Skip to content
Permalink
b8a7f8621a
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
667 lines (562 sloc) 17.6 KB
/*
* Copyright © 2004 Carl Worth
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2008 Chris Wilson
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Carl Worth
*
* Contributor(s):
* Carl D. Worth <cworth@cworth.org>
* Chris Wilson <chris@chris-wilson.co.uk>
*/
/* Provide definitions for standalone compilation */
#include "cairoint.h"
#include "cairo-boxes-private.h"
#include "cairo-combsort-private.h"
#include "cairo-error-private.h"
typedef struct _cairo_bo_edge cairo_bo_edge_t;
typedef struct _cairo_bo_trap cairo_bo_trap_t;
/* A deferred trapezoid of an edge */
struct _cairo_bo_trap {
cairo_bo_edge_t *right;
int32_t top;
};
struct _cairo_bo_edge {
cairo_edge_t edge;
cairo_bo_edge_t *prev;
cairo_bo_edge_t *next;
cairo_bo_trap_t deferred_trap;
};
typedef enum {
CAIRO_BO_EVENT_TYPE_START,
CAIRO_BO_EVENT_TYPE_STOP
} cairo_bo_event_type_t;
typedef struct _cairo_bo_event {
cairo_bo_event_type_t type;
cairo_point_t point;
cairo_bo_edge_t *edge;
} cairo_bo_event_t;
typedef struct _cairo_bo_sweep_line {
cairo_bo_event_t **events;
cairo_bo_edge_t *head;
cairo_bo_edge_t *stopped;
int32_t current_y;
cairo_bo_edge_t *current_edge;
} cairo_bo_sweep_line_t;
static inline int
_cairo_point_compare (const cairo_point_t *a,
const cairo_point_t *b)
{
int cmp;
cmp = a->y - b->y;
if (likely (cmp))
return cmp;
return a->x - b->x;
}
static inline int
_cairo_bo_edge_compare (const cairo_bo_edge_t *a,
const cairo_bo_edge_t *b)
{
int cmp;
cmp = a->edge.line.p1.x - b->edge.line.p1.x;
if (likely (cmp))
return cmp;
return b->edge.bottom - a->edge.bottom;
}
static inline int
cairo_bo_event_compare (const cairo_bo_event_t *a,
const cairo_bo_event_t *b)
{
int cmp;
cmp = _cairo_point_compare (&a->point, &b->point);
if (likely (cmp))
return cmp;
cmp = a->type - b->type;
if (cmp)
return cmp;
return a - b;
}
static inline cairo_bo_event_t *
_cairo_bo_event_dequeue (cairo_bo_sweep_line_t *sweep_line)
{
return *sweep_line->events++;
}
CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
cairo_bo_event_t *,
cairo_bo_event_compare)
static void
_cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_event_t **events,
int num_events)
{
_cairo_bo_event_queue_sort (events, num_events);
events[num_events] = NULL;
sweep_line->events = events;
sweep_line->head = NULL;
sweep_line->current_y = INT32_MIN;
sweep_line->current_edge = NULL;
}
static void
_cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (sweep_line->current_edge != NULL) {
cairo_bo_edge_t *prev, *next;
int cmp;
cmp = _cairo_bo_edge_compare (sweep_line->current_edge, edge);
if (cmp < 0) {
prev = sweep_line->current_edge;
next = prev->next;
while (next != NULL && _cairo_bo_edge_compare (next, edge) < 0)
prev = next, next = prev->next;
prev->next = edge;
edge->prev = prev;
edge->next = next;
if (next != NULL)
next->prev = edge;
} else if (cmp > 0) {
next = sweep_line->current_edge;
prev = next->prev;
while (prev != NULL && _cairo_bo_edge_compare (prev, edge) > 0)
next = prev, prev = next->prev;
next->prev = edge;
edge->next = next;
edge->prev = prev;
if (prev != NULL)
prev->next = edge;
else
sweep_line->head = edge;
} else {
prev = sweep_line->current_edge;
edge->prev = prev;
edge->next = prev->next;
if (prev->next != NULL)
prev->next->prev = edge;
prev->next = edge;
}
} else {
sweep_line->head = edge;
}
sweep_line->current_edge = edge;
}
static void
_cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
cairo_bo_edge_t *edge)
{
if (edge->prev != NULL)
edge->prev->next = edge->next;
else
sweep_line->head = edge->next;
if (edge->next != NULL)
edge->next->prev = edge->prev;
if (sweep_line->current_edge == edge)
sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
}
static inline cairo_bool_t
edges_collinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
{
return a->edge.line.p1.x == b->edge.line.p1.x;
}
static cairo_status_t
_cairo_bo_edge_end_trap (cairo_bo_edge_t *left,
int32_t bot,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_trap_t *trap = &left->deferred_trap;
cairo_status_t status = CAIRO_STATUS_SUCCESS;
/* Only emit (trivial) non-degenerate trapezoids with positive height. */
if (likely (trap->top < bot)) {
if (do_traps) {
_cairo_traps_add_trap (container,
trap->top, bot,
&left->edge.line, &trap->right->edge.line);
status = _cairo_traps_status ((cairo_traps_t *) container);
} else {
cairo_box_t box;
box.p1.x = left->edge.line.p1.x;
box.p1.y = trap->top;
box.p2.x = trap->right->edge.line.p1.x;
box.p2.y = bot;
status = _cairo_boxes_add (container, &box);
}
}
trap->right = NULL;
return status;
}
/* Start a new trapezoid at the given top y coordinate, whose edges
* are `edge' and `edge->next'. If `edge' already has a trapezoid,
* then either add it to the traps in `traps', if the trapezoid's
* right edge differs from `edge->next', or do nothing if the new
* trapezoid would be a continuation of the existing one. */
static inline cairo_status_t
_cairo_bo_edge_start_or_continue_trap (cairo_bo_edge_t *left,
cairo_bo_edge_t *right,
int top,
cairo_bool_t do_traps,
void *container)
{
cairo_status_t status;
if (left->deferred_trap.right == right)
return CAIRO_STATUS_SUCCESS;
if (left->deferred_trap.right != NULL) {
if (right != NULL && edges_collinear (left->deferred_trap.right, right))
{
/* continuation on right, so just swap edges */
left->deferred_trap.right = right;
return CAIRO_STATUS_SUCCESS;
}
status = _cairo_bo_edge_end_trap (left, top, do_traps, container);
if (unlikely (status))
return status;
}
if (right != NULL && ! edges_collinear (left, right)) {
left->deferred_trap.top = top;
left->deferred_trap.right = right;
}
return CAIRO_STATUS_SUCCESS;
}
static inline cairo_status_t
_active_edges_to_traps (cairo_bo_edge_t *left,
int32_t top,
cairo_fill_rule_t fill_rule,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_edge_t *right;
cairo_status_t status;
if (fill_rule == CAIRO_FILL_RULE_WINDING) {
while (left != NULL) {
int in_out;
/* Greedily search for the closing edge, so that we generate the
* maximal span width with the minimal number of trapezoids.
*/
in_out = left->edge.dir;
/* Check if there is a co-linear edge with an existing trap */
right = left->next;
if (left->deferred_trap.right == NULL) {
while (right != NULL && right->deferred_trap.right == NULL)
right = right->next;
if (right != NULL && edges_collinear (left, right)) {
/* continuation on left */
left->deferred_trap = right->deferred_trap;
right->deferred_trap.right = NULL;
}
}
/* End all subsumed traps */
right = left->next;
while (right != NULL) {
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
if (unlikely (status))
return status;
}
in_out += right->edge.dir;
if (in_out == 0) {
/* skip co-linear edges */
if (right->next == NULL ||
! edges_collinear (right, right->next))
{
break;
}
}
right = right->next;
}
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
do_traps, container);
if (unlikely (status))
return status;
left = right;
if (left != NULL)
left = left->next;
}
} else {
while (left != NULL) {
int in_out = 0;
right = left->next;
while (right != NULL) {
if (right->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (right, top, do_traps, container);
if (unlikely (status))
return status;
}
if ((in_out++ & 1) == 0) {
cairo_bo_edge_t *next;
cairo_bool_t skip = FALSE;
/* skip co-linear edges */
next = right->next;
if (next != NULL)
skip = edges_collinear (right, next);
if (! skip)
break;
}
right = right->next;
}
status = _cairo_bo_edge_start_or_continue_trap (left, right, top,
do_traps, container);
if (unlikely (status))
return status;
left = right;
if (left != NULL)
left = left->next;
}
}
return CAIRO_STATUS_SUCCESS;
}
static cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear (cairo_bo_event_t **start_events,
int num_events,
cairo_fill_rule_t fill_rule,
cairo_bool_t do_traps,
void *container)
{
cairo_bo_sweep_line_t sweep_line;
cairo_bo_event_t *event;
cairo_status_t status;
_cairo_bo_sweep_line_init (&sweep_line, start_events, num_events);
while ((event = _cairo_bo_event_dequeue (&sweep_line))) {
if (event->point.y != sweep_line.current_y) {
status = _active_edges_to_traps (sweep_line.head,
sweep_line.current_y,
fill_rule, do_traps, container);
if (unlikely (status))
return status;
sweep_line.current_y = event->point.y;
}
switch (event->type) {
case CAIRO_BO_EVENT_TYPE_START:
_cairo_bo_sweep_line_insert (&sweep_line, event->edge);
break;
case CAIRO_BO_EVENT_TYPE_STOP:
_cairo_bo_sweep_line_delete (&sweep_line, event->edge);
if (event->edge->deferred_trap.right != NULL) {
status = _cairo_bo_edge_end_trap (event->edge,
sweep_line.current_y,
do_traps, container);
if (unlikely (status))
return status;
}
break;
}
}
return CAIRO_STATUS_SUCCESS;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_polygon (cairo_traps_t *traps,
const cairo_polygon_t *polygon,
cairo_fill_rule_t fill_rule)
{
cairo_status_t status;
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
cairo_bo_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
cairo_bo_edge_t *edges;
int num_events;
int i, j;
if (unlikely (polygon->num_edges == 0))
return CAIRO_STATUS_SUCCESS;
num_events = 2 * polygon->num_edges;
events = stack_events;
event_ptrs = stack_event_ptrs;
edges = stack_edges;
if (num_events > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (num_events,
sizeof (cairo_bo_event_t) +
sizeof (cairo_bo_edge_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + num_events);
edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
}
for (i = j = 0; i < polygon->num_edges; i++) {
edges[i].edge = polygon->edges[i];
edges[i].deferred_trap.right = NULL;
edges[i].prev = NULL;
edges[i].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = polygon->edges[i].top;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = polygon->edges[i].bottom;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
}
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
fill_rule,
TRUE, traps);
if (events != stack_events)
free (events);
traps->is_rectilinear = TRUE;
return status;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_polygon_to_boxes (const cairo_polygon_t *polygon,
cairo_fill_rule_t fill_rule,
cairo_boxes_t *boxes)
{
cairo_status_t status;
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
cairo_bo_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
cairo_bo_edge_t *edges;
int num_events;
int i, j;
if (unlikely (polygon->num_edges == 0))
return CAIRO_STATUS_SUCCESS;
num_events = 2 * polygon->num_edges;
events = stack_events;
event_ptrs = stack_event_ptrs;
edges = stack_edges;
if (num_events > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (num_events,
sizeof (cairo_bo_event_t) +
sizeof (cairo_bo_edge_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + num_events);
edges = (cairo_bo_edge_t *) (event_ptrs + num_events + 1);
}
for (i = j = 0; i < polygon->num_edges; i++) {
edges[i].edge = polygon->edges[i];
edges[i].deferred_trap.right = NULL;
edges[i].prev = NULL;
edges[i].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = polygon->edges[i].top;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = polygon->edges[i].bottom;
events[j].point.x = polygon->edges[i].line.p1.x;
events[j].edge = &edges[i];
j++;
}
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
fill_rule,
FALSE, boxes);
if (events != stack_events)
free (events);
return status;
}
cairo_status_t
_cairo_bentley_ottmann_tessellate_rectilinear_traps (cairo_traps_t *traps,
cairo_fill_rule_t fill_rule)
{
cairo_bo_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_event_t)];
cairo_bo_event_t *events;
cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
cairo_bo_event_t **event_ptrs;
cairo_bo_edge_t stack_edges[ARRAY_LENGTH (stack_events)];
cairo_bo_edge_t *edges;
cairo_status_t status;
int i, j, k;
if (unlikely (traps->num_traps == 0))
return CAIRO_STATUS_SUCCESS;
assert (traps->is_rectilinear);
i = 4 * traps->num_traps;
events = stack_events;
event_ptrs = stack_event_ptrs;
edges = stack_edges;
if (i > ARRAY_LENGTH (stack_events)) {
events = _cairo_malloc_ab_plus_c (i,
sizeof (cairo_bo_event_t) +
sizeof (cairo_bo_edge_t) +
sizeof (cairo_bo_event_t *),
sizeof (cairo_bo_event_t *));
if (unlikely (events == NULL))
return _cairo_error (CAIRO_STATUS_NO_MEMORY);
event_ptrs = (cairo_bo_event_t **) (events + i);
edges = (cairo_bo_edge_t *) (event_ptrs + i + 1);
}
for (i = j = k = 0; i < traps->num_traps; i++) {
edges[k].edge.top = traps->traps[i].top;
edges[k].edge.bottom = traps->traps[i].bottom;
edges[k].edge.line = traps->traps[i].left;
edges[k].edge.dir = 1;
edges[k].deferred_trap.right = NULL;
edges[k].prev = NULL;
edges[k].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = traps->traps[i].top;
events[j].point.x = traps->traps[i].left.p1.x;
events[j].edge = &edges[k];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = traps->traps[i].bottom;
events[j].point.x = traps->traps[i].left.p1.x;
events[j].edge = &edges[k];
j++;
k++;
edges[k].edge.top = traps->traps[i].top;
edges[k].edge.bottom = traps->traps[i].bottom;
edges[k].edge.line = traps->traps[i].right;
edges[k].edge.dir = -1;
edges[k].deferred_trap.right = NULL;
edges[k].prev = NULL;
edges[k].next = NULL;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_START;
events[j].point.y = traps->traps[i].top;
events[j].point.x = traps->traps[i].right.p1.x;
events[j].edge = &edges[k];
j++;
event_ptrs[j] = &events[j];
events[j].type = CAIRO_BO_EVENT_TYPE_STOP;
events[j].point.y = traps->traps[i].bottom;
events[j].point.x = traps->traps[i].right.p1.x;
events[j].edge = &edges[k];
j++;
k++;
}
_cairo_traps_clear (traps);
status = _cairo_bentley_ottmann_tessellate_rectilinear (event_ptrs, j,
fill_rule,
TRUE, traps);
traps->is_rectilinear = TRUE;
if (events != stack_events)
free (events);
return status;
}