Skip to content
This repository has been archived by the owner. It is now read-only.
Permalink
b2faf8451a
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
132 lines (119 sloc) 5.26 KB
function [ data ] = getTiledData( obj, varargin )
%GETTILEDDATA Retrieves image data when the input is tiled
% This method retrieves the image data (or a subset of it) in the case of
% images that contain multiple tiles. The user can specify subset
% of the images by specifying the dimension and the interval of interest
% as a Name-Value pair. If no arguments are given, all the data is
% extracted. For the Cols and Rows argument, the interval is intented
% per-tile. For example, if the user wants to keep only the top left tile,
% he won't specify any subset for Rows and Cols (that is, take them all),
% but will specify the subset TileRow = 1 and TileCol = 1. On the other
% hand, if the user wants to extract an image subsampled of a factor 2
% compared to the original, he will specify a subset Rows = 1:2:obj.pixPerTileRow
% and Cols = 1:2:obj.pixPerTileCol, and no subset for the tiles (i.e. use
% all tiles).
% INPUT:
% obj: the BioReader instance
% NAME-VALUE ARGUMENTS
% 'Cols': Specify which columns to extract
% 'Rows': Specify which rows to extract
% 'C': Specify which channels to extract
% 'Z': Specify which planes to extract
% 'T': Specify which timeseries to extract
% 'TileRows': Specify which row tiles to read.
% 'TileCols': Specify which col tiles to read.
% OUTPUT:
% data: image data, up to 5 dimension (in this order: XYCZT). If only one
% channel is extracted (or the input is single channel), the singleton
% dimension relative to channel is squeezed.
% EXAMPLES:
% data = obj.getTiledData(); %extract all data
% data = obj.getTiledData('C', 1:2); %extract data only from the first
% 2 channels
% data = obj.getTiledData('Rows', 1:2:obj.pixPerTileRow, 'Cols', 1:2:obj.pixPerTileCol); %
% extract data subsampled by a factor 2 in rows and cols
% data = obj.getTiledData('TileRows', 1:6, 'TileCols, 2:4) %Reads first six rows of
% tiles, and column tiles from 2 to 4
%parse input
p = inputParser();
p.KeepUnmatched = true;
p.addParameter('Cols', 1:obj.pixPerTileCol, @(x) isvector(x) && all(x > 0) && max(x) <= obj.pixPerTileCol);
p.addParameter('Rows', 1:obj.pixPerTileRow, @(x) isvector(x) && all(x > 0) && max(x) <= obj.pixPerTileRow);
p.addParameter('C', 1:obj.channels, @(x) isvector(x) && all(x > 0) && max(x) <= obj.channels);
p.addParameter('Z', 1:obj.stacks, @(x) isvector(x) && all(x > 0) && max(x) <= obj.stacks);
p.addParameter('T', 1:obj.time, @(x) isvector(x) && all(x > 0) && max(x) <= obj.time);
p.addParameter('TileCols', 1:obj.numTilesCol, @(x) isvector(x) && all(x > 0) && max(x) <= obj.numTilesCol);
p.addParameter('TileRows', 1:obj.numTilesRow, @(x) isvector(x) && all(x > 0) && max(x) <= obj.numTilesRow);
p.parse(varargin{:});
rows = p.Results.Rows;
cols = p.Results.Cols;
channels = p.Results.C;
stacks = p.Results.Z;
timeseries = p.Results.T;
tileCol = p.Results.TileCols;
tileRow = p.Results.TileRows;
sizeRows = round(length(rows) * (1 + (max(tileRow) - 1) * (1 - obj.tileOverlap)));
sizeCols = round(length(cols) * (1 + (max(tileCol) - 1) * (1 - obj.tileOverlap)));
data = zeros(sizeRows, sizeCols, length(channels), length(stacks), ...
length(timeseries), obj.datatype);
%get index of start of each new tile
pixelStartTileRow = 1 + round((0:max(tileRow)-1) * (1 - obj.tileOverlap) * length(rows));
pixelStartTileCol = 1 + round((0:max(tileCol)-1) * (1 - obj.tileOverlap) * length(cols));
% get numelements in each dimension
nS = numel(stacks);
nCh = numel(channels);
nT = numel(timeseries);
nR = numel(tileRow);
nC = numel(tileCol);
maxNum = nS * nCh * nT * nR * nC;
% define progress bar
progBar = TextProgressBar('BioReader --> Extracting data: ', 30);
% For every combination of Time, Z, Channel
idxS = 1;
for s = stacks
idxCh = 1;
for ch = channels
idxT = 1;
for t = timeseries
%Create the whole 2D image
for row = tileRow
for col = tileCol
% update progress bar
currNum = idxT + (idxCh-1)*nT + (idxS-1)*nCh*nT + ...
(col-1)*nS*nCh*nT + (row-1)*nC*nS*nCh*nT;
progBar.update(currNum/maxNum * 100);
%set series
obj.bfPtr.setSeries((row-1) * obj.numTilesCol + col - 1);
%set index
tileIdx = obj.bfPtr.getIndex(s-1, ch-1, t-1) + 1;
%get plane
tmpTile = bfGetPlane(obj.bfPtr, tileIdx);
[rr, cc] = size(tmpTile(rows, cols));
data(pixelStartTileRow(row) : pixelStartTileRow(row) + rr - 1, ...
pixelStartTileCol(col) : pixelStartTileCol(col) + cc - 1, ...
idxCh, idxS, idxT) = tmpTile(rows, cols);
end
end
idxT = idxT + 1;
end
idxCh = idxCh + 1;
end
idxS = idxS + 1;
end
%squeeze data, to remove singleton dimensions
data = squeeze(data);
%remove zero rows and cols
if ismatrix(data)
data(1:pixelStartTileRow(tileRow(1)) - 1, :) = [];
data(:, 1:pixelStartTileCol(tileCol(1)) - 1) = [];
elseif 3 == ndims(data)
data(1:pixelStartTileRow(tileRow(1)) - 1, :, :) = [];
data(:, 1:pixelStartTileCol(tileCol(1)) - 1, :) = [];
elseif 4 == ndims(data)
data(1:pixelStartTileRow(tileRow(1)) - 1, :, :, :) = [];
data(:, 1:pixelStartTileCol(tileCol(1)) - 1, :, :) = [];
else % 5 == ndims(data)
data(1:pixelStartTileRow(tileRow(1)) - 1, :, :, :, :) = [];
data(:, 1:pixelStartTileCol(tileCol(1)) - 1, :, :, :) = [];
end
end