Skip to content

Commit

Permalink
Merge branch 'linus' into cpus4096
Browse files Browse the repository at this point in the history
Conflicts:

	arch/x86/xen/smp.c
	kernel/sched_rt.c
	net/iucv/iucv.c

Signed-off-by: Ingo Molnar <mingo@elte.hu>
  • Loading branch information
Ingo Molnar committed Jul 15, 2008
2 parents 9982fbf + 63cf13b commit 8263884
Show file tree
Hide file tree
Showing 2,558 changed files with 166,573 additions and 99,610 deletions.
34 changes: 34 additions & 0 deletions Documentation/ABI/testing/sysfs-block
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,37 @@ Description:
I/O statistics of partition <part>. The format is the
same as the above-written /sys/block/<disk>/stat
format.


What: /sys/block/<disk>/integrity/format
Date: June 2008
Contact: Martin K. Petersen <martin.petersen@oracle.com>
Description:
Metadata format for integrity capable block device.
E.g. T10-DIF-TYPE1-CRC.


What: /sys/block/<disk>/integrity/read_verify
Date: June 2008
Contact: Martin K. Petersen <martin.petersen@oracle.com>
Description:
Indicates whether the block layer should verify the
integrity of read requests serviced by devices that
support sending integrity metadata.


What: /sys/block/<disk>/integrity/tag_size
Date: June 2008
Contact: Martin K. Petersen <martin.petersen@oracle.com>
Description:
Number of bytes of integrity tag space available per
512 bytes of data.


What: /sys/block/<disk>/integrity/write_generate
Date: June 2008
Contact: Martin K. Petersen <martin.petersen@oracle.com>
Description:
Indicates whether the block layer should automatically
generate checksums for write requests bound for
devices that support receiving integrity metadata.
35 changes: 35 additions & 0 deletions Documentation/ABI/testing/sysfs-bus-css
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
What: /sys/bus/css/devices/.../type
Date: March 2008
Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
linux-s390@vger.kernel.org
Description: Contains the subchannel type, as reported by the hardware.
This attribute is present for all subchannel types.

What: /sys/bus/css/devices/.../modalias
Date: March 2008
Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
linux-s390@vger.kernel.org
Description: Contains the module alias as reported with uevents.
It is of the format css:t<type> and present for all
subchannel types.

What: /sys/bus/css/drivers/io_subchannel/.../chpids
Date: December 2002
Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
linux-s390@vger.kernel.org
Description: Contains the ids of the channel paths used by this
subchannel, as reported by the channel subsystem
during subchannel recognition.
Note: This is an I/O-subchannel specific attribute.
Users: s390-tools, HAL

What: /sys/bus/css/drivers/io_subchannel/.../pimpampom
Date: December 2002
Contact: Cornelia Huck <cornelia.huck@de.ibm.com>
linux-s390@vger.kernel.org
Description: Contains the PIM/PAM/POM values, as reported by the
channel subsystem when last queried by the common I/O
layer (this implies that this attribute is not neccessarily
in sync with the values current in the channel subsystem).
Note: This is an I/O-subchannel specific attribute.
Users: s390-tools, HAL
71 changes: 71 additions & 0 deletions Documentation/ABI/testing/sysfs-firmware-memmap
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
What: /sys/firmware/memmap/
Date: June 2008
Contact: Bernhard Walle <bwalle@suse.de>
Description:
On all platforms, the firmware provides a memory map which the
kernel reads. The resources from that memory map are registered
in the kernel resource tree and exposed to userspace via
/proc/iomem (together with other resources).

However, on most architectures that firmware-provided memory
map is modified afterwards by the kernel itself, either because
the kernel merges that memory map with other information or
just because the user overwrites that memory map via command
line.

kexec needs the raw firmware-provided memory map to setup the
parameter segment of the kernel that should be booted with
kexec. Also, the raw memory map is useful for debugging. For
that reason, /sys/firmware/memmap is an interface that provides
the raw memory map to userspace.

The structure is as follows: Under /sys/firmware/memmap there
are subdirectories with the number of the entry as their name:

/sys/firmware/memmap/0
/sys/firmware/memmap/1
/sys/firmware/memmap/2
/sys/firmware/memmap/3
...

The maximum depends on the number of memory map entries provided
by the firmware. The order is just the order that the firmware
provides.

Each directory contains three files:

start : The start address (as hexadecimal number with the
'0x' prefix).
end : The end address, inclusive (regardless whether the
firmware provides inclusive or exclusive ranges).
type : Type of the entry as string. See below for a list of
valid types.

So, for example:

/sys/firmware/memmap/0/start
/sys/firmware/memmap/0/end
/sys/firmware/memmap/0/type
/sys/firmware/memmap/1/start
...

Currently following types exist:

- System RAM
- ACPI Tables
- ACPI Non-volatile Storage
- reserved

Following shell snippet can be used to display that memory
map in a human-readable format:

-------------------- 8< ----------------------------------------
#!/bin/bash
cd /sys/firmware/memmap
for dir in * ; do
start=$(cat $dir/start)
end=$(cat $dir/end)
type=$(cat $dir/type)
printf "%016x-%016x (%s)\n" $start $[ $end +1] "$type"
done
-------------------- >8 ----------------------------------------
2 changes: 1 addition & 1 deletion Documentation/HOWTO
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,7 @@ Bug Reporting
bugzilla.kernel.org is where the Linux kernel developers track kernel
bugs. Users are encouraged to report all bugs that they find in this
tool. For details on how to use the kernel bugzilla, please see:
http://test.kernel.org/bugzilla/faq.html
http://bugzilla.kernel.org/page.cgi?id=faq.html

The file REPORTING-BUGS in the main kernel source directory has a good
template for how to report a possible kernel bug, and details what kind
Expand Down
37 changes: 28 additions & 9 deletions Documentation/IRQ-affinity.txt
Original file line number Diff line number Diff line change
@@ -1,17 +1,26 @@
ChangeLog:
Started by Ingo Molnar <mingo@redhat.com>
Update by Max Krasnyansky <maxk@qualcomm.com>

SMP IRQ affinity, started by Ingo Molnar <mingo@redhat.com>

SMP IRQ affinity

/proc/irq/IRQ#/smp_affinity specifies which target CPUs are permitted
for a given IRQ source. It's a bitmask of allowed CPUs. It's not allowed
to turn off all CPUs, and if an IRQ controller does not support IRQ
affinity then the value will not change from the default 0xffffffff.

/proc/irq/default_smp_affinity specifies default affinity mask that applies
to all non-active IRQs. Once IRQ is allocated/activated its affinity bitmask
will be set to the default mask. It can then be changed as described above.
Default mask is 0xffffffff.

Here is an example of restricting IRQ44 (eth1) to CPU0-3 then restricting
the IRQ to CPU4-7 (this is an 8-CPU SMP box):
it to CPU4-7 (this is an 8-CPU SMP box):

[root@moon 44]# cd /proc/irq/44
[root@moon 44]# cat smp_affinity
ffffffff

[root@moon 44]# echo 0f > smp_affinity
[root@moon 44]# cat smp_affinity
0000000f
Expand All @@ -21,17 +30,27 @@ PING hell (195.4.7.3): 56 data bytes
--- hell ping statistics ---
6029 packets transmitted, 6027 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.1/0.4 ms
[root@moon 44]# cat /proc/interrupts | grep 44:
44: 0 1785 1785 1783 1783 1
1 0 IO-APIC-level eth1
[root@moon 44]# cat /proc/interrupts | grep 'CPU\|44:'
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
44: 1068 1785 1785 1783 0 0 0 0 IO-APIC-level eth1

As can be seen from the line above IRQ44 was delivered only to the first four
processors (0-3).
Now lets restrict that IRQ to CPU(4-7).

[root@moon 44]# echo f0 > smp_affinity
[root@moon 44]# cat smp_affinity
000000f0
[root@moon 44]# ping -f h
PING hell (195.4.7.3): 56 data bytes
..
--- hell ping statistics ---
2779 packets transmitted, 2777 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.5/585.4 ms
[root@moon 44]# cat /proc/interrupts | grep 44:
44: 1068 1785 1785 1784 1784 1069 1070 1069 IO-APIC-level eth1
[root@moon 44]#
[root@moon 44]# cat /proc/interrupts | 'CPU\|44:'
CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7
44: 1068 1785 1785 1783 1784 1069 1070 1069 IO-APIC-level eth1

This time around IRQ44 was delivered only to the last four processors.
i.e counters for the CPU0-3 did not change.

3 changes: 3 additions & 0 deletions Documentation/RCU/NMI-RCU.txt
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,9 @@ Since NMI handlers disable preemption, synchronize_sched() is guaranteed
not to return until all ongoing NMI handlers exit. It is therefore safe
to free up the handler's data as soon as synchronize_sched() returns.

Important note: for this to work, the architecture in question must
invoke irq_enter() and irq_exit() on NMI entry and exit, respectively.


Answer to Quick Quiz

Expand Down
108 changes: 108 additions & 0 deletions Documentation/RCU/RTFP.txt
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,10 @@ of each iteration. Unfortunately, chaotic relaxation requires highly
structured data, such as the matrices used in scientific programs, and
is thus inapplicable to most data structures in operating-system kernels.

In 1992, Henry (now Alexia) Massalin completed a dissertation advising
parallel programmers to defer processing when feasible to simplify
synchronization. RCU makes extremely heavy use of this advice.

In 1993, Jacobson [Jacobson93] verbally described what is perhaps the
simplest deferred-free technique: simply waiting a fixed amount of time
before freeing blocks awaiting deferred free. Jacobson did not describe
Expand Down Expand Up @@ -138,6 +142,13 @@ blocking in read-side critical sections appeared [PaulEMcKenney2006c],
Robert Olsson described an RCU-protected trie-hash combination
[RobertOlsson2006a].

2007 saw the journal version of the award-winning RCU paper from 2006
[ThomasEHart2007a], as well as a paper demonstrating use of Promela
and Spin to mechanically verify an optimization to Oleg Nesterov's
QRCU [PaulEMcKenney2007QRCUspin], a design document describing
preemptible RCU [PaulEMcKenney2007PreemptibleRCU], and the three-part
LWN "What is RCU?" series [PaulEMcKenney2007WhatIsRCUFundamentally,
PaulEMcKenney2008WhatIsRCUUsage, and PaulEMcKenney2008WhatIsRCUAPI].

Bibtex Entries

Expand Down Expand Up @@ -202,6 +213,20 @@ Bibtex Entries
,Year="1991"
}

@phdthesis{HMassalinPhD
,author="H. Massalin"
,title="Synthesis: An Efficient Implementation of Fundamental Operating
System Services"
,school="Columbia University"
,address="New York, NY"
,year="1992"
,annotation="
Mondo optimizing compiler.
Wait-free stuff.
Good advice: defer work to avoid synchronization.
"
}

@unpublished{Jacobson93
,author="Van Jacobson"
,title="Avoid Read-Side Locking Via Delayed Free"
Expand Down Expand Up @@ -635,3 +660,86 @@ Revised:
"
}

@unpublished{PaulEMcKenney2007PreemptibleRCU
,Author="Paul E. McKenney"
,Title="The design of preemptible read-copy-update"
,month="October"
,day="8"
,year="2007"
,note="Available:
\url{http://lwn.net/Articles/253651/}
[Viewed October 25, 2007]"
,annotation="
LWN article describing the design of preemptible RCU.
"
}

########################################################################
#
# "What is RCU?" LWN series.
#

@unpublished{PaulEMcKenney2007WhatIsRCUFundamentally
,Author="Paul E. McKenney and Jonathan Walpole"
,Title="What is {RCU}, Fundamentally?"
,month="December"
,day="17"
,year="2007"
,note="Available:
\url{http://lwn.net/Articles/262464/}
[Viewed December 27, 2007]"
,annotation="
Lays out the three basic components of RCU: (1) publish-subscribe,
(2) wait for pre-existing readers to complete, and (2) maintain
multiple versions.
"
}

@unpublished{PaulEMcKenney2008WhatIsRCUUsage
,Author="Paul E. McKenney"
,Title="What is {RCU}? Part 2: Usage"
,month="January"
,day="4"
,year="2008"
,note="Available:
\url{http://lwn.net/Articles/263130/}
[Viewed January 4, 2008]"
,annotation="
Lays out six uses of RCU:
1. RCU is a Reader-Writer Lock Replacement
2. RCU is a Restricted Reference-Counting Mechanism
3. RCU is a Bulk Reference-Counting Mechanism
4. RCU is a Poor Man's Garbage Collector
5. RCU is a Way of Providing Existence Guarantees
6. RCU is a Way of Waiting for Things to Finish
"
}

@unpublished{PaulEMcKenney2008WhatIsRCUAPI
,Author="Paul E. McKenney"
,Title="{RCU} part 3: the {RCU} {API}"
,month="January"
,day="17"
,year="2008"
,note="Available:
\url{http://lwn.net/Articles/264090/}
[Viewed January 10, 2008]"
,annotation="
Gives an overview of the Linux-kernel RCU API and a brief annotated RCU
bibliography.
"
}

@article{DinakarGuniguntala2008IBMSysJ
,author="D. Guniguntala and P. E. McKenney and J. Triplett and J. Walpole"
,title="The read-copy-update mechanism for supporting real-time applications on shared-memory multiprocessor systems with {Linux}"
,Year="2008"
,Month="April"
,journal="IBM Systems Journal"
,volume="47"
,number="2"
,pages="@@-@@"
,annotation="
RCU, realtime RCU, sleepable RCU, performance.
"
}
Loading

0 comments on commit 8263884

Please sign in to comment.