Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 349806
b: refs/heads/master
c: 4eacdf1
h: refs/heads/master
v: v3
  • Loading branch information
Frederic Weisbecker authored and Paul E. McKenney committed Jan 27, 2013
1 parent ca81ffe commit 60b0de4
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 11 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 90f45e4e729a7ffaa3ed2423834aad612870b427
refs/heads/master: 4eacdf18374e5d7d21a728b46dfec269ac8ef55c
75 changes: 65 additions & 10 deletions trunk/kernel/context_tracking.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,19 @@
/*
* Context tracking: Probe on high level context boundaries such as kernel
* and userspace. This includes syscalls and exceptions entry/exit.
*
* This is used by RCU to remove its dependency on the timer tick while a CPU
* runs in userspace.
*
* Started by Frederic Weisbecker:
*
* Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker <fweisbec@redhat.com>
*
* Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
* Steven Rostedt, Peter Zijlstra for suggestions and improvements.
*
*/

#include <linux/context_tracking.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
Expand All @@ -6,8 +22,8 @@

struct context_tracking {
/*
* When active is false, hooks are not set to
* minimize overhead: TIF flags are cleared
* When active is false, probes are unset in order
* to minimize overhead: TIF flags are cleared
* and calls to user_enter/exit are ignored. This
* may be further optimized using static keys.
*/
Expand All @@ -24,6 +40,15 @@ static DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
#endif
};

/**
* user_enter - Inform the context tracking that the CPU is going to
* enter userspace mode.
*
* This function must be called right before we switch from the kernel
* to userspace, when it's guaranteed the remaining kernel instructions
* to execute won't use any RCU read side critical section because this
* function sets RCU in extended quiescent state.
*/
void user_enter(void)
{
unsigned long flags;
Expand All @@ -39,40 +64,70 @@ void user_enter(void)
if (in_interrupt())
return;

/* Kernel threads aren't supposed to go to userspace */
WARN_ON_ONCE(!current->mm);

local_irq_save(flags);
if (__this_cpu_read(context_tracking.active) &&
__this_cpu_read(context_tracking.state) != IN_USER) {
__this_cpu_write(context_tracking.state, IN_USER);
/*
* At this stage, only low level arch entry code remains and
* then we'll run in userspace. We can assume there won't be
* any RCU read-side critical section until the next call to
* user_exit() or rcu_irq_enter(). Let's remove RCU's dependency
* on the tick.
*/
rcu_user_enter();
}
local_irq_restore(flags);
}


/**
* user_exit - Inform the context tracking that the CPU is
* exiting userspace mode and entering the kernel.
*
* This function must be called after we entered the kernel from userspace
* before any use of RCU read side critical section. This potentially include
* any high level kernel code like syscalls, exceptions, signal handling, etc...
*
* This call supports re-entrancy. This way it can be called from any exception
* handler without needing to know if we came from userspace or not.
*/
void user_exit(void)
{
unsigned long flags;

/*
* Some contexts may involve an exception occuring in an irq,
* leading to that nesting:
* rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
* This would mess up the dyntick_nesting count though. And rcu_irq_*()
* helpers are enough to protect RCU uses inside the exception. So
* just return immediately if we detect we are in an IRQ.
*/
if (in_interrupt())
return;

local_irq_save(flags);
if (__this_cpu_read(context_tracking.state) == IN_USER) {
__this_cpu_write(context_tracking.state, IN_KERNEL);
/*
* We are going to run code that may use RCU. Inform
* RCU core about that (ie: we may need the tick again).
*/
rcu_user_exit();
}
local_irq_restore(flags);
}


/**
* context_tracking_task_switch - context switch the syscall callbacks
* @prev: the task that is being switched out
* @next: the task that is being switched in
*
* The context tracking uses the syscall slow path to implement its user-kernel
* boundaries probes on syscalls. This way it doesn't impact the syscall fast
* path on CPUs that don't do context tracking.
*
* But we need to clear the flag on the previous task because it may later
* migrate to some CPU that doesn't do the context tracking. As such the TIF
* flag may not be desired there.
*/
void context_tracking_task_switch(struct task_struct *prev,
struct task_struct *next)
{
Expand Down

0 comments on commit 60b0de4

Please sign in to comment.