Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
"""
WiNNie - Weighted motif eNrichmeNt analysis uses the weights received from TOBIAS in bigwig files to find enriched motifs
@author: Anastasiia Petrova
@contact: anastasiia.petrova(at)mpi-bn.mpg.de
"""
import argparse
import sys
import os
import re
import time
import multiprocessing
import logging
import subprocess
from Bio import SeqIO
import Bio.SeqIO.FastaIO as bio
import numpy as np
from collections import defaultdict
from scipy import stats
import pyBigWig
from statsmodels.sandbox.stats.multicomp import multipletests #for bonfferoni
import matplotlib.pyplot as plt
import random
import textwrap
import MOODS.scan
import MOODS.tools
import MOODS.parsers
logger = logging.getLogger('winnie')
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s : %(message)s", "%Y-%m-%d %H:%M")
#catch all the information about input and output files as well as information on the used tool (fimo or moods)
def parse_args():
parser = argparse.ArgumentParser(prog = 'winnie', description = textwrap.dedent('''
This script takes a list of motifs loaded from jaspar.genereg.net as a combined text file in .MEME or .PFM format, two bigWig-files containing scores for two different conditions, a genome file in FASTA format and a .bed file with regions of interest as input. The output is a file containing enriched motifs sorted by adjusted p value. Please note, if you want to have all intermediate output files, enter --clean nothing.
'''), epilog='That is what you need to make this script work for you. Enjoy it')
required_arguments = parser.add_argument_group('required arguments')
required_arguments.add_argument('-m', '--motifs', help='file in .MEME or .PFM format with mofits loaded from jaspar.genereg.net', required=True)
required_arguments.add_argument('-g', '--genome', help='a whole genome file or regions of interest in FASTA format to be scanned with motifs', required=True)
required_arguments.add_argument('-b', '--bed_file', nargs='?', help='a .bed file to be merged with the whole genome file to find regions of interest')
required_arguments.add_argument('-c1', '--condition1', help='a bigWig-file with scores for the first condition', required=True)
required_arguments.add_argument('-c2', '--condition2', help='a bigWig-file with scores for the second condition', required=True)
#all other arguments are optional
parser.add_argument('-o', '--output_directory', default='output', const='output', nargs='?', help='output directory, default ./output/')
parser.add_argument('--clean', nargs='*', choices=['nothing', 'all', 'cut_motifs', 'merge_output'], dest='cleans', help='choose the files you want to delete from the output directory, the default is deleting all the temporary files from the directory', default=['all'])
parser.add_argument('--cores', type=int, help='number of cores allowed to use by this tool, by default the tool uses 2 cores', default=2)
parser.add_argument('-p', '--p_value', type=float, help='enter the p value, the default p value is 1e-4', default=0.0001)
parser.add_argument('--silent', action='store_true', help='while working with data write the information only into ./winnie_log.txt')
parser.add_argument('--moods_bg', nargs='+', type=float, help='set the bg for moods, by default moods uses the bg is 0.25 0.25 0.25 0.25', default=[0.25, 0.25, 0.25, 0.25])
parser.add_argument('--output_number', type=int, help='number of enriched motifs that should be written to terminal or log-file, by default 40', default=40)
parser.add_argument('--score', choices=['mean', 'greater'], help='apply mean of the scores or the greatest score from the condition file', default='greater')
args = parser.parse_args()
return args
def check_directory(directory):
if not os.path.exists(directory):
os.makedirs(directory)
#logger.info('a new directory ' + directory + ' was created')
print('a new directory ' + directory + ' was created')
#merge the whole genome with the regions mentioned in .bed file
def merge(genome, bed_file, output_directory):
output_merge = os.path.join(output_directory, "output_merge.fa")
logger.info('the merging of files ' + genome + ' and ' + bed_file + ' will end soon, the result file is ' + output_merge)
os.system("bedtools getfasta -fi " + genome + " -bed " + bed_file + " -fo " + output_merge)
return output_merge
#split the motifs each in other file
def split_motifs(motifs, output_directory):
logger.info("the file with motifs " + motifs + " will be checked for motifs and if needed splitted in files each containing only one motif")
first_line = subprocess.getoutput("head -1 " + motifs) #find the first line of the input file
if first_line.startswith(">"):
#the motif file probably has the .pfm format, try to read and split it
splitted_motifs = read_pfm(motifs, output_directory)
else: #maybe the file with motifs is in MEME format, so try to convert it
logger.info("the input file has an unexpected format, i will try to convert it to .pfm format")
splitted_motifs = convert_meme_to_pfm(motifs, output_directory)
return splitted_motifs
def read_pfm(motifs, output_directory):
splitted_motifs = [] #to save the names of files after splitting
motif = [] #to save the motif itself, which will be written to the file
with open(motifs) as read_file:
lines = 0
for line in read_file:
#as the motif has first line with the name and 4 lines with information, if the 5th line is something else than the name of the next motif, the exit will be forced
if lines == 5 and not line.startswith(">"):
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file')
sys.exit()
else:
if line.startswith(">"):
if 'written_file' in locals():
written_file.write(''.join(motif))
motif = []
lines = 0
written_file.close()
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip())
motif_id = re.split(' ', line[1:])[0] #[1:] meands do not use the first character
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm')
splitted_motifs.append(motif_name)
written_file = open(motif_name, 'w')
if lines >= 1 and lines <= 4: #one motif has 5 lines, the first consists the name, the next 4 - the information we need to proceed the data within moods
motif.append(line)
lines = lines + 1
written_file.write(''.join(motif))
written_file.close()
return splitted_motifs
def convert_meme_to_pfm(motifs, output_directory):
#i can only convert the file to pfm if the motifs file is in MEME format
splitted_motifs = [] #to save the names of files after splitting
rows = [[] for row in range(4)]
with open(motifs) as read_file:
lines = 0
for line in read_file:
if lines == 0 and not line.startswith("MEME version"):
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file')
sys.exit()
else:
#search for motifs and save each to another file
if line.startswith("MOTIF"):
if 'written_file' in locals():
for row in rows:
written_file.write('\t'.join(row) + '\n')
rows = [[] for row in range(4)]
written_file.close()
#the alternate name will be checked for validity and the invalid chars will be replaced with '_'
if len(re.split(' ', line.rstrip())) == 3: #in the input motif file the motif id and the alternate name are splitted using the tab, otherwise they are splitted using _, but we do not want to change it if so
motif_alternate_name = check_name(re.split(' ', line)[2].rstrip())
motif_id = re.split(' ', line)[1]
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm')
else:
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip())
motif_name = os.path.join(output_directory, motif_alternate_name + '.pfm')
#make a list with all the motif names to know which files to iterate when fimo is called
splitted_motifs.append(motif_name)
written_file = open(motif_name, 'w')
elif line.startswith("letter-probability matrix"):
columns = int(re.split(' ', re.split('w= ', line)[1])[0]) #find the number of columns from the line out of the motifs file
nsites = int(re.split(' ', re.split('nsites= ', line)[1])[0]) #find the nsites to count the frequency count for .pfm file
elif line.startswith(' '): #each line with information about frequency starts in MEME format with ' '
for i in range(len(rows)):
rows[i].append(str(round(float(re.findall(r'\S+', line)[i])*nsites))) #split the line, do not mention how much whitespaces are in between, multiply it with nsites and save it to the corresponding row
lines = lines + 1
#write the last motif
for row in rows:
written_file.write('\t'.join(row) + '\n')
written_file.close()
read_file.close()
return splitted_motifs
#if there are chars that are not allowed, they will be replaced with '_', to the possibly invalid names there will be added '_' at the beginning of the name
def check_name(name_to_test):
badchars= re.compile(r'[^A-Za-z0-9_. ]+|^\.|\.$|^ | $|^$')
badnames= re.compile(r'(aux|com[1-9]|con|lpt[1-9]|prn)(\.|$)')
#replace all the chars that are not allowed with '_'
name = badchars.sub('_', name_to_test)
#check for the reserved by the os names
if badnames.match(name):
name = '_' + name
return name
def call_moods(one_motif, genome, output_directory, p_value, moods_bg, condition2, condition1, control_dict, overexpression_dict, differences, which_score):
#check if this is a bigwig file
bw_condition2 = pyBigWig.open(condition2)
bw_condition1 = pyBigWig.open(condition1)
if not bw_condition2.isBigWig() or not bw_condition1.isBigWig():
logger.info("please provide the bigwig file!")
sys.exit()
else:
# prepare everything for moods
# setting standard parameters for moods
# this code was token and modified from gitHub MOODS page
pseudocount = 0.0001
bg = tuple(moods_bg)
matrix_names = [os.path.basename(one_motif)]
matrices = []
matrices_rc = []
valid, matrix = pfm_to_log_odds(one_motif, bg, pseudocount)
key_for_bed_dict = ''
if valid:
matrices.append(matrix)
matrices_rc.append(MOODS.tools.reverse_complement(matrix,4))
matrices_all = matrices + matrices_rc
thresholds = [MOODS.tools.threshold_from_p(m, bg, p_value, 4) for m in matrices_all]
scanner = MOODS.scan.Scanner(7)
scanner.set_motifs(matrices_all, bg, thresholds)
with open(genome) as handle:
seq_iterator = bio.SimpleFastaParser(handle)
for header, seq in seq_iterator:
header_splitted = re.split(r':', header)
if len(header_splitted) == 1: #if there are no positions given
header = header + ":0-" #set the first position as 0 and split it once more
header_splitted = re.split(r':', header)
logger.info("moods works with " + header)
else: #the given genome file is a file with peaks, so use the header of the peak as a key to search in the bed dictionary for additional information later on
key_for_bed_dict = header
chromosom = header_splitted[0]
positions = re.split(r'-', header_splitted[-1])
results = scanner.scan(seq)
fr = results[:len(matrix_names)] #forward strand
rr = results[len(matrix_names):] #reverse strand
results = [[(r.pos, r.score, '+', ()) for r in fr[i]] +
[(r.pos, r.score, '-', ()) for r in rr[i]] for i in range(len(matrix_names))] #use + and - to indicate strand
for (matrix, matrix_name, result) in zip(matrices, matrix_names, results):
motif_id = re.split(r'_', matrix_name)[-1].replace(".pfm", '') #find the id of the given morif
motif_alternate_name = matrix_name.replace(motif_id, '')[:-1] #the alternate name of the motif is the name of the file without id and with cutted last character, that is _
if len(matrix) == 4:
l = len(matrix[0])
if len(matrix) == 16:
l = len(matrix[0] + 1)
for r in sorted(result, key=lambda r: r[0]):
strand = r[2]
pos = r[0]
hitseq = seq[pos:pos+l] #sequence
score = format(r[1], '.15f') #round to 15 digits after floating point, already type str
if key_for_bed_dict != '':
start = pos + 1
end = pos + len(hitseq)
#chromosom = key_for_bed_dict #instead of only the name of chromosom write the key to search in the bed_file
else:
start = int(positions[0]) + pos + 1
end = start + len(hitseq) - 1
#find the real start and end positions on the chromosom
real_start = int(positions[0]) + int(start) #start of the peak + start of the motif within the peak, do not add 1, as bigwig is 0-based
real_end = real_start + len(hitseq)
#get the values from bw file
bw_scores_control = np.mean(np.nan_to_num(np.array(list(bw_condition2.values(chromosom, real_start, real_end)))))
bw_scores_overexpression = np.mean(np.nan_to_num(np.array(list(bw_condition1.values(chromosom, real_start, real_end)))))
control_dict = save_bw_score(key_for_bed_dict, control_dict, bw_scores_control, float(score), which_score)
overexpression_dict = save_bw_score(key_for_bed_dict, overexpression_dict, bw_scores_overexpression, float(score), which_score)
bw_difference = abs(bw_scores_overexpression - bw_scores_control)
if not np.isnan(bw_difference) and bw_difference != 0.0: #do not need to check for nan
differences.append(bw_difference)
#one doesnt need to close file that was opened like so, as python does it on itself. file.closed says True
return control_dict, overexpression_dict, differences
else:
logger.info("The input for moods was not validated by the MOODS.parsers.pfm. Please check if it has the right format (note that the MOODS accepts only the old version of .pfm files, that is one without the header containing the name and id of the motif)")
sys.exit()
#check if the bw score is already saved, if so check if it is bigger than the new one
def save_bw_score(key_for_bed_dict, matches_dict, bw_score, moods_score, which_score):
if np.isnan(bw_score): bw_score = 0.0
#bw_score = moods_score * bw_score #apply moods score as well
if key_for_bed_dict in matches_dict:
if which_score == "mean":
#save the mean of both scores
matches_dict[key_for_bed_dict] = np.mean([matches_dict[key_for_bed_dict], bw_score])
elif which_score == "greater":
#save the biggest of scores
if matches_dict[key_for_bed_dict] < bw_score:
matches_dict[key_for_bed_dict] = bw_score
else:
matches_dict[key_for_bed_dict] = bw_score
return matches_dict
#help function for the moods call, convert pfm to log odds
def pfm_to_log_odds(filename, bg, pseudocount):
if pfm(filename):
mat = MOODS.parsers.pfm_to_log_odds(filename, bg, pseudocount)
if len(mat) != 4: #if something went wrong, the empty list will be returned
return False, mat
else:
return True, mat
else:
logger.info('please make sure the motif file has a .pfm format needed for moods')
sys.exit()
#help function for the moods call, check if the file is in a pfm format using moods
def pfm(filename):
mat = MOODS.parsers.pfm(filename)
if len(mat) != 4:
return False
else:
return True
def remove_file(file):
if os.path.isfile(file):
os.remove(file)
def clean_directory(cleans, output_directory, motif):
for clean in cleans:
if clean == 'all' or clean == 'cut_motifs':
remove_file(motif)
#the output_merge.fa will be deleted after processing of the multiprocessing
def tool_make_output(motif, genome, output_directory, cleans, p_value, bed_dictionary, moods_bg, condition1, condition2, global_mean, global_std, which_score):
standard_moods_bg = 0.25, 0.25, 0.25, 0.25
control_dict = {}
overexpression_dict = {}
differences = []
control_dict, overexpression_dict, differences = call_moods(motif, genome, output_directory, p_value, standard_moods_bg, condition2, condition1, control_dict, overexpression_dict, differences, which_score)
#make arrays of the dictionaries
control_array = []
overexpression_array = []
for key in control_dict:
control_array.append(control_dict[key])
overexpression_array.append(overexpression_dict[key])
motif_name = motif.replace(output_directory, '')
motif_name = motif_name.replace('/', '')
#make the wilcoxon signed-rank test
my_wilcoxon_pvalue, direction, differences, differences_normalized, motif_std = my_wilcoxon(condition2, condition1, control_array, overexpression_array, global_mean, global_std, motif_name, correction = False)
clean_directory(cleans, output_directory, motif)
return my_wilcoxon_pvalue, direction, differences, differences_normalized, motif_std
def make_normal_distribution_plot(input_array, figure_name, output_directory, figure_color):
mu = np.mean(input_array)
std = np.std(input_array, ddof = 1) #ddof = 1 calculates corrected sample sd which is sqrt(N/(N-1)) times the population sd where N is the number of points, interpretes the data as samples, estimates true variance
#https://stackoverflow.com/questions/15389768/standard-deviation-of-a-list
fig, ax = plt.subplots()
plt.hist(input_array, bins = 3000, color = figure_color, normed=True, label = 'differences')
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 3000)
p = stats.norm.pdf(x, mu, std)
plt.plot(x, p, 'r', linewidth = 1, label = 'normal distribution')
title = figure_name + ": mu = %.4f, std = %.4f" % (mu, std)
plt.title(title)
plt.grid()
plt.legend()
x_lim = np.percentile(input_array, 95)
plt.xlim(-x_lim, x_lim)
fig.savefig(os.path.join(output_directory, figure_name))
#modified from scipy.wilcoxon
def my_wilcoxon(condition2, condition1, x, y, global_mean, global_std, motif_name, correction = False):
x, y = map(np.asarray, (x, y)) #apply np.asarray for both input arrays
if len(x) != len(y):
raise ValueError("The length of both arrays in Wilcoxon test should be the same. Aborting")
d = x - y #find the difference
#keep all non-zero differences
d = np.compress(np.not_equal(d, 0), d) #in scipy axis = -1, in my case it does not matter, as i have a flattened array
#correct the differences according to the global mean and std
d_normalized = (d - global_mean) / global_std
count = len(d_normalized)
if count < 10:
logger.info("The sampe size is too small for normal approximation")
r = stats.rankdata(abs(d_normalized)) #assign ranks to data, dealing with ties appropriately
r_plus = np.sum((d_normalized > 0) * r, axis = 0)
r_minus = np.sum((d_normalized < 0) * r, axis = 0)
T = min(r_plus, r_minus)
mn = count * (count + 1.) * 0.25
se = count * (count + 1.) * (2. * count + 1.)
replist, repnum = stats.find_repeats(r)
if repnum.size != 0:
#correction for repeated elements
se -= 0.5 * (repnum * (repnum * repnum -1)).sum()
se = np.sqrt(se / 24)
correction = 0.5 * int(bool(correction)) * np.sign(T - mn)
z = (T - mn - correction) / se
prob = 2. * stats.norm.sf(abs(z), scale = 1) #do not scale
motif_std = np.std(d_normalized, ddof = 1)
motif_mu = np.mean(d_normalized)
direction = get_name_from_path(condition2)
if motif_mu < 0:
direction = get_name_from_path(condition1)
return prob, direction, d, d_normalized, motif_std
def make_name_from_path(full_path, output_directory, ending):
return os.path.join(output_directory, get_name_from_path(full_path) + ending)
def get_name_from_path(full_path):
return os.path.splitext(os.path.basename(full_path))[0]
def multiprocess(motifs, genome, output_directory, cleans, p_value, bed_dictionary, cpu_count, moods_bg, condition1, condition2, output_number, global_mean, global_std, which_score):
pool = multiprocessing.Pool(cpu_count) #by default cpu_count is 2
motifs_array = []
p_values_array = []
directions_array = []
all_differences = []
all_differences_normalized = []
all_stds = {}
count = 1 #a count for printing the number of motif the processes are working with
for motif in motifs:
motif_name = get_name_from_path(motif)
logger.info("i am working with motif " + str(motif_name) + "\t" + str(count) + "/" + str(len(motifs)))
wilcoxon_p_value, direction, differences, differences_normalized, motif_std = pool.apply_async(tool_make_output, args = (motif, genome, output_directory, cleans, p_value, bed_dictionary, moods_bg, condition1, condition2, global_mean, global_std, which_score, )).get()
motifs_array.append(motif_name)
p_values_array.append(wilcoxon_p_value)
directions_array.append(direction)
#-------------
all_stds[motif_name] = motif_std
all_differences.extend(differences)
all_differences_normalized.extend(differences_normalized)
#-------------
count = count + 1
logger.info('Applying Bonferroni correction')
p_values_adjusted = multipletests(p_values_array, method = 'bonferroni')[1]
dict_motifs_p_values = {}
for i in range(len(motifs_array)):
motif = motifs_array[i]
dict_motifs_p_values[motif] = dict_motifs_p_values.get(motif, {})
dict_motifs_p_values[motif] = {'p_value': p_values_array[i], 'adjusted_p_value': p_values_adjusted[i], 'direction': directions_array[i]}
sorted_dict = sorted(dict_motifs_p_values.items(), key = lambda x : (x[1]['adjusted_p_value']), reverse = False) #sort after adjusted p value
output_file = make_name_from_path("winnie_output", output_directory, ".txt")
opened_output_file = open(output_file, 'w')
logger.info('i will write the motifs to the file ' + output_file)
opened_output_file.write('\t'.join(['Motif', 'p_value', 'adjusted_p_value', 'direction']) + '\n')
for i in range(len(motifs_array)):
opened_output_file.write('\t'.join([str(sorted_dict[i][0]), str(sorted_dict[i][1]['p_value']), str(sorted_dict[i][1]['adjusted_p_value']), str(sorted_dict[i][1]['direction'])]) + '\n')
opened_output_file.close()
logger.info('The ' + str(output_number) + ' of the most enriched motifs are:')
logger.info("{:30s} | {:30s} | {:30s} | {:30s}".format('Motif', 'p_value', 'adjusted_p_value', 'direction'))
logger.info('-' * 120)
for i in range(output_number):
logger.info("{:30s} | {:30s} | {:30s} | {:30s}".format(str(sorted_dict[i][0]), str(sorted_dict[i][1]['p_value']), str(sorted_dict[i][1]['adjusted_p_value']), str(sorted_dict[i][1]['direction'])))
logger.info('\n')
max_pvalues_array = max(p_values_array)
logger.info("the greatest pvalue is " + str(max_pvalues_array))
logger.info("the smallest pvalue is " + str(min(p_values_array)))
logger.info("the number of all motifs is " + str(len(p_values_array)))
logger.info("the number of significant motifs is " + str(sum(i <= 1e-5 for i in p_values_array)))
make_normal_distribution_plot(all_differences, "before_normalisation", output_directory, 'blue')
make_normal_distribution_plot(all_differences_normalized, "after_normalisation", output_directory, 'green')
pool.close()
pool.join() #make sure all the processes are done and exit
#the processes should not delete the merged genome file
#so make sure if this file is needed, otherwise delete it
for clean in cleans:
if clean == 'all' or clean == 'merge_output':
for filename in os.listdir(output_directory):
if filename == "output_merge.fa":
remove_file(genome)
if clean != 'nothing':
logger.info('the directory ' + output_directory + ' was cleaned, only the required files were left')
def compute_differences(bed_dictionary, condition1, condition2):
logger.info("the mean and standard deviation for the differences in peaks will be count now")
bw_cond1 = pyBigWig.open(condition1)
bw_cond2 = pyBigWig.open(condition2)
global_differences = {} #dict
differences_array = [] #to compute the mean at the end
cond1_array = []
cond2_array = []
for header in bed_dictionary:
header_splitted = re.split(r':', header)
chromosom = header_splitted[0]
positions = re.split(r'-', header_splitted[-1])
#compute the background difference for this peak
bw_global_score_cond1 = np.mean(np.nan_to_num(np.array(list(bw_cond1.values(chromosom, int(positions[0]), int(positions[1]))))))
bw_global_score_cond2 = np.mean(np.nan_to_num(np.array(list(bw_cond2.values(chromosom, int(positions[0]), int(positions[1]))))))
bw_global_difference = bw_global_score_cond2 - bw_global_score_cond1
global_differences[header] = bw_global_difference
cond1_array.append(bw_global_score_cond1)
cond2_array.append(bw_global_score_cond2)
differences_array.append(bw_global_difference)
bw_cond1.close()
bw_cond2.close()
mu = np.mean(differences_array)
std = np.std(differences_array, ddof = 1)
mu_cond1 = np.mean(cond1_array)
mu_cond2 = np.mean(cond2_array)
cond1_name = get_name_from_path(condition1)
cond2_name = get_name_from_path(condition2)
return mu, std
def is_fasta(check_fasta):
if not os.path.isfile(check_fasta):
#logger.info('there is no file with genome, the exit is forced')
print('there is no file with genome, the exit is forced')
sys.exit()
else:
# modified code from https://stackoverflow.com/questions/44293407/how-can-i-check-whether-a-given-file-is-fasta
with open(check_fasta, "r") as handle:
fasta = SeqIO.parse(handle, "fasta")
return any(fasta) # False when `fasta` is empty, i.e. wasn't a FASTA file
def check_existing_input_files(args):
if not is_fasta(args.genome):
#logger.info('please make sure the input genome file has a fasta format')
print('please make sure the input genome file has a fasta format')
sys.exit()
if not os.path.isfile(args.condition1) or not os.path.isfile(args.condition2):
#logger.info('please make sure the both files with conditions to compare exist')
print('please make sure the both files with conditions to compare exist')
sys.exit()
if not args.condition1.endswith('.bw') or not args.condition2.endswith('.bw'):
#logger.info('please check if the both conditions files are in bigWig format')
print('please check if the both conditions files are in bigWig format')
sys.exit()
#check if the file with motifs exists
if not os.path.isfile(args.motifs):
#logger.info('there is no file with motifs, the exit is forced')
print('there is no file with motifs, the exit is forced')
sys.exit()
#check if the bed file exists
if not os.path.isfile(args.bed_file):
#logger.info('there is no such bed file ' + args.bed_file + ', the exit is forced')
print('there is no such bed file ' + args.bed_file + ', the exit is forced')
sys.exit()
def make_bed_dictionary(bed_file):
bed_dictionary = {}
with open(bed_file) as read_bed_file:
for bed_line in read_bed_file:
bed_line_array = re.split(r'\t', bed_line.rstrip('\n'))
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one
key = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2]
value = []
for i in range(3, len(bed_line_array)):
value.append(bed_line_array[i])
bed_dictionary[key] = value
else: #this is not a bed file, force exit
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line)
sys.exit()
read_bed_file.close()
return bed_dictionary
def print_big_logo():
winnie_big_logo = """\
▄▒▀▀▀▒▄ ▄▄▀▀▒▄
▄▄▒▀ ▀▒▄▄ ▄▄▒▀ ▀▒▄
▐▒ ▐▒ ▒▀ ▒
▐▌ ▐▒ ▒ ▐▌
▐▌ ▐▒ ▒ ▐▌
▐▌ ▐▒ ▒ ▒█▌ ▐▌ ▒█▌
▐▌ ▐█▄ ▐▒ ▒ █▀ ▀▀ ▐█▄ ▐█ █▄ █ ▀▀
▀▒▄▄ █▄▄▒▀ ▐█ ▀▒▄▄█ ▄▄▒▀▐██▄ ▐█ ▐██▌ █ ▄█▀▌
▀▒▄▄▄▒▀█▌▄▒▐█▀█▒▄▄██▀▄▄▄▄▐█ ▐█ ▀▌ ▐█ ▐█ ▀█ █ █ ▓█▄▄▐█▄
▄▄▒▀█ █▌ █▌ █▀░▄▄ ▐█ ▐█ ▀█▄█ ▐█ ▀█▄█ █ ▀█▀▀▀▀
▐▌ ▀██ ██ ▐▌ ▐█ ▐█ ██ ▐█ ██ █ █▄
▐ ▐▌
▐ ▐▌
▐ ▐▌
▐▒▄ ▄▒▌
▀▒▄▄ ▄▄▒▀
▀▒▄▒▀
"""
logger.info(winnie_big_logo)
def main():
start = time.time()
args = parse_args()
check_existing_input_files(args)
#check if there is an existing directory that user gave as input, otherwise create this directory from the path provided from the user
check_directory(args.output_directory)
fh = logging.FileHandler(os.path.join(args.output_directory, "winnie_log.txt"))
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
#if user do not want to see the information about the status of jobs, remove the handler, that writes to the terminal
if args.silent:
logger.removeHandler(ch)
print_big_logo()
logger.info("WiNNie was called using these parameters:")
logger.info(vars(args))
splitted_motifs = split_motifs(args.motifs, args.output_directory)
bed_dictionary = make_bed_dictionary(args.bed_file)
args.genome = merge(args.genome, args.bed_file, args.output_directory)
global_mean, global_std = compute_differences(bed_dictionary, args.condition1, args.condition2)
multiprocess(splitted_motifs, args.genome, args.output_directory, args.cleans, args.p_value, bed_dictionary, args.cores, args.moods_bg, args.condition1, args.condition2, args.output_number, global_mean, global_std, args.score)
logger.info("WiNNie needed %s seconds to generate the output" % (time.time() - start))
for handler in logger.handlers:
handler.close()
logger.removeFilter(handler)
if __name__ == "__main__":
main()