Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 256669
b: refs/heads/master
c: ece236c
h: refs/heads/master
i:
  256667: 8bd4d9b
v: v3
  • Loading branch information
Linus Torvalds committed Jul 22, 2011
1 parent 14ca04b commit 65ce407
Show file tree
Hide file tree
Showing 1,685 changed files with 111,057 additions and 46,666 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 4460207561290c3be7e6c7538f22690028170c1d
refs/heads/master: ece236ce2fad9c27a6fd2530f899289025194bce
103 changes: 103 additions & 0 deletions trunk/Documentation/ABI/stable/firewire-cdev
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
What: /dev/fw[0-9]+
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:
The character device files /dev/fw* are the interface between
firewire-core and IEEE 1394 device drivers implemented in
userspace. The ioctl(2)- and read(2)-based ABI is defined and
documented in <linux/firewire-cdev.h>.

This ABI offers most of the features which firewire-core also
exposes to kernelspace IEEE 1394 drivers.

Each /dev/fw* is associated with one IEEE 1394 node, which can
be remote or local nodes. Operations on a /dev/fw* file have
different scope:
- The 1394 node which is associated with the file:
- Asynchronous request transmission
- Get the Configuration ROM
- Query node ID
- Query maximum speed of the path between this node
and local node
- The 1394 bus (i.e. "card") to which the node is attached to:
- Isochronous stream transmission and reception
- Asynchronous stream transmission and reception
- Asynchronous broadcast request transmission
- PHY packet transmission and reception
- Allocate, reallocate, deallocate isochronous
resources (channels, bandwidth) at the bus's IRM
- Query node IDs of local node, root node, IRM, bus
manager
- Query cycle time
- Bus reset initiation, bus reset event reception
- All 1394 buses:
- Allocation of IEEE 1212 address ranges on the local
link layers, reception of inbound requests to such
an address range, asynchronous response transmission
to inbound requests
- Addition of descriptors or directories to the local
nodes' Configuration ROM

Due to the different scope of operations and in order to let
userland implement different access permission models, some
operations are restricted to /dev/fw* files that are associated
with a local node:
- Addition of descriptors or directories to the local
nodes' Configuration ROM
- PHY packet transmission and reception

A /dev/fw* file remains associated with one particular node
during its entire life time. Bus topology changes, and hence
node ID changes, are tracked by firewire-core. ABI users do not
need to be aware of topology.

The following file operations are supported:

open(2)
Currently the only useful flags are O_RDWR.

ioctl(2)
Initiate various actions. Some take immediate effect, others
are performed asynchronously while or after the ioctl returns.
See the inline documentation in <linux/firewire-cdev.h> for
descriptions of all ioctls.

poll(2), select(2), epoll_wait(2) etc.
Watch for events to become available to be read.

read(2)
Receive various events. There are solicited events like
outbound asynchronous transaction completion or isochronous
buffer completion, and unsolicited events such as bus resets,
request reception, or PHY packet reception. Always use a read
buffer which is large enough to receive the largest event that
could ever arrive. See <linux/firewire-cdev.h> for descriptions
of all event types and for which ioctls affect reception of
events.

mmap(2)
Allocate a DMA buffer for isochronous reception or transmission
and map it into the process address space. The arguments should
be used as follows: addr = NULL, length = the desired buffer
size, i.e. number of packets times size of largest packet,
prot = at least PROT_READ for reception and at least PROT_WRITE
for transmission, flags = MAP_SHARED, fd = the handle to the
/dev/fw*, offset = 0.

Isochronous reception works in packet-per-buffer fashion except
for multichannel reception which works in buffer-fill mode.

munmap(2)
Unmap the isochronous I/O buffer from the process address space.

close(2)
Besides stopping and freeing I/O contexts that were associated
with the file descriptor, back out any changes to the local
nodes' Configuration ROM. Deallocate isochronous channels and
bandwidth at the IRM that were marked for kernel-assisted
re- and deallocation.

Users: libraw1394
libdc1394
tools like jujuutils, fwhack, ...
122 changes: 122 additions & 0 deletions trunk/Documentation/ABI/stable/sysfs-bus-firewire
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
What: /sys/bus/firewire/devices/fw[0-9]+/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:
IEEE 1394 node device attributes.
Read-only. Mutable during the node device's lifetime.
See IEEE 1212 for semantic definitions.

config_rom
Contents of the Configuration ROM register.
Binary attribute; an array of host-endian u32.

guid
The node's EUI-64 in the bus information block of
Configuration ROM.
Hexadecimal string representation of an u64.


What: /sys/bus/firewire/devices/fw[0-9]+/units
Date: June 2009
KernelVersion: 2.6.31
Contact: linux1394-devel@lists.sourceforge.net
Description:
IEEE 1394 node device attribute.
Read-only. Mutable during the node device's lifetime.
See IEEE 1212 for semantic definitions.

units
Summary of all units present in an IEEE 1394 node.
Contains space-separated tuples of specifier_id and
version of each unit present in the node. Specifier_id
and version are hexadecimal string representations of
u24 of the respective unit directory entries.
Specifier_id and version within each tuple are separated
by a colon.

Users: udev rules to set ownership and access permissions or ACLs of
/dev/fw[0-9]+ character device files


What: /sys/bus/firewire/devices/fw[0-9]+[.][0-9]+/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:
IEEE 1394 unit device attributes.
Read-only. Immutable during the unit device's lifetime.
See IEEE 1212 for semantic definitions.

modalias
Same as MODALIAS in the uevent at device creation.

rom_index
Offset of the unit directory within the parent device's
(node device's) Configuration ROM, in quadlets.
Decimal string representation.


What: /sys/bus/firewire/devices/*/
Date: May 2007
KernelVersion: 2.6.22
Contact: linux1394-devel@lists.sourceforge.net
Description:
Attributes common to IEEE 1394 node devices and unit devices.
Read-only. Mutable during the node device's lifetime.
Immutable during the unit device's lifetime.
See IEEE 1212 for semantic definitions.

These attributes are only created if the root directory of an
IEEE 1394 node or the unit directory of an IEEE 1394 unit
actually contains according entries.

hardware_version
Hexadecimal string representation of an u24.

hardware_version_name
Contents of a respective textual descriptor leaf.

model
Hexadecimal string representation of an u24.

model_name
Contents of a respective textual descriptor leaf.

specifier_id
Hexadecimal string representation of an u24.
Mandatory in unit directories according to IEEE 1212.

vendor
Hexadecimal string representation of an u24.
Mandatory in the root directory according to IEEE 1212.

vendor_name
Contents of a respective textual descriptor leaf.

version
Hexadecimal string representation of an u24.
Mandatory in unit directories according to IEEE 1212.


What: /sys/bus/firewire/drivers/sbp2/fw*/host*/target*/*:*:*:*/ieee1394_id
formerly
/sys/bus/ieee1394/drivers/sbp2/fw*/host*/target*/*:*:*:*/ieee1394_id
Date: Feb 2004
KernelVersion: 2.6.4
Contact: linux1394-devel@lists.sourceforge.net
Description:
SCSI target port identifier and logical unit identifier of a
logical unit of an SBP-2 target. The identifiers are specified
in SAM-2...SAM-4 annex A. They are persistent and world-wide
unique properties the SBP-2 attached target.

Read-only attribute, immutable during the target's lifetime.
Format, as exposed by firewire-sbp2 since 2.6.22, May 2007:
Colon-separated hexadecimal string representations of
u64 EUI-64 : u24 directory_ID : u16 LUN
without 0x prefixes, without whitespace. The former sbp2 driver
(removed in 2.6.37 after being superseded by firewire-sbp2) used
a somewhat shorter format which was not as close to SAM.

Users: udev rules to create /dev/disk/by-id/ symlinks
5 changes: 3 additions & 2 deletions trunk/Documentation/DocBook/80211.tmpl
Original file line number Diff line number Diff line change
Expand Up @@ -402,8 +402,9 @@
!Finclude/net/mac80211.h set_key_cmd
!Finclude/net/mac80211.h ieee80211_key_conf
!Finclude/net/mac80211.h ieee80211_key_flags
!Finclude/net/mac80211.h ieee80211_tkip_key_type
!Finclude/net/mac80211.h ieee80211_get_tkip_key
!Finclude/net/mac80211.h ieee80211_get_tkip_p1k
!Finclude/net/mac80211.h ieee80211_get_tkip_p1k_iv
!Finclude/net/mac80211.h ieee80211_get_tkip_p2k
!Finclude/net/mac80211.h ieee80211_key_removed
</chapter>

Expand Down
1 change: 0 additions & 1 deletion trunk/Documentation/filesystems/nilfs2.txt
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,6 @@ Features which NILFS2 does not support yet:
- POSIX ACLs
- quotas
- fsck
- resize
- defragmentation

Mount options
Expand Down
28 changes: 0 additions & 28 deletions trunk/Documentation/filesystems/ubifs.txt
Original file line number Diff line number Diff line change
Expand Up @@ -111,34 +111,6 @@ The following is an example of the kernel boot arguments to attach mtd0
to UBI and mount volume "rootfs":
ubi.mtd=0 root=ubi0:rootfs rootfstype=ubifs


Module Parameters for Debugging
===============================

When UBIFS has been compiled with debugging enabled, there are 2 module
parameters that are available to control aspects of testing and debugging.

debug_chks Selects extra checks that UBIFS can do while running:

Check Flag value

General checks 1
Check Tree Node Cache (TNC) 2
Check indexing tree size 4
Check orphan area 8
Check old indexing tree 16
Check LEB properties (lprops) 32
Check leaf nodes and inodes 64

debug_tsts Selects a mode of testing, as follows:

Test mode Flag value

Failure mode for recovery testing 4

For example, set debug_chks to 3 to enable general and TNC checks.


References
==========

Expand Down
2 changes: 2 additions & 0 deletions trunk/Documentation/mmc/00-INDEX
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,5 @@ mmc-dev-attrs.txt
- info on SD and MMC device attributes
mmc-dev-parts.txt
- info on SD and MMC device partitions
mmc-async-req.txt
- info on mmc asynchronous requests
87 changes: 87 additions & 0 deletions trunk/Documentation/mmc/mmc-async-req.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
Rationale
=========

How significant is the cache maintenance overhead?
It depends. Fast eMMC and multiple cache levels with speculative cache
pre-fetch makes the cache overhead relatively significant. If the DMA
preparations for the next request are done in parallel with the current
transfer, the DMA preparation overhead would not affect the MMC performance.
The intention of non-blocking (asynchronous) MMC requests is to minimize the
time between when an MMC request ends and another MMC request begins.
Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
dma_unmap_sg are processing. Using non-blocking MMC requests makes it
possible to prepare the caches for next job in parallel with an active
MMC request.

MMC block driver
================

The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.
The increase in throughput is proportional to the time it takes to
prepare (major part of preparations are dma_map_sg() and dma_unmap_sg())
a request and how fast the memory is. The faster the MMC/SD is the
more significant the prepare request time becomes. Roughly the expected
performance gain is 5% for large writes and 10% on large reads on a L2 cache
platform. In power save mode, when clocks run on a lower frequency, the DMA
preparation may cost even more. As long as these slower preparations are run
in parallel with the transfer performance won't be affected.

Details on measurements from IOZone and mmc_test
================================================

https://wiki.linaro.org/WorkingGroups/Kernel/Specs/StoragePerfMMC-async-req

MMC core API extension
======================

There is one new public function mmc_start_req().
It starts a new MMC command request for a host. The function isn't
truly non-blocking. If there is an ongoing async request it waits
for completion of that request and starts the new one and returns. It
doesn't wait for the new request to complete. If there is no ongoing
request it starts the new request and returns immediately.

MMC host extensions
===================

There are two optional members in the mmc_host_ops -- pre_req() and
post_req() -- that the host driver may implement in order to move work
to before and after the actual mmc_host_ops.request() function is called.
In the DMA case pre_req() may do dma_map_sg() and prepare the DMA
descriptor, and post_req() runs the dma_unmap_sg().

Optimize for the first request
==============================

The first request in a series of requests can't be prepared in parallel
with the previous transfer, since there is no previous request.
The argument is_first_req in pre_req() indicates that there is no previous
request. The host driver may optimize for this scenario to minimize
the performance loss. A way to optimize for this is to split the current
request in two chunks, prepare the first chunk and start the request,
and finally prepare the second chunk and start the transfer.

Pseudocode to handle is_first_req scenario with minimal prepare overhead:

if (is_first_req && req->size > threshold)
/* start MMC transfer for the complete transfer size */
mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);

/*
* Begin to prepare DMA while cmd is being processed by MMC.
* The first chunk of the request should take the same time
* to prepare as the "MMC process command time".
* If prepare time exceeds MMC cmd time
* the transfer is delayed, guesstimate max 4k as first chunk size.
*/
prepare_1st_chunk_for_dma(req);
/* flush pending desc to the DMAC (dmaengine.h) */
dma_issue_pending(req->dma_desc);

prepare_2nd_chunk_for_dma(req);
/*
* The second issue_pending should be called before MMC runs out
* of the first chunk. If the MMC runs out of the first data chunk
* before this call, the transfer is delayed.
*/
dma_issue_pending(req->dma_desc);
Loading

0 comments on commit 65ce407

Please sign in to comment.