Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 31985
b: refs/heads/master
c: 060ec6f
h: refs/heads/master
i:
  31983: f0a16c6
v: v3
  • Loading branch information
Linus Torvalds committed Jul 4, 2006
1 parent 35cce48 commit d1c0fc2
Show file tree
Hide file tree
Showing 562 changed files with 23,783 additions and 8,832 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 0f1482fdd7e5efc473335b92f350027b8f1519fb
refs/heads/master: 060ec6f2fb3c8abb85927758de8ac5d1018e6a43
11 changes: 6 additions & 5 deletions trunk/Documentation/DocBook/mtdnand.tmpl
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@
for most of the implementations. These functions can be replaced by the
board driver if neccecary. Those functions are called via pointers in the
NAND chip description structure. The board driver can set the functions which
should be replaced by board dependend functions before calling nand_scan().
should be replaced by board dependent functions before calling nand_scan().
If the function pointer is NULL on entry to nand_scan() then the pointer
is set to the default function which is suitable for the detected chip type.
</para></listitem>
Expand All @@ -133,7 +133,7 @@
[REPLACEABLE]</para><para>
Replaceable members hold hardware related functions which can be
provided by the board driver. The board driver can set the functions which
should be replaced by board dependend functions before calling nand_scan().
should be replaced by board dependent functions before calling nand_scan().
If the function pointer is NULL on entry to nand_scan() then the pointer
is set to the default function which is suitable for the detected chip type.
</para></listitem>
Expand All @@ -156,9 +156,8 @@
<title>Basic board driver</title>
<para>
For most boards it will be sufficient to provide just the
basic functions and fill out some really board dependend
basic functions and fill out some really board dependent
members in the nand chip description structure.
See drivers/mtd/nand/skeleton for reference.
</para>
<sect1>
<title>Basic defines</title>
Expand Down Expand Up @@ -1295,7 +1294,9 @@ in this page</entry>
</para>
!Idrivers/mtd/nand/nand_base.c
!Idrivers/mtd/nand/nand_bbt.c
!Idrivers/mtd/nand/nand_ecc.c
<!-- No internal functions for kernel-doc:
X!Idrivers/mtd/nand/nand_ecc.c
-->
</chapter>

<chapter id="credits">
Expand Down
57 changes: 57 additions & 0 deletions trunk/Documentation/irqflags-tracing.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
IRQ-flags state tracing

started by Ingo Molnar <mingo@redhat.com>

the "irq-flags tracing" feature "traces" hardirq and softirq state, in
that it gives interested subsystems an opportunity to be notified of
every hardirqs-off/hardirqs-on, softirqs-off/softirqs-on event that
happens in the kernel.

CONFIG_TRACE_IRQFLAGS_SUPPORT is needed for CONFIG_PROVE_SPIN_LOCKING
and CONFIG_PROVE_RW_LOCKING to be offered by the generic lock debugging
code. Otherwise only CONFIG_PROVE_MUTEX_LOCKING and
CONFIG_PROVE_RWSEM_LOCKING will be offered on an architecture - these
are locking APIs that are not used in IRQ context. (the one exception
for rwsems is worked around)

architecture support for this is certainly not in the "trivial"
category, because lots of lowlevel assembly code deal with irq-flags
state changes. But an architecture can be irq-flags-tracing enabled in a
rather straightforward and risk-free manner.

Architectures that want to support this need to do a couple of
code-organizational changes first:

- move their irq-flags manipulation code from their asm/system.h header
to asm/irqflags.h

- rename local_irq_disable()/etc to raw_local_irq_disable()/etc. so that
the linux/irqflags.h code can inject callbacks and can construct the
real local_irq_disable()/etc APIs.

- add and enable TRACE_IRQFLAGS_SUPPORT in their arch level Kconfig file

and then a couple of functional changes are needed as well to implement
irq-flags-tracing support:

- in lowlevel entry code add (build-conditional) calls to the
trace_hardirqs_off()/trace_hardirqs_on() functions. The lock validator
closely guards whether the 'real' irq-flags matches the 'virtual'
irq-flags state, and complains loudly (and turns itself off) if the
two do not match. Usually most of the time for arch support for
irq-flags-tracing is spent in this state: look at the lockdep
complaint, try to figure out the assembly code we did not cover yet,
fix and repeat. Once the system has booted up and works without a
lockdep complaint in the irq-flags-tracing functions arch support is
complete.
- if the architecture has non-maskable interrupts then those need to be
excluded from the irq-tracing [and lock validation] mechanism via
lockdep_off()/lockdep_on().

in general there is no risk from having an incomplete irq-flags-tracing
implementation in an architecture: lockdep will detect that and will
turn itself off. I.e. the lock validator will still be reliable. There
should be no crashes due to irq-tracing bugs. (except if the assembly
changes break other code by modifying conditions or registers that
shouldnt be)

9 changes: 9 additions & 0 deletions trunk/Documentation/kernel-parameters.txt
Original file line number Diff line number Diff line change
Expand Up @@ -435,6 +435,15 @@ running once the system is up.

debug [KNL] Enable kernel debugging (events log level).

debug_locks_verbose=
[KNL] verbose self-tests
Format=<0|1>
Print debugging info while doing the locking API
self-tests.
We default to 0 (no extra messages), setting it to
1 will print _a lot_ more information - normally
only useful to kernel developers.

decnet= [HW,NET]
Format: <area>[,<node>]
See also Documentation/networking/decnet.txt.
Expand Down
197 changes: 197 additions & 0 deletions trunk/Documentation/lockdep-design.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
Runtime locking correctness validator
=====================================

started by Ingo Molnar <mingo@redhat.com>
additions by Arjan van de Ven <arjan@linux.intel.com>

Lock-class
----------

The basic object the validator operates upon is a 'class' of locks.

A class of locks is a group of locks that are logically the same with
respect to locking rules, even if the locks may have multiple (possibly
tens of thousands of) instantiations. For example a lock in the inode
struct is one class, while each inode has its own instantiation of that
lock class.

The validator tracks the 'state' of lock-classes, and it tracks
dependencies between different lock-classes. The validator maintains a
rolling proof that the state and the dependencies are correct.

Unlike an lock instantiation, the lock-class itself never goes away: when
a lock-class is used for the first time after bootup it gets registered,
and all subsequent uses of that lock-class will be attached to this
lock-class.

State
-----

The validator tracks lock-class usage history into 5 separate state bits:

- 'ever held in hardirq context' [ == hardirq-safe ]
- 'ever held in softirq context' [ == softirq-safe ]
- 'ever held with hardirqs enabled' [ == hardirq-unsafe ]
- 'ever held with softirqs and hardirqs enabled' [ == softirq-unsafe ]

- 'ever used' [ == !unused ]

Single-lock state rules:
------------------------

A softirq-unsafe lock-class is automatically hardirq-unsafe as well. The
following states are exclusive, and only one of them is allowed to be
set for any lock-class:

<hardirq-safe> and <hardirq-unsafe>
<softirq-safe> and <softirq-unsafe>

The validator detects and reports lock usage that violate these
single-lock state rules.

Multi-lock dependency rules:
----------------------------

The same lock-class must not be acquired twice, because this could lead
to lock recursion deadlocks.

Furthermore, two locks may not be taken in different order:

<L1> -> <L2>
<L2> -> <L1>

because this could lead to lock inversion deadlocks. (The validator
finds such dependencies in arbitrary complexity, i.e. there can be any
other locking sequence between the acquire-lock operations, the
validator will still track all dependencies between locks.)

Furthermore, the following usage based lock dependencies are not allowed
between any two lock-classes:

<hardirq-safe> -> <hardirq-unsafe>
<softirq-safe> -> <softirq-unsafe>

The first rule comes from the fact the a hardirq-safe lock could be
taken by a hardirq context, interrupting a hardirq-unsafe lock - and
thus could result in a lock inversion deadlock. Likewise, a softirq-safe
lock could be taken by an softirq context, interrupting a softirq-unsafe
lock.

The above rules are enforced for any locking sequence that occurs in the
kernel: when acquiring a new lock, the validator checks whether there is
any rule violation between the new lock and any of the held locks.

When a lock-class changes its state, the following aspects of the above
dependency rules are enforced:

- if a new hardirq-safe lock is discovered, we check whether it
took any hardirq-unsafe lock in the past.

- if a new softirq-safe lock is discovered, we check whether it took
any softirq-unsafe lock in the past.

- if a new hardirq-unsafe lock is discovered, we check whether any
hardirq-safe lock took it in the past.

- if a new softirq-unsafe lock is discovered, we check whether any
softirq-safe lock took it in the past.

(Again, we do these checks too on the basis that an interrupt context
could interrupt _any_ of the irq-unsafe or hardirq-unsafe locks, which
could lead to a lock inversion deadlock - even if that lock scenario did
not trigger in practice yet.)

Exception: Nested data dependencies leading to nested locking
-------------------------------------------------------------

There are a few cases where the Linux kernel acquires more than one
instance of the same lock-class. Such cases typically happen when there
is some sort of hierarchy within objects of the same type. In these
cases there is an inherent "natural" ordering between the two objects
(defined by the properties of the hierarchy), and the kernel grabs the
locks in this fixed order on each of the objects.

An example of such an object hieararchy that results in "nested locking"
is that of a "whole disk" block-dev object and a "partition" block-dev
object; the partition is "part of" the whole device and as long as one
always takes the whole disk lock as a higher lock than the partition
lock, the lock ordering is fully correct. The validator does not
automatically detect this natural ordering, as the locking rule behind
the ordering is not static.

In order to teach the validator about this correct usage model, new
versions of the various locking primitives were added that allow you to
specify a "nesting level". An example call, for the block device mutex,
looks like this:

enum bdev_bd_mutex_lock_class
{
BD_MUTEX_NORMAL,
BD_MUTEX_WHOLE,
BD_MUTEX_PARTITION
};

mutex_lock_nested(&bdev->bd_contains->bd_mutex, BD_MUTEX_PARTITION);

In this case the locking is done on a bdev object that is known to be a
partition.

The validator treats a lock that is taken in such a nested fasion as a
separate (sub)class for the purposes of validation.

Note: When changing code to use the _nested() primitives, be careful and
check really thoroughly that the hiearchy is correctly mapped; otherwise
you can get false positives or false negatives.

Proof of 100% correctness:
--------------------------

The validator achieves perfect, mathematical 'closure' (proof of locking
correctness) in the sense that for every simple, standalone single-task
locking sequence that occured at least once during the lifetime of the
kernel, the validator proves it with a 100% certainty that no
combination and timing of these locking sequences can cause any class of
lock related deadlock. [*]

I.e. complex multi-CPU and multi-task locking scenarios do not have to
occur in practice to prove a deadlock: only the simple 'component'
locking chains have to occur at least once (anytime, in any
task/context) for the validator to be able to prove correctness. (For
example, complex deadlocks that would normally need more than 3 CPUs and
a very unlikely constellation of tasks, irq-contexts and timings to
occur, can be detected on a plain, lightly loaded single-CPU system as
well!)

This radically decreases the complexity of locking related QA of the
kernel: what has to be done during QA is to trigger as many "simple"
single-task locking dependencies in the kernel as possible, at least
once, to prove locking correctness - instead of having to trigger every
possible combination of locking interaction between CPUs, combined with
every possible hardirq and softirq nesting scenario (which is impossible
to do in practice).

[*] assuming that the validator itself is 100% correct, and no other
part of the system corrupts the state of the validator in any way.
We also assume that all NMI/SMM paths [which could interrupt
even hardirq-disabled codepaths] are correct and do not interfere
with the validator. We also assume that the 64-bit 'chain hash'
value is unique for every lock-chain in the system. Also, lock
recursion must not be higher than 20.

Performance:
------------

The above rules require _massive_ amounts of runtime checking. If we did
that for every lock taken and for every irqs-enable event, it would
render the system practically unusably slow. The complexity of checking
is O(N^2), so even with just a few hundred lock-classes we'd have to do
tens of thousands of checks for every event.

This problem is solved by checking any given 'locking scenario' (unique
sequence of locks taken after each other) only once. A simple stack of
held locks is maintained, and a lightweight 64-bit hash value is
calculated, which hash is unique for every lock chain. The hash value,
when the chain is validated for the first time, is then put into a hash
table, which hash-table can be checked in a lockfree manner. If the
locking chain occurs again later on, the hash table tells us that we
dont have to validate the chain again.
Loading

0 comments on commit d1c0fc2

Please sign in to comment.