Skip to content
Permalink
be0d9d5323
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
217 lines (169 sloc) 5.47 KB
/**
* Copyright 2013, GitHub, Inc
* Copyright 2009-2013, Daniel Lemire, Cliff Moon,
* David McIntosh, Robert Becho, Google Inc. and Veronika Zenz
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "git-compat-util.h"
#include "ewok.h"
#include "strbuf.h"
int ewah_serialize_native(struct ewah_bitmap *self, int fd)
{
uint32_t write32;
size_t to_write = self->buffer_size * 8;
/* 32 bit -- bit size for the map */
write32 = (uint32_t)self->bit_size;
if (write(fd, &write32, 4) != 4)
return -1;
/** 32 bit -- number of compressed 64-bit words */
write32 = (uint32_t)self->buffer_size;
if (write(fd, &write32, 4) != 4)
return -1;
if (write(fd, self->buffer, to_write) != to_write)
return -1;
/** 32 bit -- position for the RLW */
write32 = self->rlw - self->buffer;
if (write(fd, &write32, 4) != 4)
return -1;
return (3 * 4) + to_write;
}
int ewah_serialize_to(struct ewah_bitmap *self,
int (*write_fun)(void *, const void *, size_t),
void *data)
{
size_t i;
eword_t dump[2048];
const size_t words_per_dump = sizeof(dump) / sizeof(eword_t);
uint32_t bitsize, word_count, rlw_pos;
const eword_t *buffer;
size_t words_left;
/* 32 bit -- bit size for the map */
bitsize = htonl((uint32_t)self->bit_size);
if (write_fun(data, &bitsize, 4) != 4)
return -1;
/** 32 bit -- number of compressed 64-bit words */
word_count = htonl((uint32_t)self->buffer_size);
if (write_fun(data, &word_count, 4) != 4)
return -1;
/** 64 bit x N -- compressed words */
buffer = self->buffer;
words_left = self->buffer_size;
while (words_left >= words_per_dump) {
for (i = 0; i < words_per_dump; ++i, ++buffer)
dump[i] = htonll(*buffer);
if (write_fun(data, dump, sizeof(dump)) != sizeof(dump))
return -1;
words_left -= words_per_dump;
}
if (words_left) {
for (i = 0; i < words_left; ++i, ++buffer)
dump[i] = htonll(*buffer);
if (write_fun(data, dump, words_left * 8) != words_left * 8)
return -1;
}
/** 32 bit -- position for the RLW */
rlw_pos = (uint8_t*)self->rlw - (uint8_t *)self->buffer;
rlw_pos = htonl(rlw_pos / sizeof(eword_t));
if (write_fun(data, &rlw_pos, 4) != 4)
return -1;
return (3 * 4) + (self->buffer_size * 8);
}
static int write_helper(void *fd, const void *buf, size_t len)
{
return write((intptr_t)fd, buf, len);
}
int ewah_serialize(struct ewah_bitmap *self, int fd)
{
return ewah_serialize_to(self, write_helper, (void *)(intptr_t)fd);
}
static int write_strbuf(void *user_data, const void *data, size_t len)
{
struct strbuf *sb = user_data;
strbuf_add(sb, data, len);
return len;
}
int ewah_serialize_strbuf(struct ewah_bitmap *self, struct strbuf *sb)
{
return ewah_serialize_to(self, write_strbuf, sb);
}
int ewah_read_mmap(struct ewah_bitmap *self, const void *map, size_t len)
{
const uint8_t *ptr = map;
size_t i;
self->bit_size = get_be32(ptr);
ptr += sizeof(uint32_t);
self->buffer_size = self->alloc_size = get_be32(ptr);
ptr += sizeof(uint32_t);
self->buffer = ewah_realloc(self->buffer,
self->alloc_size * sizeof(eword_t));
if (!self->buffer)
return -1;
/*
* Copy the raw data for the bitmap as a whole chunk;
* if we're in a little-endian platform, we'll perform
* the endianness conversion in a separate pass to ensure
* we're loading 8-byte aligned words.
*/
memcpy(self->buffer, ptr, self->buffer_size * sizeof(uint64_t));
ptr += self->buffer_size * sizeof(uint64_t);
for (i = 0; i < self->buffer_size; ++i)
self->buffer[i] = ntohll(self->buffer[i]);
self->rlw = self->buffer + get_be32(ptr);
return (3 * 4) + (self->buffer_size * 8);
}
int ewah_deserialize(struct ewah_bitmap *self, int fd)
{
size_t i;
eword_t dump[2048];
const size_t words_per_dump = sizeof(dump) / sizeof(eword_t);
uint32_t bitsize, word_count, rlw_pos;
eword_t *buffer = NULL;
size_t words_left;
ewah_clear(self);
/* 32 bit -- bit size for the map */
if (read(fd, &bitsize, 4) != 4)
return -1;
self->bit_size = (size_t)ntohl(bitsize);
/** 32 bit -- number of compressed 64-bit words */
if (read(fd, &word_count, 4) != 4)
return -1;
self->buffer_size = self->alloc_size = (size_t)ntohl(word_count);
self->buffer = ewah_realloc(self->buffer,
self->alloc_size * sizeof(eword_t));
if (!self->buffer)
return -1;
/** 64 bit x N -- compressed words */
buffer = self->buffer;
words_left = self->buffer_size;
while (words_left >= words_per_dump) {
if (read(fd, dump, sizeof(dump)) != sizeof(dump))
return -1;
for (i = 0; i < words_per_dump; ++i, ++buffer)
*buffer = ntohll(dump[i]);
words_left -= words_per_dump;
}
if (words_left) {
if (read(fd, dump, words_left * 8) != words_left * 8)
return -1;
for (i = 0; i < words_left; ++i, ++buffer)
*buffer = ntohll(dump[i]);
}
/** 32 bit -- position for the RLW */
if (read(fd, &rlw_pos, 4) != 4)
return -1;
self->rlw = self->buffer + ntohl(rlw_pos);
return 0;
}