Skip to content

Finalling fixing everything! #3

Merged
merged 2 commits into from
Mar 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1,131 changes: 1,131 additions & 0 deletions Untitled.ipynb

Large diffs are not rendered by default.

24,210 changes: 24,210 additions & 0 deletions Untitled1.ipynb

Large diffs are not rendered by default.

233 changes: 233 additions & 0 deletions Untitled2.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from scipy.stats import ttest_ind_from_stats"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"fn=\"/project/owlmayerTemporary/Sid/nanopore-analysis/Results_5_1/Quantification/all_counts_deseq2norm_stats.csv\"\n",
"df=pd.read_csv(fn)\n",
"conds = [\"day0\",\"day3\",\"day5\"]\n",
"for cond in conds: \n",
" df['mean'+cond]=df.filter(like=cond+'_').mean(1)\n",
" df['std'+cond]=df.filter(like=cond+'_').std(1)\n",
" df['stdn'+cond]=df.filter(like=cond+'_').std(1)/np.sqrt(2)\n",
" df['reps'+cond]=2\n",
" \n",
"for d in conds:\n",
" df['valMax'+str(d)] = (df.groupby(['gene_id'])['mean'+str(d)].transform(max)==df['mean'+str(d)])*1\n",
"potentialSwitches=set(df[(df.filter(like='valMax').sum(axis=1)>0)&(df.filter(like='valMax').sum(axis=1)<len(conds))]['gene_id'])\n",
"\n",
"df_genes=df.filter(like='gene').copy().drop_duplicates()\n",
"df_genes=df_genes[df_genes['gene_id'].isin(potentialSwitches)]\n",
"for d in conds:\n",
" df_genes['mainIso'+str(d)] = np.nan\n",
"df_genes=df_genes.set_index('gene_id')\n",
"\n",
"for gene in potentialSwitches:\n",
" data=df[df[\"gene_id\"]==gene]\n",
" if (data.shape[0] > 1):\n",
" for d in conds:\n",
" candidate=data[data['valMax'+str(d)]==1]\n",
" cmean=candidate['mean'+str(d)].values[0]\n",
" cstd=candidate['std'+str(d)].values[0]\n",
" creps=candidate['reps'+str(d)].values[0]\n",
" temp=data[data['transcript_id']!=candidate['transcript_id'].values[0]]\n",
"\n",
" if (temp.apply(lambda x: ttest_ind_from_stats(cmean, cstd, creps, x['mean'+str(d)],x['std'+str(d)], x['reps'+str(d)])[1],1)<0.05).all():\n",
" df_genes.loc[gene,'mainIso'+str(d)]=candidate['transcript_id'].values[0]\n",
"isoSwi=df_genes[df_genes.filter(like=\"mainIso\").nunique(axis=1)>1]\n",
"#isoSwi.to_csv('/project/Neurodifferentiation_System/IsoformsAll/isoformSwitches0_01.csv')\n",
"mainIsoforms=set(isoSwi.filter(like='mainIso').values.flatten()[~pd.isnull(isoSwi.filter(like='mainIso').values.flatten())])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fn='/project/Neurodifferentiation_System/IsoformsAll/stats_TPM.csv'\n",
"df=pd.read_csv(fn)\n",
"\n",
"days=list(set([int(x.split('transcript_mean')[1]) for x in df.filter(regex='transcript_mean').columns]))\n",
"for d in days:\n",
" df['valMax'+str(d)] = (df.groupby(['gene_id'])['transcript_mean'+str(d)].transform(max)==df['transcript_mean'+str(d)])*1\n",
"potentialSwitches=set(df[(df.filter(like='valMax').sum(axis=1)>0)&(df.filter(like='valMax').sum(axis=1)<len(days))]['gene_id'])\n",
"df_genes=df.filter(like='gene').copy().drop_duplicates()\n",
"df_genes=df_genes[df_genes['gene_id'].isin(potentialSwitches)]\n",
"for d in days:\n",
" df_genes['mainIso'+str(d)] = np.nan\n",
"df_genes=df_genes.set_index('gene_id')\n",
"for gene in potentialSwitches:\n",
" data=df[df[\"gene_id\"]==gene]\n",
" for d in days:\n",
" candidate=data[data['valMax'+str(d)]==1]\n",
" cmean=candidate['transcript_mean'+str(d)].values[0]\n",
" cstd=candidate['transcript_std'+str(d)].values[0]\n",
" creps=candidate['number_reps'+str(d)].values[0]\n",
" temp=data[data['transcript_id']!=candidate['transcript_id'].values[0]]\n",
" if (temp.apply(lambda x: ttest_ind_from_stats(cmean, cstd, creps, x['transcript_mean'+str(d)],x['transcript_std'+str(d)], x['number_reps'+str(d)])[1],1)<0.01).all():\n",
" df_genes.loc[gene,'mainIso'+str(d)]=candidate['transcript_id'].values[0]\n",
"isoSwi=df_genes[df_genes.filter(like=\"mainIso\").nunique(axis=1)>1]\n",
"isoSwi.to_csv('/project/Neurodifferentiation_System/IsoformsAll/isoformSwitches0_01.csv')\n",
"mainIsoforms=set(isoSwi.filter(like='mainIso').values.flatten()[~pd.isnull(isoSwi.filter(like='mainIso').values.flatten())])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"fn=\"/project/owlmayerTemporary/Sid/nanopore-analysis/Results_5_1/Quantification/all_counts_deseq2norm.txt\"\n",
"df=pd.read_csv(fn)\n",
"conds = [\"day0\",\"day3\",\"day5\"]\n",
"for cond in conds: \n",
" df['mean'+cond]=df.filter(like=cond+'_').mean(1)\n",
" df['std'+cond]=df.filter(like=cond+'_').std(1)\n",
" df['stdn'+cond]=df.filter(like=cond+'_').std(1)/np.sqrt(2)\n",
" df['reps'+cond]=2\n",
" \n",
"for d in conds:\n",
" df['valMax'+str(d)] = (df.groupby(['gene_id'])['mean'+str(d)].transform(max)==df['mean'+str(d)])*1\n",
"#df.to_csv(\"/project/owlmayerTemporary/Sid/nanopore-analysis/Results_5_1/Quantification/all_counts_deseq2norm_stats.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ADAM12\n",
"AL596087.2\n",
"CLCN1\n",
"COX11\n",
"DNMBP\n",
"EPB41L5\n",
"ERBB2\n",
"ERGIC3\n",
"F2RL1\n",
"FKBP11\n",
"GAB3\n",
"GABRB1\n",
"IQSEC2\n",
"LAGE3\n",
"LINC00623\n",
"MXRA7\n",
"NCAM1\n",
"NHLH1\n",
"NKAIN4\n",
"PFN2\n",
"PLXNA2\n",
"PPM1E\n",
"PSMD14\n",
"PTRH1\n",
"RDM1P5\n",
"RFC5\n",
"RNF24\n",
"RPS24\n",
"SEPTIN6\n",
"SEPTIN8\n",
"SHD\n",
"SMC5\n",
"SNORA40\n",
"STMN2\n",
"TFDP2\n",
"TRAF3IP2\n",
"UNC45B\n",
"VEPH1\n",
"WDR37\n",
"ZNRD2\n",
"40\n"
]
}
],
"source": [
"count =0\n",
"for i in sorted(isoSwi[\"gene_name\"].values):\n",
" print(i)\n",
" count += 1\n",
"print(count)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2353"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(potentialSwitches)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'potentialSwitches' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-1-261a0e621f00>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpotentialSwitches\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'potentialSwitches' is not defined"
]
}
],
"source": [
"potentialSwitches"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
2,284 changes: 2,284 additions & 0 deletions Untitled3.ipynb

Large diffs are not rendered by default.

Loading