Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 309716
b: refs/heads/master
c: 133fd9f
h: refs/heads/master
v: v3
  • Loading branch information
Denys Vlasenko authored and Linus Torvalds committed Jun 1, 2012
1 parent 244fa4b commit 4e1dea1
Show file tree
Hide file tree
Showing 3 changed files with 195 additions and 92 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 725fe002d315c2501c110b7245d3eb4f4535f4d6
refs/heads/master: 133fd9f5cda2d86904126f4b9fa4e8f4330c9569
4 changes: 4 additions & 0 deletions trunk/include/asm-generic/bitsperlong.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,5 +28,9 @@
#error Inconsistent word size. Check asm/bitsperlong.h
#endif

#ifndef BITS_PER_LONG_LONG
#define BITS_PER_LONG_LONG 64
#endif

#endif /* __KERNEL__ */
#endif /* __ASM_GENERIC_BITS_PER_LONG */
281 changes: 190 additions & 91 deletions trunk/lib/vsprintf.c
Original file line number Diff line number Diff line change
Expand Up @@ -112,106 +112,199 @@ int skip_atoi(const char **s)
/* Decimal conversion is by far the most typical, and is used
* for /proc and /sys data. This directly impacts e.g. top performance
* with many processes running. We optimize it for speed
* using code from
* http://www.cs.uiowa.edu/~jones/bcd/decimal.html
* (with permission from the author, Douglas W. Jones). */
* using ideas described at <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
* (with permission from the author, Douglas W. Jones).
*/

/* Formats correctly any integer in [0,99999].
* Outputs from one to five digits depending on input.
* On i386 gcc 4.1.2 -O2: ~250 bytes of code. */
#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64
/* Formats correctly any integer in [0, 999999999] */
static noinline_for_stack
char *put_dec_trunc(char *buf, unsigned q)
char *put_dec_full9(char *buf, unsigned q)
{
unsigned d3, d2, d1, d0;
d1 = (q>>4) & 0xf;
d2 = (q>>8) & 0xf;
d3 = (q>>12);

d0 = 6*(d3 + d2 + d1) + (q & 0xf);
q = (d0 * 0xcd) >> 11;
d0 = d0 - 10*q;
*buf++ = d0 + '0'; /* least significant digit */
d1 = q + 9*d3 + 5*d2 + d1;
if (d1 != 0) {
q = (d1 * 0xcd) >> 11;
d1 = d1 - 10*q;
*buf++ = d1 + '0'; /* next digit */

d2 = q + 2*d2;
if ((d2 != 0) || (d3 != 0)) {
q = (d2 * 0xd) >> 7;
d2 = d2 - 10*q;
*buf++ = d2 + '0'; /* next digit */

d3 = q + 4*d3;
if (d3 != 0) {
q = (d3 * 0xcd) >> 11;
d3 = d3 - 10*q;
*buf++ = d3 + '0'; /* next digit */
if (q != 0)
*buf++ = q + '0'; /* most sign. digit */
}
}
}
unsigned r;

/*
* Possible ways to approx. divide by 10
* (x * 0x1999999a) >> 32 x < 1073741829 (multiply must be 64-bit)
* (x * 0xcccd) >> 19 x < 81920 (x < 262149 when 64-bit mul)
* (x * 0x6667) >> 18 x < 43699
* (x * 0x3334) >> 17 x < 16389
* (x * 0x199a) >> 16 x < 16389
* (x * 0x0ccd) >> 15 x < 16389
* (x * 0x0667) >> 14 x < 2739
* (x * 0x0334) >> 13 x < 1029
* (x * 0x019a) >> 12 x < 1029
* (x * 0x00cd) >> 11 x < 1029 shorter code than * 0x67 (on i386)
* (x * 0x0067) >> 10 x < 179
* (x * 0x0034) >> 9 x < 69 same
* (x * 0x001a) >> 8 x < 69 same
* (x * 0x000d) >> 7 x < 69 same, shortest code (on i386)
* (x * 0x0007) >> 6 x < 19
* See <http://www.cs.uiowa.edu/~jones/bcd/divide.html>
*/
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 1 */
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 2 */
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 3 */
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 4 */
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 5 */
/* Now value is under 10000, can avoid 64-bit multiply */
q = (r * 0x199a) >> 16;
*buf++ = (r - 10 * q) + '0'; /* 6 */
r = (q * 0xcd) >> 11;
*buf++ = (q - 10 * r) + '0'; /* 7 */
q = (r * 0xcd) >> 11;
*buf++ = (r - 10 * q) + '0'; /* 8 */
*buf++ = q + '0'; /* 9 */
return buf;
}
/* Same with if's removed. Always emits five digits */
#endif

/* Similar to above but do not pad with zeros.
* Code can be easily arranged to print 9 digits too, but our callers
* always call put_dec_full9() instead when the number has 9 decimal digits.
*/
static noinline_for_stack
char *put_dec_full(char *buf, unsigned q)
char *put_dec_trunc8(char *buf, unsigned r)
{
/* BTW, if q is in [0,9999], 8-bit ints will be enough, */
/* but anyway, gcc produces better code with full-sized ints */
unsigned d3, d2, d1, d0;
d1 = (q>>4) & 0xf;
d2 = (q>>8) & 0xf;
d3 = (q>>12);
unsigned q;

/* Copy of previous function's body with added early returns */
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 2 */
if (q == 0)
return buf;
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 3 */
if (r == 0)
return buf;
q = (r * (uint64_t)0x1999999a) >> 32;
*buf++ = (r - 10 * q) + '0'; /* 4 */
if (q == 0)
return buf;
r = (q * (uint64_t)0x1999999a) >> 32;
*buf++ = (q - 10 * r) + '0'; /* 5 */
if (r == 0)
return buf;
q = (r * 0x199a) >> 16;
*buf++ = (r - 10 * q) + '0'; /* 6 */
if (q == 0)
return buf;
r = (q * 0xcd) >> 11;
*buf++ = (q - 10 * r) + '0'; /* 7 */
if (r == 0)
return buf;
q = (r * 0xcd) >> 11;
*buf++ = (r - 10 * q) + '0'; /* 8 */
if (q == 0)
return buf;
*buf++ = q + '0'; /* 9 */
return buf;
}

/*
* Possible ways to approx. divide by 10
* gcc -O2 replaces multiply with shifts and adds
* (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386)
* (x * 0x67) >> 10: 1100111
* (x * 0x34) >> 9: 110100 - same
* (x * 0x1a) >> 8: 11010 - same
* (x * 0x0d) >> 7: 1101 - same, shortest code (on i386)
*/
d0 = 6*(d3 + d2 + d1) + (q & 0xf);
q = (d0 * 0xcd) >> 11;
d0 = d0 - 10*q;
*buf++ = d0 + '0';
d1 = q + 9*d3 + 5*d2 + d1;
q = (d1 * 0xcd) >> 11;
d1 = d1 - 10*q;
*buf++ = d1 + '0';

d2 = q + 2*d2;
q = (d2 * 0xd) >> 7;
d2 = d2 - 10*q;
*buf++ = d2 + '0';

d3 = q + 4*d3;
q = (d3 * 0xcd) >> 11; /* - shorter code */
/* q = (d3 * 0x67) >> 10; - would also work */
d3 = d3 - 10*q;
*buf++ = d3 + '0';
*buf++ = q + '0';
/* There are two algorithms to print larger numbers.
* One is generic: divide by 1000000000 and repeatedly print
* groups of (up to) 9 digits. It's conceptually simple,
* but requires a (unsigned long long) / 1000000000 division.
*
* Second algorithm splits 64-bit unsigned long long into 16-bit chunks,
* manipulates them cleverly and generates groups of 4 decimal digits.
* It so happens that it does NOT require long long division.
*
* If long is > 32 bits, division of 64-bit values is relatively easy,
* and we will use the first algorithm.
* If long long is > 64 bits (strange architecture with VERY large long long),
* second algorithm can't be used, and we again use the first one.
*
* Else (if long is 32 bits and long long is 64 bits) we use second one.
*/

return buf;
#if BITS_PER_LONG != 32 || BITS_PER_LONG_LONG != 64

/* First algorithm: generic */

static
char *put_dec(char *buf, unsigned long long n)
{
if (n >= 100*1000*1000) {
while (n >= 1000*1000*1000)
buf = put_dec_full9(buf, do_div(n, 1000*1000*1000));
if (n >= 100*1000*1000)
return put_dec_full9(buf, n);
}
return put_dec_trunc8(buf, n);
}
/* No inlining helps gcc to use registers better */

#else

/* Second algorithm: valid only for 64-bit long longs */

static noinline_for_stack
char *put_dec(char *buf, unsigned long long num)
char *put_dec_full4(char *buf, unsigned q)
{
while (1) {
unsigned rem;
if (num < 100000)
return put_dec_trunc(buf, num);
rem = do_div(num, 100000);
buf = put_dec_full(buf, rem);
}
unsigned r;
r = (q * 0xcccd) >> 19;
*buf++ = (q - 10 * r) + '0';
q = (r * 0x199a) >> 16;
*buf++ = (r - 10 * q) + '0';
r = (q * 0xcd) >> 11;
*buf++ = (q - 10 * r) + '0';
*buf++ = r + '0';
return buf;
}

/* Based on code by Douglas W. Jones found at
* <http://www.cs.uiowa.edu/~jones/bcd/decimal.html#sixtyfour>
* (with permission from the author).
* Performs no 64-bit division and hence should be fast on 32-bit machines.
*/
static
char *put_dec(char *buf, unsigned long long n)
{
uint32_t d3, d2, d1, q, h;

if (n < 100*1000*1000)
return put_dec_trunc8(buf, n);

d1 = ((uint32_t)n >> 16); /* implicit "& 0xffff" */
h = (n >> 32);
d2 = (h ) & 0xffff;
d3 = (h >> 16); /* implicit "& 0xffff" */

q = 656 * d3 + 7296 * d2 + 5536 * d1 + ((uint32_t)n & 0xffff);

buf = put_dec_full4(buf, q % 10000);
q = q / 10000;

d1 = q + 7671 * d3 + 9496 * d2 + 6 * d1;
buf = put_dec_full4(buf, d1 % 10000);
q = d1 / 10000;

d2 = q + 4749 * d3 + 42 * d2;
buf = put_dec_full4(buf, d2 % 10000);
q = d2 / 10000;

d3 = q + 281 * d3;
if (!d3)
goto done;
buf = put_dec_full4(buf, d3 % 10000);
q = d3 / 10000;
if (!q)
goto done;
buf = put_dec_full4(buf, q);
done:
while (buf[-1] == '0')
--buf;

return buf;
}

#endif

/*
* Convert passed number to decimal string.
* Returns the length of string. On buffer overflow, returns 0.
Expand All @@ -220,16 +313,22 @@ char *put_dec(char *buf, unsigned long long num)
*/
int num_to_str(char *buf, int size, unsigned long long num)
{
char tmp[21]; /* Enough for 2^64 in decimal */
char tmp[sizeof(num) * 3];
int idx, len;

len = put_dec(tmp, num) - tmp;
/* put_dec() may work incorrectly for num = 0 (generate "", not "0") */
if (num <= 9) {
tmp[0] = '0' + num;
len = 1;
} else {
len = put_dec(tmp, num) - tmp;
}

if (len > size)
return 0;
for (idx = 0; idx < len; ++idx)
buf[idx] = tmp[len - idx - 1];
return len;
return len;
}

#define ZEROPAD 1 /* pad with zero */
Expand Down Expand Up @@ -314,8 +413,8 @@ char *number(char *buf, char *end, unsigned long long num,

/* generate full string in tmp[], in reverse order */
i = 0;
if (num == 0)
tmp[i++] = '0';
if (num < spec.base)
tmp[i++] = digits[num] | locase;
/* Generic code, for any base:
else do {
tmp[i++] = (digits[do_div(num,base)] | locase);
Expand Down Expand Up @@ -611,7 +710,7 @@ char *ip4_string(char *p, const u8 *addr, const char *fmt)
}
for (i = 0; i < 4; i++) {
char temp[3]; /* hold each IP quad in reverse order */
int digits = put_dec_trunc(temp, addr[index]) - temp;
int digits = put_dec_trunc8(temp, addr[index]) - temp;
if (leading_zeros) {
if (digits < 3)
*p++ = '0';
Expand Down

0 comments on commit 4e1dea1

Please sign in to comment.