This repository has been archived by the owner. It is now read-only.
Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
gridSorter/spikeClustering.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
214 lines (183 sloc)
9.87 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [obj,idx,initIdx,nClusters,avgSpikeWaveforms,stdSpikeWaveforms]=spikeClustering(obj) | |
% Run clustering on previously extracted features | |
% [obj,idx,initIdx,nClusters,avgSpikeWaveforms,stdSpikeWaveforms]=spikeClustering(obj) | |
avgClusteredWaveforms=cell(1,obj.nCh); | |
stdClusteredWaveforms=cell(1,obj.nCh); | |
if isempty(obj.sortingDir) | |
obj.runWithoutSaving2File=true; | |
idxAll=cell(1,obj.nCh); | |
initIdxAll=cell(1,obj.nCh); | |
nClustersAll=cell(1,obj.nCh); | |
else | |
obj.runWithoutSaving2File=false; | |
end | |
fprintf('\nClustering on channel (total %d): ',obj.nCh); | |
for i=find(obj.sortingFileNames.clusteringExist==0 | obj.overwriteClustering) %go over all channels in the recording | |
fprintf('%d ',i); | |
MaxClustersTmp=obj.clusteringMaxClusters; | |
if ~exist(obj.sortingFileNames.featureExtractionFile{i},'file') | |
warning(['No feature extraction file was found for Channel ' num2str(i) '. Clustering not performed!']); | |
continue; | |
else | |
load(obj.sortingFileNames.featureExtractionFile{i}); | |
load(obj.sortingFileNames.spikeDetectionFile{i},'spikeTimes'); | |
end | |
[nSpikes,nFeatures]=size(spikeFeatures); | |
if nSpikes >= obj.clusteringMinSpikesTotal && nSpikes >= (spikeTimes(end)-spikeTimes(1))/1000*obj.clusteringMinimumChannelRate | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%%%%%%%%%%%%%%%%% Clustering %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
switch obj.clusteringMethod | |
case 'kMeans' | |
% set options to k-Means | |
opts = statset('obj.clusteringMaxIter',obj.clusteringMaxIter); | |
try | |
[initIdx] = kmeans(spikeFeatures,obj.clusteringMaxClusters,'options',opts,... | |
'emptyaction','singleton','distance','city','onlinephase','on','obj.clusteringNReplicates',obj.clusteringNReplicates,'start',obj.clusteringInitialClusterCentersMethod); | |
catch %if the number of samples is too low, kmeans gives an error -> try kmeans with a lower number of clusters | |
MaxClustersTmp=round(obj.clusteringMaxClusters/2); | |
[initIdx] = kmeans(spikeFeatures,MaxClustersTmp,'options',opts,... | |
'emptyaction','singleton','distance','city','onlinephase','on','obj.clusteringNReplicates',obj.clusteringNReplicates,'start',obj.clusteringInitialClusterCentersMethod); | |
end | |
case 'meanShift' | |
initIdx=zeros(nSpikes,1); | |
out=MSAMSClustering(spikeFeatures'); | |
for j=1:numel(out) | |
initIdx(out{j})=j; | |
end | |
end | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%%%%%%%%%%%%%%%%% Merging %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
switch obj.clusteringMergingMethod | |
case 'MSEdistance' | |
%calculate templates | |
load(obj.sortingFileNames.spikeDetectionFile{i},'spikeShapes'); | |
avgSpikeWaveforms=zeros(nSpikeSamples,max(1,MaxClustersTmp),nSurroundingChannels); | |
for j=1:MaxClustersTmp | |
avgSpikeWaveforms(:,j,:)=median(spikes4Clustering(:,initIdx==j,:),2); | |
end | |
[gc,Merge]=obj.SpikeTempDiffMerging(permute(spikes4Clustering,[2 1 3]),initIdx,permute(avgSpikeWaveforms,[3 1 2])); | |
if obj.saveFigures | |
f1=figure('Position',[50 50 1400 900]); | |
set(f1,'PaperPositionMode','auto'); | |
if obj.fastPrinting | |
imwrite(frame2im(getframe(f1)),[obj.sortingDir filesep 'Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest.jpeg'],'Quality',90); | |
else | |
print([obj.sortingDir filesep 'Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest'],'-djpeg','-r300'); | |
end | |
close(f1); | |
end | |
case 'projectionMeanStd' | |
[gc,f1]=obj.projectionMerge(spikeFeatures,initIdx,'obj.clusteringMinNSpikesCluster',obj.clusteringMinNSpikesCluster,'obj.clusteringSTDMergeFac',obj.clusteringSTDMergeFac,'obj.clusteringMergeThreshold',obj.clusteringMergeThreshold,'obj.clusteringPlotProjection',obj.clusteringPlotProjection); | |
if obj.saveFigures && ~isempty(f1); | |
set(f1,'PaperPositionMode','auto'); | |
if obj.fastPrinting | |
imwrite(frame2im(getframe(f1)),[obj.sortingDir filesep 'Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest.jpeg'],'Quality',90); | |
else | |
print([obj.sortingDir filesep 'Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest'],'-djpeg','-r300'); | |
end | |
close(f1); | |
end | |
if obj.clusteringRunSecondMerging | |
uniqueClusters=unique(gc); | |
nClusters=numel(uniqueClusters); | |
idx=zeros(nSpikes4Clustering,1); | |
for k=1:nClusters | |
p=find(gc==uniqueClusters(k)); | |
for j=1:numel(p) | |
idx(initIdx==p(j))=k; | |
end | |
end | |
MaxClustersTmp=nClusters; | |
initIdx=idx; | |
[gc,f1]=obj.projectionMerge(spikeFeatures,initIdx,'obj.clusteringMinNSpikesCluster',obj.clusteringMinNSpikesCluster,'obj.clusteringSTDMergeFac',obj.clusteringSTDMergeFac,'obj.clusteringMergeThreshold',obj.clusteringMergeThreshold,'obj.clusteringPlotProjection',obj.clusteringPlotProjection); | |
if obj.saveFigures | |
set(f1,'PaperPositionMode','auto'); | |
if obj.fastPrinting | |
imwrite(frame2im(getframe(f1)),[obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest.jpeg'],'Quality',90); | |
else | |
print([obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'projectionTest'],'-djpeg','-r300'); | |
end | |
close(f1); | |
end | |
end | |
end | |
%reclassify clusters | |
uniqueClusters=unique(gc); | |
nClusters=numel(uniqueClusters); | |
idx=zeros(nSpikes,1); | |
for k=1:nClusters | |
p=find(gc==uniqueClusters(k)); | |
for j=1:numel(p) | |
idx(initIdx==p(j))=k; | |
end | |
end | |
%calculate spikeShape statistics | |
load(obj.sortingFileNames.spikeDetectionFile{i},'spikeShapes','detectionInt2uV'); | |
spikeShapes=double(spikeShapes) .* detectionInt2uV; | |
[nSpikeSamples,nSpikes,nSurroundingChannels]=size(spikeShapes); | |
if nSpikes>obj.featuresMaxSpikesToCluster | |
spikeShapes=spikeShapes(:,1:obj.featuresMaxSpikesToCluster,:); | |
end | |
avgSpikeWaveforms=zeros(nSpikeSamples,max(1,nClusters),nSurroundingChannels); | |
stdSpikeWaveforms=zeros(nSpikeSamples,max(1,nClusters),nSurroundingChannels); | |
for j=1:nClusters | |
pCluster=idx==j; | |
avgSpikeWaveforms(:,j,:)=median(spikeShapes(:,pCluster,:),2); | |
stdSpikeWaveforms(:,j,:)=1.4826*median(abs(spikeShapes(:,pCluster,:)- bsxfun(@times,avgSpikeWaveforms(:,j,:),ones(1,sum(pCluster),1)) ),2); | |
nSpk(j)=numel(pCluster); | |
end | |
else | |
fprintf('X '); %to note than no neurons were detected on this electrode | |
idx=ones(nSpikes,1); | |
initIdx=ones(nSpikes,1); | |
avgSpikeWaveforms=[]; | |
stdSpikeWaveforms=[]; | |
nClusters=0; | |
nSpk=0; | |
end | |
avgClusteredWaveforms{i}=avgSpikeWaveforms; | |
stdClusteredWaveforms{i}=stdSpikeWaveforms; | |
nAvgSpk{i}=nSpk; | |
if ~obj.runWithoutSaving2File | |
save(obj.sortingFileNames.clusteringFile{i},'idx','initIdx','nClusters','avgSpikeWaveforms','stdSpikeWaveforms'); | |
else | |
idxAll{i}=idx; | |
initIdxAll{i}=initIdx; | |
nClustersAll{i}=nClusters; | |
end | |
if obj.clusteringPlotClassification && nClusters>0 | |
cmap=lines; | |
f2=figure('Position',[100 100 1200 800],'color','w'); | |
PCAfeaturesSpikeShapePlot(spikeFeatures,spikeShapes,obj.upSamplingFrequencySpike,initIdx,idx,obj.chPar.En,obj.chPar.s2r(obj.chPar.surChExtVec{i}),'hFigure',f2,'cmap',cmap); | |
f3=figure('Position',[100 100 1200 800],'color','w'); | |
featureSubSpacePlot(spikeFeatures,idx,'hFigure',f3,'cmap',cmap); | |
if obj.saveFigures | |
figure(f2); | |
set(f2,'PaperPositionMode','auto'); | |
if obj.fastPrinting | |
imwrite(frame2im(getframe(f2)),[obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'classification.jpeg'],'Quality',90); | |
else | |
print([obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'classification'],'-djpeg','-r300'); | |
end | |
figure(f3); | |
set(f3,'PaperPositionMode','auto'); | |
if obj.fastPrinting | |
imwrite(frame2im(getframe(f3)),[obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'featureSpace.jpeg'],'Quality',90); | |
else | |
print([obj.sortingDir '\Ch_' num2str(obj.chPar.s2r(i)) 'featureSpace'],'-djpeg','-r300'); | |
end | |
if ishandle(f2) | |
close(f2); | |
end | |
if ishandle(f3) | |
close(f3); | |
end | |
end | |
end %plot initial classification classification | |
end %go over all channels | |
if ~obj.runWithoutSaving2File | |
save(obj.sortingFileNames.avgWaveformFile,'avgClusteredWaveforms','stdClusteredWaveforms','nAvgSpk'); | |
end | |
obj=obj.findSortingFiles; %update sorted files |