Skip to content

Commit

Permalink
---
Browse files Browse the repository at this point in the history
yaml
---
r: 306687
b: refs/heads/master
c: a202abb
h: refs/heads/master
i:
  306685: 85b219a
  306683: 584be05
  306679: 3073437
  306671: 925049a
  306655: ee34fea
  306623: cabd638
  306559: 8c33cc6
  306431: 525562f
  306175: d01b6ff
v: v3
  • Loading branch information
Eric Lapuyade authored and John W. Linville committed May 15, 2012
1 parent 1960c26 commit dc273a7
Show file tree
Hide file tree
Showing 2 changed files with 36 additions and 11 deletions.
2 changes: 1 addition & 1 deletion [refs]
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
---
refs/heads/master: 1676f75159c8091e865c33b61ad4934dfd3b7821
refs/heads/master: a202abb1ee98ee28faaca460bbbf684d05e94310
45 changes: 35 additions & 10 deletions trunk/Documentation/nfc/nfc-hci.txt
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ response to arrive.
HCI events can also be received from the host controller. They will be handled
and a translation will be forwarded to NFC Core as needed.
HCI uses 2 execution contexts:
- one if for executing commands : nfc_hci_msg_tx_work(). Only one command
- one for executing commands : nfc_hci_msg_tx_work(). Only one command
can be executing at any given moment.
- one if for dispatching received events and responses : nfc_hci_msg_rx_work()
- one for dispatching received events and commands : nfc_hci_msg_rx_work().

HCI Session initialization:
---------------------------
Expand Down Expand Up @@ -52,18 +52,42 @@ entry points:
struct nfc_hci_ops {
int (*open)(struct nfc_hci_dev *hdev);
void (*close)(struct nfc_hci_dev *hdev);
int (*hci_ready) (struct nfc_hci_dev *hdev);
int (*xmit)(struct nfc_hci_dev *hdev, struct sk_buff *skb);
int (*start_poll)(struct nfc_hci_dev *hdev, u32 protocols);
int (*target_from_gate)(struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*complete_target_discovered) (struct nfc_hci_dev *hdev, u8 gate,
struct nfc_target *target);
int (*data_exchange) (struct nfc_hci_dev *hdev,
struct nfc_target *target,
struct sk_buff *skb, struct sk_buff **res_skb);
int (*check_presence)(struct nfc_hci_dev *hdev,
struct nfc_target *target);
};

open() and close() shall turn the hardware on and off. xmit() shall simply
write a frame to the chip. start_poll() is an optional entrypoint that shall
set the hardware in polling mode. This must be implemented only if the hardware
uses proprietary gates or a mechanism slightly different from the HCI standard.
target_from_gate() is another optional entrypoint to return the protocols
- open() and close() shall turn the hardware on and off.
- hci_ready() is an optional entry point that is called right after the hci
session has been set up. The driver can use it to do additional initialization
that must be performed using HCI commands.
- xmit() shall simply write a frame to the chip.
- start_poll() is an optional entrypoint that shall set the hardware in polling
mode. This must be implemented only if the hardware uses proprietary gates or a
mechanism slightly different from the HCI standard.
- target_from_gate() is an optional entrypoint to return the nfc protocols
corresponding to a proprietary gate.
- complete_target_discovered() is an optional entry point to let the driver
perform additional proprietary processing necessary to auto activate the
discovered target.
- data_exchange() must be implemented by the driver if proprietary HCI commands
are required to send data to the tag. Some tag types will require custom
commands, others can be written to using the standard HCI commands. The driver
can check the tag type and either do proprietary processing, or return 1 to ask
for standard processing.
- check_presence() is an optional entry point that will be called regularly
by the core to check that an activated tag is still in the field. If this is
not implemented, the core will not be able to push tag_lost events to the user
space

On the rx path, the driver is responsible to push incoming HCP frames to HCI
using nfc_hci_recv_frame(). HCI will take care of re-aggregation and handling
Expand Down Expand Up @@ -99,7 +123,8 @@ fast, cannot sleep. stores incoming frames into an shdlc rx queue
handles shdlc rx & tx queues. Dispatches HCI cmd responses.

- HCI Tx Cmd worker (MSGTXWQ)
Serialize execution of HCI commands. Complete execution in case of resp timeout.
Serializes execution of HCI commands. Completes execution in case of response
timeout.

- HCI Rx worker (MSGRXWQ)
Dispatches incoming HCI commands or events.
Expand Down Expand Up @@ -133,11 +158,11 @@ able to complete the command with a timeout error if no response arrive.
SMW context gets scheduled and invokes nfc_shdlc_sm_work(). This function
handles shdlc framing in and out. It uses the driver xmit to send frames and
receives incoming frames in an skb queue filled from the driver IRQ handler.
SHDLC I(nformation) frames payload are HCP fragments. They are agregated to
SHDLC I(nformation) frames payload are HCP fragments. They are aggregated to
form complete HCI frames, which can be a response, command, or event.

HCI Responses are dispatched immediately from this context to unblock
waiting command execution. Reponse processing involves invoking the completion
waiting command execution. Response processing involves invoking the completion
callback that was provided by nfc_hci_msg_tx_work() when it sent the command.
The completion callback will then wake the syscall context.

Expand Down

0 comments on commit dc273a7

Please sign in to comment.