTqCgy
"]]}, {}}, {{}, {}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox["\"z\"", TraditionalForm],
FormBox["\"F(z)\"", TraditionalForm]},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
RGBColor[0, 0, 1], Bold, FontFamily -> "Helvetica"],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 0.6}, {-0.5, 1}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}], {576., -116.80842387373012`},
ImageScaled[{0.5, 0.5}], {360., 222.49223594996212`}]}, {}},
ContentSelectable->True,
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699142153*^9}],
Cell[CellGroupData[{
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"detJ=\"\>", "\[InvisibleSpace]", "8.5`"}],
SequenceForm["detJ=", 8.5],
Editable->False]], "Print",
CellChangeTimes->{
3.7103827889419327`*^9, 3.710382846454965*^9, 3.7103828822880507`*^9,
3.710383054167954*^9, 3.710383128716654*^9, 3.7103831727962427`*^9, {
3.7103832164999533`*^9, 3.710383249104661*^9}, 3.7103833867507153`*^9,
3.710383440616789*^9, 3.710494053061915*^9, {3.7104941943712053`*^9,
3.710494375425349*^9}, {3.7104944058991833`*^9, 3.710494436711153*^9}, {
3.710494483804188*^9, 3.71049449484048*^9}, {3.710494637743074*^9,
3.710494649903376*^9}, {3.710494687266191*^9, 3.710494704459243*^9}, {
3.710494821755375*^9, 3.710494901032928*^9}, {3.7104949728613367`*^9,
3.710495051030272*^9}, {3.710495099313458*^9, 3.7104951131969233`*^9}, {
3.710495175297721*^9, 3.710495867343841*^9}, 3.710822036146744*^9,
3.710822495433889*^9, 3.7108226328052053`*^9, 3.7108226991620483`*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The zero crossing of F is z1=\"\>", "\[InvisibleSpace]",
"0.5468116985174848`"}],
SequenceForm["The zero crossing of F is z1=", 0.5468116985174848],
Editable->False]], "Print",
CellChangeTimes->{
3.7103827889419327`*^9, 3.710382846454965*^9, 3.7103828822880507`*^9,
3.710383054167954*^9, 3.710383128716654*^9, 3.7103831727962427`*^9, {
3.7103832164999533`*^9, 3.710383249104661*^9}, 3.7103833867507153`*^9,
3.710383440616789*^9, 3.710494053061915*^9, {3.7104941943712053`*^9,
3.710494375425349*^9}, {3.7104944058991833`*^9, 3.710494436711153*^9}, {
3.710494483804188*^9, 3.71049449484048*^9}, {3.710494637743074*^9,
3.710494649903376*^9}, {3.710494687266191*^9, 3.710494704459243*^9}, {
3.710494821755375*^9, 3.710494901032928*^9}, {3.7104949728613367`*^9,
3.710495051030272*^9}, {3.710495099313458*^9, 3.7104951131969233`*^9}, {
3.710495175297721*^9, 3.710495867343841*^9}, 3.710822036146744*^9,
3.710822495433889*^9, 3.7108226328052053`*^9, 3.7108226991650057`*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{"\<\"The steady state of the SSN is re=\"\>", "\[InvisibleSpace]",
"0.16349835668415033`", "\[InvisibleSpace]", "\<\", ri=\"\>",
"\[InvisibleSpace]", "0.7403406329349911`"}],
SequenceForm[
"The steady state of the SSN is re=", 0.16349835668415033`, ", ri=",
0.7403406329349911],
Editable->False]], "Print",
CellChangeTimes->{
3.7103827889419327`*^9, 3.710382846454965*^9, 3.7103828822880507`*^9,
3.710383054167954*^9, 3.710383128716654*^9, 3.7103831727962427`*^9, {
3.7103832164999533`*^9, 3.710383249104661*^9}, 3.7103833867507153`*^9,
3.710383440616789*^9, 3.710494053061915*^9, {3.7104941943712053`*^9,
3.710494375425349*^9}, {3.7104944058991833`*^9, 3.710494436711153*^9}, {
3.710494483804188*^9, 3.71049449484048*^9}, {3.710494637743074*^9,
3.710494649903376*^9}, {3.710494687266191*^9, 3.710494704459243*^9}, {
3.710494821755375*^9, 3.710494901032928*^9}, {3.7104949728613367`*^9,
3.710495051030272*^9}, {3.710495099313458*^9, 3.7104951131969233`*^9}, {
3.710495175297721*^9, 3.710495867343841*^9}, 3.710822036146744*^9,
3.710822495433889*^9, 3.7108226328052053`*^9, 3.710822699167973*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"Trace DG\"\>", ",",
RowBox[{"-", "4.440892098500626`*^-16"}]}], "}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.7108226991709414`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"detDG\"\>", ",", "208.2900113392288`"}], "}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699173703*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"conjP1\"\>", ",",
RowBox[{
RowBox[{"-", "0.055740794546519264`"}], "+",
RowBox[{"0.013344556486385436`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.7108226991764174`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"conjP2\"\>", ",",
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"0.03464461843615062`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.7108226991791487`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"Q1\"\>", ",",
RowBox[{"-", "8.9700910090673`"}]}], "}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699181919*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"Q2\"\>", ",",
RowBox[{
RowBox[{"-", "3.4551365136009515`"}], "+",
RowBox[{"14.432255933818137`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.7108226991846743`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"beta1\"\>", ",",
RowBox[{
RowBox[{"-", "9.999999999999998`"}], "-",
RowBox[{"14.432255933818137`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699187416*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"beta2=\"\>", ",",
RowBox[{
RowBox[{"-", "86.24577357707206`"}], "-",
RowBox[{"14.432255933818137`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699189575*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"\<\"Lyapunov coefficient\"\>", ",",
RowBox[{"-", "1244.4175177866366`"}]}], "}"}]], "Output",
CellChangeTimes->{
3.708340489652965*^9, 3.708340521883884*^9, 3.708340582420183*^9, {
3.709260717154634*^9, 3.709260746351856*^9}, 3.709262517184177*^9,
3.709263249298089*^9, 3.7092633282012978`*^9, 3.7092679189231033`*^9,
3.709267966117416*^9, 3.709268178917837*^9, 3.709268221127507*^9,
3.709273246046587*^9, 3.7092733001520033`*^9, 3.709273339804079*^9,
3.709606550142853*^9, {3.709606595584947*^9, 3.709606604838258*^9},
3.709607238550928*^9, 3.709607405616197*^9, 3.709612546961046*^9,
3.7103827889240026`*^9, 3.7103828464385567`*^9, 3.710382882270959*^9,
3.710383054150189*^9, 3.710383128700234*^9, 3.710383172780237*^9, {
3.710383216482401*^9, 3.710383249078548*^9}, 3.710383386733035*^9,
3.710383440591091*^9, 3.71049405304611*^9, {3.710494194354227*^9,
3.710494375408925*^9}, {3.7104944058815403`*^9, 3.7104944366894903`*^9}, {
3.710494483787425*^9, 3.71049449481507*^9}, {3.7104946377264843`*^9,
3.710494649877469*^9}, {3.7104946872492456`*^9, 3.710494704436618*^9}, {
3.710494821738469*^9, 3.710494901015421*^9}, {3.7104949728426323`*^9,
3.7104950510117292`*^9}, {3.7104950992943287`*^9, 3.710495113178137*^9}, {
3.710495175279418*^9, 3.710495867317206*^9}, 3.710822036130342*^9,
3.710822495410159*^9, 3.710822632779929*^9, 3.710822699191771*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.708328629177593*^9, 3.708328630898872*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.7081588339988203`*^9, 3.7081588365088463`*^9},
3.70815887467082*^9}]
},
WindowSize->{1023, 731},
WindowMargins->{{50, Automatic}, {Automatic, 5}},
FrontEndVersion->"10.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (March 23, \
2015)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1215, 34, 284, "Input"],
Cell[CellGroupData[{
Cell[1798, 58, 35460, 893, 1457, "Input"],
Cell[37261, 953, 12769, 229, 134, "Output"],
Cell[CellGroupData[{
Cell[50055, 1186, 976, 16, 21, "Print"],
Cell[51034, 1204, 1058, 17, 22, "Print"],
Cell[52095, 1223, 1058, 17, 22, "Print"],
Cell[53156, 1242, 1185, 20, 22, "Print"]
}, Open ]],
Cell[54356, 1265, 40409, 689, 257, "Output"],
Cell[94768, 1956, 33711, 537, 375, "Output"]
}, Open ]],
Cell[128494, 2496, 91, 1, 28, "Input"],
Cell[CellGroupData[{
Cell[128610, 2501, 30157, 819, 1440, "Input"],
Cell[158770, 3322, 12830, 230, 134, "Output"],
Cell[CellGroupData[{
Cell[171625, 3556, 436, 9, 21, "Print"],
Cell[172064, 3567, 518, 10, 22, "Print"],
Cell[172585, 3579, 518, 10, 22, "Print"],
Cell[173106, 3591, 648, 13, 22, "Print"]
}, Open ]],
Cell[173769, 3607, 41289, 704, 257, "Output"],
Cell[215061, 4313, 35492, 566, 375, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[250590, 4884, 29807, 799, 1491, "Input"],
Cell[280400, 5685, 9107, 171, 134, "Output"],
Cell[CellGroupData[{
Cell[289532, 5860, 434, 8, 21, "Print"],
Cell[289969, 5870, 519, 9, 22, "Print"],
Cell[290491, 5881, 519, 9, 22, "Print"],
Cell[291013, 5892, 650, 12, 22, "Print"]
}, Open ]],
Cell[291678, 5907, 45066, 767, 257, "Output"],
Cell[336747, 6676, 65422, 1047, 375, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[402206, 7728, 25039, 650, 1185, "Input"],
Cell[427248, 8380, 10134, 184, 134, "Output"],
Cell[CellGroupData[{
Cell[437407, 8568, 981, 16, 21, "Print"],
Cell[438391, 8586, 1063, 17, 22, "Print"],
Cell[439457, 8605, 1196, 20, 22, "Print"]
}, Open ]],
Cell[440668, 8628, 1456, 22, 35, "Output"],
Cell[442127, 8652, 1427, 21, 28, "Output"],
Cell[443557, 8675, 1537, 25, 28, "Output"],
Cell[445097, 8702, 1518, 24, 28, "Output"],
Cell[446618, 8728, 1441, 22, 28, "Output"],
Cell[448062, 8752, 1529, 25, 28, "Output"],
Cell[449594, 8779, 1529, 25, 28, "Output"],
Cell[451126, 8806, 1530, 25, 28, "Output"],
Cell[452659, 8833, 1462, 22, 62, "Output"]
}, Open ]],
Cell[454136, 8858, 92, 1, 28, "Input"],
Cell[454231, 8861, 121, 2, 28, "Input"]
}
]
*)
(* End of internal cache information *)