Skip to content

cphillips/Toolbox

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

The hMRI Toolbox

Analysis Tools for Quantitative MRI and In-Vivo Histology using MRI (hMRI)

Background

Quantitative MRI finds increasing application in neuroscience and clinical research due to its greater specificity and its sensitivity to microstructural properties of brain tissue - myelin, iron and water concentration (Weiskopf et al., 2015). The hMRI toolbox is an easy-to-use open-source tool for data handling and processing of quantitative MRI data. This toolbox, embedded in the SPM framework (http://www.fil.ion.ucl.ac.uk/spm), allows the estimation of quantitative MRI maps (longitudinal and transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer MT) (Weiskopf et al., 2013), followed by spatial registration in common space for statistical analysis (Draganski et al., 2011). It also offers flexibility for calculation of novel MRI biomarkers of tissue microstructure (Mohammadi et al., 2015).

Licence

The hMRI toolbox is free but copyright software, distributed under the terms of the GNU General Public Licence as published by the Free Software Foundation (either version 2, as given in file LICENSE, or at your option, any later version). Further details on "copyleft" can be found at http://www.gnu.org/copyleft/. In particular, the hMRI toolbox is supplied as is. No formal support or maintenance is provided or implied.

Download

The hMRI Toolbox Matlab code (beta release v0.1.1-beta) can be downloaded from: https://github.molgen.mpg.de/hMRI-group/Toolbox/archive/v0.1.1-beta.zip

E-Mail List

We have created an e-mail list for users of the hMRI toolbox: HMRI-TOOLBOX@JISCMAIL.AC.UK

Developers

The development of the hMRI toolbox is an international collaborative effort including the following sites and developers:

  • Tobias Leutritz, Enrico Reimer, Nikolaus Weiskopf (Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany)
  • Evelyne Balteau, Christophe Phillips (University of Liege, Liege, Belgium)
  • Siawoosh Mohammadi (Medical Center Hamburg-Eppendorf, Hamburg, Germany)
  • Martina F Callaghan, John Ashburner (University College London, London, United Kingdom)
  • Karsten Tabelow (Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany)
  • Bogdan Draganski, Ferath Kerif, Antoine Lutti (LREN, DNC - CHUV, University Lausanne, Lausanne, Switzerland)
  • Maryam Seif (University of Zurich, Zurich, Switzerland)
  • Gunther Helms (Department of Medical Radiation Physics, Lund University, Lund, Sweden)
  • Lars Ruthotto (Emory University, Atlanta, GA, United States)
  • Gabriel Ziegler (Otto-von-Guericke-University Magdeburg, Magdeburg, Germany)

References

  • Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R.S.J., Helms, G., Weiskopf, N., 2011. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55, 1423–1434. https://doi.org/10.1016/j.neuroimage.2011.01.052
  • Mohammadi, S., Carey, D., Dick, F., Diedrichsen, J., Sereno, M.I., Reisert, M., Callaghan, M.F., Weiskopf, N., 2015. Whole-Brain In-vivo Measurements of the Axonal G-Ratio in a Group of 37 Healthy Volunteers. Front Neurosci 9, 441. https://doi.org/10.3389/fnins.2015.00441
  • Weiskopf, N., Mohammadi, S., Lutti, A., Callaghan, M.F., 2015. Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin. Neurol. 28, 313–322. https://doi.org/10.1097/WCO.0000000000000222
  • Weiskopf, N., Suckling, J., Williams, G., Correia, M.M., Inkster, B., Tait, R., Ooi, C., Bullmore, E.T., Lutti, A., 2013. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front. Neurosci. 7, 95. https://doi.org/10.3389/fnins.2013.00095

Acknowledgments and Funding

  • EB received funding from the European Structural and Investment Fund / European Regional Development Fund & the Belgian Walloon Government, project BIOMED-HUB (programme 2014-2020).
  • NW received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 616905. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement No 681094, and is supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0137.
  • SM received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 658589.
  • NW and SM received funding from the BMBF (01EW1711A and B) in the framework of ERA-NET NEURON. BD is supported by the Swiss National Science Foundation (NCCR Synapsy, project grant Nr 32003B_159780) and Foundation Synapsis. LREN is very grateful to the Roger De Spoelberch and Partridge Foundations for their generous financial support.
  • MFC is supported by the MRC and Spinal Research Charity through the ERA-NET Neuron joint call (MR/R000050/1).
  • The Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome [203147/Z/16/Z].
  • CP is supported by the F.R.S.-FNRS, Belgium. The hMRI Toolbox project is supported by the Max Planck Society.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks