Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 100068
b: refs/heads/master
c: ca23386
h: refs/heads/master
v: v3
  • Loading branch information
Glauber Costa authored and Ingo Molnar committed Jul 9, 2008
1 parent 0ae1135 commit 4806405
Show file tree
Hide file tree
Showing 4 changed files with 125 additions and 194 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: be9d06bfd48934fbd56ccb7476eabccfa31b4afe
refs/heads/master: ca23386216b9d4fc3bb211101205077d2b2916ae
124 changes: 124 additions & 0 deletions trunk/include/asm-x86/uaccess.h
Original file line number Diff line number Diff line change
@@ -1,5 +1,129 @@
#ifndef _ASM_UACCES_H_
#define _ASM_UACCES_H_
/*
* User space memory access functions
*/
#include <linux/errno.h>
#include <linux/compiler.h>
#include <linux/thread_info.h>
#include <linux/prefetch.h>
#include <linux/string.h>
#include <asm/asm.h>
#include <asm/page.h>

#define VERIFY_READ 0
#define VERIFY_WRITE 1

/*
* The fs value determines whether argument validity checking should be
* performed or not. If get_fs() == USER_DS, checking is performed, with
* get_fs() == KERNEL_DS, checking is bypassed.
*
* For historical reasons, these macros are grossly misnamed.
*/

#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })

#define KERNEL_DS MAKE_MM_SEG(-1UL)
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)

#define get_ds() (KERNEL_DS)
#define get_fs() (current_thread_info()->addr_limit)
#define set_fs(x) (current_thread_info()->addr_limit = (x))

#define segment_eq(a, b) ((a).seg == (b).seg)

/*
* Test whether a block of memory is a valid user space address.
* Returns 0 if the range is valid, nonzero otherwise.
*
* This is equivalent to the following test:
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg (u65 for x86_64)
*
* This needs 33-bit (65-bit for x86_64) arithmetic. We have a carry...
*/

#define __range_not_ok(addr, size) \
({ \
unsigned long flag, roksum; \
__chk_user_ptr(addr); \
asm("add %3,%1 ; sbb %0,%0 ; cmp %1,%4 ; sbb $0,%0" \
: "=&r" (flag), "=r" (roksum) \
: "1" (addr), "g" ((long)(size)), \
"rm" (current_thread_info()->addr_limit.seg)); \
flag; \
})

/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
* to write to a block, it is always safe to read from it.
* @addr: User space pointer to start of block to check
* @size: Size of block to check
*
* Context: User context only. This function may sleep.
*
* Checks if a pointer to a block of memory in user space is valid.
*
* Returns true (nonzero) if the memory block may be valid, false (zero)
* if it is definitely invalid.
*
* Note that, depending on architecture, this function probably just
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))

/*
* The exception table consists of pairs of addresses: the first is the
* address of an instruction that is allowed to fault, and the second is
* the address at which the program should continue. No registers are
* modified, so it is entirely up to the continuation code to figure out
* what to do.
*
* All the routines below use bits of fixup code that are out of line
* with the main instruction path. This means when everything is well,
* we don't even have to jump over them. Further, they do not intrude
* on our cache or tlb entries.
*/

struct exception_table_entry {
unsigned long insn, fixup;
};

extern int fixup_exception(struct pt_regs *regs);

/*
* These are the main single-value transfer routines. They automatically
* use the right size if we just have the right pointer type.
*
* This gets kind of ugly. We want to return _two_ values in "get_user()"
* and yet we don't want to do any pointers, because that is too much
* of a performance impact. Thus we have a few rather ugly macros here,
* and hide all the ugliness from the user.
*
* The "__xxx" versions of the user access functions are versions that
* do not verify the address space, that must have been done previously
* with a separate "access_ok()" call (this is used when we do multiple
* accesses to the same area of user memory).
*/

extern int __get_user_1(void);
extern int __get_user_2(void);
extern int __get_user_4(void);
extern int __get_user_8(void);
extern int __get_user_bad(void);

#define __get_user_x(size, ret, x, ptr) \
asm volatile("call __get_user_" #size \
: "=a" (ret),"=d" (x) \
: "0" (ptr)) \

#ifdef CONFIG_X86_32
# include "uaccess_32.h"
#else
# include "uaccess_64.h"
#endif

#endif
110 changes: 0 additions & 110 deletions trunk/include/asm-x86/uaccess_32.h
Original file line number Diff line number Diff line change
Expand Up @@ -11,29 +11,6 @@
#include <asm/asm.h>
#include <asm/page.h>

#define VERIFY_READ 0
#define VERIFY_WRITE 1

/*
* The fs value determines whether argument validity checking should be
* performed or not. If get_fs() == USER_DS, checking is performed, with
* get_fs() == KERNEL_DS, checking is bypassed.
*
* For historical reasons, these macros are grossly misnamed.
*/

#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })


#define KERNEL_DS MAKE_MM_SEG(-1UL)
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)

#define get_ds() (KERNEL_DS)
#define get_fs() (current_thread_info()->addr_limit)
#define set_fs(x) (current_thread_info()->addr_limit = (x))

#define segment_eq(a, b) ((a).seg == (b).seg)

/*
* movsl can be slow when source and dest are not both 8-byte aligned
*/
Expand All @@ -47,91 +24,6 @@ extern struct movsl_mask {
((unsigned long __force)(addr) < \
(current_thread_info()->addr_limit.seg))

/*
* Test whether a block of memory is a valid user space address.
* Returns 0 if the range is valid, nonzero otherwise.
*
* This is equivalent to the following test:
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg
*
* This needs 33-bit arithmetic. We have a carry...
*/
#define __range_not_ok(addr, size) \
({ \
unsigned long flag, roksum; \
__chk_user_ptr(addr); \
asm("add %3,%1 ; sbb %0,%0; cmp %1,%4; sbb $0,%0" \
:"=&r" (flag), "=r" (roksum) \
:"1" (addr), "g" ((long)(size)), \
"rm" (current_thread_info()->addr_limit.seg)); \
flag; \
})

/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
* to write to a block, it is always safe to read from it.
* @addr: User space pointer to start of block to check
* @size: Size of block to check
*
* Context: User context only. This function may sleep.
*
* Checks if a pointer to a block of memory in user space is valid.
*
* Returns true (nonzero) if the memory block may be valid, false (zero)
* if it is definitely invalid.
*
* Note that, depending on architecture, this function probably just
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))

/*
* The exception table consists of pairs of addresses: the first is the
* address of an instruction that is allowed to fault, and the second is
* the address at which the program should continue. No registers are
* modified, so it is entirely up to the continuation code to figure out
* what to do.
*
* All the routines below use bits of fixup code that are out of line
* with the main instruction path. This means when everything is well,
* we don't even have to jump over them. Further, they do not intrude
* on our cache or tlb entries.
*/

struct exception_table_entry {
unsigned long insn, fixup;
};

extern int fixup_exception(struct pt_regs *regs);

/*
* These are the main single-value transfer routines. They automatically
* use the right size if we just have the right pointer type.
*
* This gets kind of ugly. We want to return _two_ values in "get_user()"
* and yet we don't want to do any pointers, because that is too much
* of a performance impact. Thus we have a few rather ugly macros here,
* and hide all the ugliness from the user.
*
* The "__xxx" versions of the user access functions are versions that
* do not verify the address space, that must have been done previously
* with a separate "access_ok()" call (this is used when we do multiple
* accesses to the same area of user memory).
*/

extern void __get_user_1(void);
extern void __get_user_2(void);
extern void __get_user_4(void);

#define __get_user_x(size, ret, x, ptr) \
asm volatile("call __get_user_" #size \
:"=a" (ret),"=d" (x) \
:"0" (ptr))


/* Careful: we have to cast the result to the type of the pointer
* for sign reasons */

Expand Down Expand Up @@ -386,8 +278,6 @@ struct __large_struct { unsigned long buf[100]; };
__gu_err; \
})

extern long __get_user_bad(void);

#define __get_user_size(x, ptr, size, retval, errret) \
do { \
retval = 0; \
Expand Down
83 changes: 0 additions & 83 deletions trunk/include/asm-x86/uaccess_64.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,88 +9,11 @@
#include <linux/prefetch.h>
#include <asm/page.h>

#define VERIFY_READ 0
#define VERIFY_WRITE 1

/*
* The fs value determines whether argument validity checking should be
* performed or not. If get_fs() == USER_DS, checking is performed, with
* get_fs() == KERNEL_DS, checking is bypassed.
*
* For historical reasons, these macros are grossly misnamed.
*/

#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })

#define KERNEL_DS MAKE_MM_SEG(-1UL)
#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)

#define get_ds() (KERNEL_DS)
#define get_fs() (current_thread_info()->addr_limit)
#define set_fs(x) (current_thread_info()->addr_limit = (x))

#define segment_eq(a, b) ((a).seg == (b).seg)

#define __addr_ok(addr) (!((unsigned long)(addr) & \
(current_thread_info()->addr_limit.seg)))

/*
* Uhhuh, this needs 65-bit arithmetic. We have a carry..
*/
#define __range_not_ok(addr, size) \
({ \
unsigned long flag, roksum; \
__chk_user_ptr(addr); \
asm("add %3,%1 ; sbb %0,%0 ; cmp %1,%4 ; sbb $0,%0" \
: "=&r" (flag), "=r" (roksum) \
: "1" (addr), "g" ((long)(size)), \
"rm" (current_thread_info()->addr_limit.seg)); \
flag; \
})

#define access_ok(type, addr, size) (likely(__range_not_ok(addr, size) == 0))

/*
* The exception table consists of pairs of addresses: the first is the
* address of an instruction that is allowed to fault, and the second is
* the address at which the program should continue. No registers are
* modified, so it is entirely up to the continuation code to figure out
* what to do.
*
* All the routines below use bits of fixup code that are out of line
* with the main instruction path. This means when everything is well,
* we don't even have to jump over them. Further, they do not intrude
* on our cache or tlb entries.
*/

struct exception_table_entry {
unsigned long insn, fixup;
};

extern int fixup_exception(struct pt_regs *regs);

#define ARCH_HAS_SEARCH_EXTABLE

/*
* These are the main single-value transfer routines. They automatically
* use the right size if we just have the right pointer type.
*
* This gets kind of ugly. We want to return _two_ values in "get_user()"
* and yet we don't want to do any pointers, because that is too much
* of a performance impact. Thus we have a few rather ugly macros here,
* and hide all the ugliness from the user.
*
* The "__xxx" versions of the user access functions are versions that
* do not verify the address space, that must have been done previously
* with a separate "access_ok()" call (this is used when we do multiple
* accesses to the same area of user memory).
*/

#define __get_user_x(size, ret, x, ptr) \
asm volatile("call __get_user_" #size \
: "=a" (ret),"=d" (x) \
: "0" (ptr)) \

/* Careful: we have to cast the result to the type of the pointer
* for sign reasons */

Expand Down Expand Up @@ -226,12 +149,6 @@ struct __large_struct { unsigned long buf[100]; };
__gu_err; \
})

extern int __get_user_1(void);
extern int __get_user_2(void);
extern int __get_user_4(void);
extern int __get_user_8(void);
extern int __get_user_bad(void);

#define __get_user_size(x, ptr, size, retval) \
do { \
retval = 0; \
Expand Down

0 comments on commit 4806405

Please sign in to comment.