Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 187199
b: refs/heads/master
c: 70bace8
h: refs/heads/master
i:
  187197: ef78ae9
  187195: 11d79b5
  187191: 809a33f
  187183: 4cc2f73
  187167: 37eaa85
  187135: 4abfb74
v: v3
  • Loading branch information
Randy Dunlap authored and Linus Torvalds committed Mar 12, 2010
1 parent 3bdb1b4 commit d69791e
Show file tree
Hide file tree
Showing 7 changed files with 210 additions and 174 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 1e0051ae48a253685e4309256f9c1ec2bdb74b5d
refs/heads/master: 70bace8c1edefa700c7f7af522c5374ef63860ae
16 changes: 14 additions & 2 deletions trunk/Documentation/vm/00-INDEX
Original file line number Diff line number Diff line change
Expand Up @@ -4,23 +4,35 @@ active_mm.txt
- An explanation from Linus about tsk->active_mm vs tsk->mm.
balance
- various information on memory balancing.
hugepage-mmap.c
- Example app using huge page memory with the mmap system call.
hugepage-shm.c
- Example app using huge page memory with Sys V shared memory system calls.
hugetlbpage.txt
- a brief summary of hugetlbpage support in the Linux kernel.
hwpoison.txt
- explains what hwpoison is
ksm.txt
- how to use the Kernel Samepage Merging feature.
locking
- info on how locking and synchronization is done in the Linux vm code.
map_hugetlb.c
- an example program that uses the MAP_HUGETLB mmap flag.
numa
- information about NUMA specific code in the Linux vm.
numa_memory_policy.txt
- documentation of concepts and APIs of the 2.6 memory policy support.
overcommit-accounting
- description of the Linux kernels overcommit handling modes.
page-types.c
- Tool for querying page flags
page_migration
- description of page migration in NUMA systems.
pagemap.txt
- pagemap, from the userspace perspective
slabinfo.c
- source code for a tool to get reports about slabs.
slub.txt
- a short users guide for SLUB.
map_hugetlb.c
- an example program that uses the MAP_HUGETLB mmap flag.
unevictable-lru.txt
- Unevictable LRU infrastructure
2 changes: 1 addition & 1 deletion trunk/Documentation/vm/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
obj- := dummy.o

# List of programs to build
hostprogs-y := slabinfo page-types
hostprogs-y := slabinfo page-types hugepage-mmap hugepage-shm map_hugetlb

# Tell kbuild to always build the programs
always := $(hostprogs-y)
91 changes: 91 additions & 0 deletions trunk/Documentation/vm/hugepage-mmap.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
/*
* hugepage-mmap:
*
* Example of using huge page memory in a user application using the mmap
* system call. Before running this application, make sure that the
* administrator has mounted the hugetlbfs filesystem (on some directory
* like /mnt) using the command mount -t hugetlbfs nodev /mnt. In this
* example, the app is requesting memory of size 256MB that is backed by
* huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
*/

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/mman.h>
#include <fcntl.h>

#define FILE_NAME "/mnt/hugepagefile"
#define LENGTH (256UL*1024*1024)
#define PROTECTION (PROT_READ | PROT_WRITE)

/* Only ia64 requires this */
#ifdef __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define FLAGS (MAP_SHARED | MAP_FIXED)
#else
#define ADDR (void *)(0x0UL)
#define FLAGS (MAP_SHARED)
#endif

static void check_bytes(char *addr)
{
printf("First hex is %x\n", *((unsigned int *)addr));
}

static void write_bytes(char *addr)
{
unsigned long i;

for (i = 0; i < LENGTH; i++)
*(addr + i) = (char)i;
}

static void read_bytes(char *addr)
{
unsigned long i;

check_bytes(addr);
for (i = 0; i < LENGTH; i++)
if (*(addr + i) != (char)i) {
printf("Mismatch at %lu\n", i);
break;
}
}

int main(void)
{
void *addr;
int fd;

fd = open(FILE_NAME, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
perror("Open failed");
exit(1);
}

addr = mmap(ADDR, LENGTH, PROTECTION, FLAGS, fd, 0);
if (addr == MAP_FAILED) {
perror("mmap");
unlink(FILE_NAME);
exit(1);
}

printf("Returned address is %p\n", addr);
check_bytes(addr);
write_bytes(addr);
read_bytes(addr);

munmap(addr, LENGTH);
close(fd);
unlink(FILE_NAME);

return 0;
}
98 changes: 98 additions & 0 deletions trunk/Documentation/vm/hugepage-shm.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
/*
* hugepage-shm:
*
* Example of using huge page memory in a user application using Sys V shared
* memory system calls. In this example the app is requesting 256MB of
* memory that is backed by huge pages. The application uses the flag
* SHM_HUGETLB in the shmget system call to inform the kernel that it is
* requesting huge pages.
*
* For the ia64 architecture, the Linux kernel reserves Region number 4 for
* huge pages. That means that if one requires a fixed address, a huge page
* aligned address starting with 0x800000... will be required. If a fixed
* address is not required, the kernel will select an address in the proper
* range.
* Other architectures, such as ppc64, i386 or x86_64 are not so constrained.
*
* Note: The default shared memory limit is quite low on many kernels,
* you may need to increase it via:
*
* echo 268435456 > /proc/sys/kernel/shmmax
*
* This will increase the maximum size per shared memory segment to 256MB.
* The other limit that you will hit eventually is shmall which is the
* total amount of shared memory in pages. To set it to 16GB on a system
* with a 4kB pagesize do:
*
* echo 4194304 > /proc/sys/kernel/shmall
*/

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/mman.h>

#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif

#define LENGTH (256UL*1024*1024)

#define dprintf(x) printf(x)

/* Only ia64 requires this */
#ifdef __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define SHMAT_FLAGS (SHM_RND)
#else
#define ADDR (void *)(0x0UL)
#define SHMAT_FLAGS (0)
#endif

int main(void)
{
int shmid;
unsigned long i;
char *shmaddr;

if ((shmid = shmget(2, LENGTH,
SHM_HUGETLB | IPC_CREAT | SHM_R | SHM_W)) < 0) {
perror("shmget");
exit(1);
}
printf("shmid: 0x%x\n", shmid);

shmaddr = shmat(shmid, ADDR, SHMAT_FLAGS);
if (shmaddr == (char *)-1) {
perror("Shared memory attach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(2);
}
printf("shmaddr: %p\n", shmaddr);

dprintf("Starting the writes:\n");
for (i = 0; i < LENGTH; i++) {
shmaddr[i] = (char)(i);
if (!(i % (1024 * 1024)))
dprintf(".");
}
dprintf("\n");

dprintf("Starting the Check...");
for (i = 0; i < LENGTH; i++)
if (shmaddr[i] != (char)i)
printf("\nIndex %lu mismatched\n", i);
dprintf("Done.\n");

if (shmdt((const void *)shmaddr) != 0) {
perror("Detach failure");
shmctl(shmid, IPC_RMID, NULL);
exit(3);
}

shmctl(shmid, IPC_RMID, NULL);

return 0;
}
Loading

0 comments on commit d69791e

Please sign in to comment.