Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 292697
b: refs/heads/master
c: 9521127
h: refs/heads/master
i:
  292695: 8c3ee4a
v: v3
  • Loading branch information
Linus Torvalds committed Mar 22, 2012
1 parent 0edc884 commit c1ecc33
Show file tree
Hide file tree
Showing 688 changed files with 25,964 additions and 26,275 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 12724850e8064f64b6223d26d78c0597c742c65a
refs/heads/master: 95211279c5ad00a317c98221d7e4365e02f20836
63 changes: 63 additions & 0 deletions trunk/Documentation/devicetree/bindings/powerpc/fsl/mpic-msgr.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
* FSL MPIC Message Registers

This binding specifies what properties must be available in the device tree
representation of the message register blocks found in some FSL MPIC
implementations.

Required properties:

- compatible: Specifies the compatibility list for the message register
block. The type shall be <string-list> and the value shall be of the form
"fsl,mpic-v<version>-msgr", where <version> is the version number of
the MPIC containing the message registers.

- reg: Specifies the base physical address(s) and size(s) of the
message register block's addressable register space. The type shall be
<prop-encoded-array>.

- interrupts: Specifies a list of interrupt-specifiers which are available
for receiving interrupts. Interrupt-specifier consists of two cells: first
cell is interrupt-number and second cell is level-sense. The type shall be
<prop-encoded-array>.

Optional properties:

- mpic-msgr-receive-mask: Specifies what registers in the containing block
are allowed to receive interrupts. The value is a bit mask where a set
bit at bit 'n' indicates that message register 'n' can receive interrupts.
Note that "bit 'n'" is numbered from LSB for PPC hardware. The type shall
be <u32>. If not present, then all of the message registers in the block
are available.

Aliases:

An alias should be created for every message register block. They are not
required, though. However, a particular implementation of this binding
may require aliases to be present. Aliases are of the form
'mpic-msgr-block<n>', where <n> is an integer specifying the block's number.
Numbers shall start at 0.

Example:

aliases {
mpic-msgr-block0 = &mpic_msgr_block0;
mpic-msgr-block1 = &mpic_msgr_block1;
};

mpic_msgr_block0: mpic-msgr-block@41400 {
compatible = "fsl,mpic-v3.1-msgr";
reg = <0x41400 0x200>;
// Message registers 0 and 2 in this block can receive interrupts on
// sources 0xb0 and 0xb2, respectively.
interrupts = <0xb0 2 0xb2 2>;
mpic-msgr-receive-mask = <0x5>;
};

mpic_msgr_block1: mpic-msgr-block@42400 {
compatible = "fsl,mpic-v3.1-msgr";
reg = <0x42400 0x200>;
// Message registers 0 and 2 in this block can receive interrupts on
// sources 0xb4 and 0xb6, respectively.
interrupts = <0xb4 2 0xb6 2>;
mpic-msgr-receive-mask = <0x5>;
};
22 changes: 21 additions & 1 deletion trunk/Documentation/devicetree/bindings/powerpc/fsl/mpic.txt
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,27 @@ PROPERTIES
to the client. The presence of this property also mandates
that any initialization related to interrupt sources shall
be limited to sources explicitly referenced in the device tree.


- big-endian
Usage: optional
Value type: <empty>
If present the MPIC will be assumed to be big-endian. Some
device-trees omit this property on MPIC nodes even when the MPIC is
in fact big-endian, so certain boards override this property.

- single-cpu-affinity
Usage: optional
Value type: <empty>
If present the MPIC will be assumed to only be able to route
non-IPI interrupts to a single CPU at a time (EG: Freescale MPIC).

- last-interrupt-source
Usage: optional
Value type: <u32>
Some MPICs do not correctly report the number of hardware sources
in the global feature registers. If specified, this field will
override the value read from MPIC_GREG_FEATURE_LAST_SRC.

INTERRUPT SPECIFIER DEFINITION

Interrupt specifiers consists of 4 cells encoded as
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,10 @@ Required properties:
etc.) and the second is "fsl,mpic-msi" or "fsl,ipic-msi" depending on
the parent type.

- reg : should contain the address and the length of the shared message
interrupt register set.
- reg : It may contain one or two regions. The first region should contain
the address and the length of the shared message interrupt register set.
The second region should contain the address of aliased MSIIR register for
platforms that have such an alias.

- msi-available-ranges: use <start count> style section to define which
msi interrupt can be used in the 256 msi interrupts. This property is
Expand Down
2 changes: 1 addition & 1 deletion trunk/Documentation/filesystems/debugfs.txt
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ file.
void __iomem *base;
};

struct dentry *debugfs_create_regset32(const char *name, mode_t mode,
struct dentry *debugfs_create_regset32(const char *name, umode_t mode,
struct dentry *parent,
struct debugfs_regset32 *regset);

Expand Down
6 changes: 6 additions & 0 deletions trunk/Documentation/filesystems/porting
Original file line number Diff line number Diff line change
Expand Up @@ -429,3 +429,9 @@ filemap_write_and_wait_range() so that all dirty pages are synced out properly.
You must also keep in mind that ->fsync() is not called with i_mutex held
anymore, so if you require i_mutex locking you must make sure to take it and
release it yourself.

--
[mandatory]
d_alloc_root() is gone, along with a lot of bugs caused by code
misusing it. Replacement: d_make_root(inode). The difference is,
d_make_root() drops the reference to inode if dentry allocation fails.
174 changes: 174 additions & 0 deletions trunk/Documentation/filesystems/qnx6.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
The QNX6 Filesystem
===================

The qnx6fs is used by newer QNX operating system versions. (e.g. Neutrino)
It got introduced in QNX 6.4.0 and is used default since 6.4.1.

Option
======

mmi_fs Mount filesystem as used for example by Audi MMI 3G system

Specification
=============

qnx6fs shares many properties with traditional Unix filesystems. It has the
concepts of blocks, inodes and directories.
On QNX it is possible to create little endian and big endian qnx6 filesystems.
This feature makes it possible to create and use a different endianness fs
for the target (QNX is used on quite a range of embedded systems) plattform
running on a different endianess.
The Linux driver handles endianness transparently. (LE and BE)

Blocks
------

The space in the device or file is split up into blocks. These are a fixed
size of 512, 1024, 2048 or 4096, which is decided when the filesystem is
created.
Blockpointers are 32bit, so the maximum space that can be adressed is
2^32 * 4096 bytes or 16TB

The superblocks
---------------

The superblock contains all global information about the filesystem.
Each qnx6fs got two superblocks, each one having a 64bit serial number.
That serial number is used to identify the "active" superblock.
In write mode with reach new snapshot (after each synchronous write), the
serial of the new master superblock is increased (old superblock serial + 1)

So basically the snapshot functionality is realized by an atomic final
update of the serial number. Before updating that serial, all modifications
are done by copying all modified blocks during that specific write request
(or period) and building up a new (stable) filesystem structure under the
inactive superblock.

Each superblock holds a set of root inodes for the different filesystem
parts. (Inode, Bitmap and Longfilenames)
Each of these root nodes holds information like total size of the stored
data and the adressing levels in that specific tree.
If the level value is 0, up to 16 direct blocks can be adressed by each
node.
Level 1 adds an additional indirect adressing level where each indirect
adressing block holds up to blocksize / 4 bytes pointers to data blocks.
Level 2 adds an additional indirect adressig block level (so, already up
to 16 * 256 * 256 = 1048576 blocks that can be adressed by such a tree)a

Unused block pointers are always set to ~0 - regardless of root node,
indirect adressing blocks or inodes.
Data leaves are always on the lowest level. So no data is stored on upper
tree levels.

The first Superblock is located at 0x2000. (0x2000 is the bootblock size)
The Audi MMI 3G first superblock directly starts at byte 0.
Second superblock position can either be calculated from the superblock
information (total number of filesystem blocks) or by taking the highest
device address, zeroing the last 3 bytes and then substracting 0x1000 from
that address.

0x1000 is the size reserved for each superblock - regardless of the
blocksize of the filesystem.

Inodes
------

Each object in the filesystem is represented by an inode. (index node)
The inode structure contains pointers to the filesystem blocks which contain
the data held in the object and all of the metadata about an object except
its longname. (filenames longer than 27 characters)
The metadata about an object includes the permissions, owner, group, flags,
size, number of blocks used, access time, change time and modification time.

Object mode field is POSIX format. (which makes things easier)

There are also pointers to the first 16 blocks, if the object data can be
adressed with 16 direct blocks.
For more than 16 blocks an indirect adressing in form of another tree is
used. (scheme is the same as the one used for the superblock root nodes)

The filesize is stored 64bit. Inode counting starts with 1. (whilst long
filename inodes start with 0)

Directories
-----------

A directory is a filesystem object and has an inode just like a file.
It is a specially formatted file containing records which associate each
name with an inode number.
'.' inode number points to the directory inode
'..' inode number points to the parent directory inode
Eeach filename record additionally got a filename length field.

One special case are long filenames or subdirectory names.
These got set a filename length field of 0xff in the corresponding directory
record plus the longfile inode number also stored in that record.
With that longfilename inode number, the longfilename tree can be walked
starting with the superblock longfilename root node pointers.

Special files
-------------

Symbolic links are also filesystem objects with inodes. They got a specific
bit in the inode mode field identifying them as symbolic link.
The directory entry file inode pointer points to the target file inode.

Hard links got an inode, a directory entry, but a specific mode bit set,
no block pointers and the directory file record pointing to the target file
inode.

Character and block special devices do not exist in QNX as those files
are handled by the QNX kernel/drivers and created in /dev independant of the
underlaying filesystem.

Long filenames
--------------

Long filenames are stored in a seperate adressing tree. The staring point
is the longfilename root node in the active superblock.
Each data block (tree leaves) holds one long filename. That filename is
limited to 510 bytes. The first two starting bytes are used as length field
for the actual filename.
If that structure shall fit for all allowed blocksizes, it is clear why there
is a limit of 510 bytes for the actual filename stored.

Bitmap
------

The qnx6fs filesystem allocation bitmap is stored in a tree under bitmap
root node in the superblock and each bit in the bitmap represents one
filesystem block.
The first block is block 0, which starts 0x1000 after superblock start.
So for a normal qnx6fs 0x3000 (bootblock + superblock) is the physical
address at which block 0 is located.

Bits at the end of the last bitmap block are set to 1, if the device is
smaller than addressing space in the bitmap.

Bitmap system area
------------------

The bitmap itself is devided into three parts.
First the system area, that is split into two halfs.
Then userspace.

The requirement for a static, fixed preallocated system area comes from how
qnx6fs deals with writes.
Each superblock got it's own half of the system area. So superblock #1
always uses blocks from the lower half whilst superblock #2 just writes to
blocks represented by the upper half bitmap system area bits.

Bitmap blocks, Inode blocks and indirect addressing blocks for those two
tree structures are treated as system blocks.

The rational behind that is that a write request can work on a new snapshot
(system area of the inactive - resp. lower serial numbered superblock) while
at the same time there is still a complete stable filesystem structer in the
other half of the system area.

When finished with writing (a sync write is completed, the maximum sync leap
time or a filesystem sync is requested), serial of the previously inactive
superblock atomically is increased and the fs switches over to that - then
stable declared - superblock.

For all data outside the system area, blocks are just copied while writing.
1 change: 1 addition & 0 deletions trunk/Documentation/ioctl/ioctl-number.txt
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,7 @@ Code Seq#(hex) Include File Comments
'h' 00-7F conflict! Charon filesystem
<mailto:zapman@interlan.net>
'h' 00-1F linux/hpet.h conflict!
'h' 80-8F fs/hfsplus/ioctl.c
'i' 00-3F linux/i2o-dev.h conflict!
'i' 0B-1F linux/ipmi.h conflict!
'i' 80-8F linux/i8k.h
Expand Down
4 changes: 4 additions & 0 deletions trunk/Documentation/networking/dns_resolver.txt
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,10 @@ implemented in the module can be called after doing:
If _expiry is non-NULL, the expiry time (TTL) of the result will be
returned also.

The kernel maintains an internal keyring in which it caches looked up keys.
This can be cleared by any process that has the CAP_SYS_ADMIN capability by
the use of KEYCTL_KEYRING_CLEAR on the keyring ID.


===============================
READING DNS KEYS FROM USERSPACE
Expand Down
Loading

0 comments on commit c1ecc33

Please sign in to comment.