Skip to content
Permalink
5e462666c3
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
660 lines (503 sloc) 17.6 KB
#!/usr/bin/env nextflow
//setting default values
params.bigwig=""
params.bed=""
params.genome_fasta=""
params.motif_db=""
params.config=""
params.tfbs_path=""
params.create_known_tfbs_path = "./"
params.help = 0
params.get_path=""
params.out = "./out/"
//peak_calling
params.window_length = 200
params.step = 100
params.percentage = 0
//filter_unknown_motifs
params.min_size_fp=10
params.max_size_fp=100
//clustering
//reduce_bed
params.kmer=10
params.aprox_motif_len=10
params.motif_occurence=1
params.min_seq_length=10
//cdhit_wrapper
params.global=0
params.identity=0.8
params.sequence_coverage=8
params.memory=800
params.throw_away_seq=9
params.strand=0
//motif_estimation
//bed_to_clustered_fasta
params.min_seq = 100 // Minimum number of sequences in the fasta-files for glam2
//glam2
params.motif_min_key = 8 // Minimum number of key positions (aligned columns)
params.motif_max_key = 20 // Maximum number of key positions (aligned columns)
params.iteration = 10000 // Number of Iterations done by glam2. A high iteration number equals a more accurate result but with an higher runtime.
//tomtom
params.tomtom_treshold = 0.01 // threshold for similarity score.
//cluster motifs
params.cluster_motif = 0 // Boolean if 1 motifs are clustered else they are not
params.edge_weight = 50 // Minimum weight of edges in motif-cluster-graph
motif_similarity_thresh = 0.00001 // threshold for motif similarity score
params.best_motif = 3 // Top n motifs per cluster
//creating_gtf
params.organism=""
params.tissue=""
if (params.bigwig == "" || params.bed == "" || params.organism == "" || params.genome_fasta == "" || params.motif_db == "" || params.config == "" || "${params.help}" != "0"){
log.info """
Usage: nextflow run pipeline.nf --bigwig [BigWig-file] --bed [BED-file] --genome_fasta [FASTA-file] --motif_db [MEME-file] --config [UROPA-config-file]
Required arguments:
--bigwig Path to BigWig-file
--bed Path to BED-file
--genome_fasta Path to genome in FASTA-format
--motif_db Path to motif-database in MEME-format
--config Path to UROPA configuration file
--organism Input organism [hg38 | hg19 | mm9 | mm10]
--out Output Directory (Default: './out/')
Optional arguments:
--help [0|1] 1 to show this help message. (Default: 0)
--tfbs_path Path to directory with output from tfbsscan. If given tfbsscan will not be run.
--create_known_tfbs_path Path to directory where output from tfbsscan (known motifs) are stored.
Path can be set as tfbs_path in next run. (Default: './')
--gtf_path Path to gtf-file. If path is set the process which creats a gtf-file is skipped.
Footprint extraction:
--window_length INT This parameter sets the length of a sliding window. (Default: 200)
--step INT This parameter sets the number of positions to slide the window forward. (Default: 100)
--percentage INT Threshold in percent (Default: 0)
Filter unknown motifs:
--min_size_fp INT Minimum sequence length threshold. Smaller sequences are discarded. (Default: 10)
--max_size_fp INT Maximum sequence length threshold. Discards all sequences longer than this value. (Default: 100)
Clustering:
Sequence preparation/ reduction:
--kmer INT Kmer length (Default: 10)
--aprox_motif_len INT Motif length (Default: 10)
--motif_occurence FLOAT Percentage of motifs over all sequences. Use 1 (Default) to assume every sequence contains a motif.
--min_seq_length Interations Remove all sequences below this value. (Default: 10)
Clustering:
--global INT Global (=1) or local (=0) alignment. (Default: 0)
--identity FLOAT Identity threshold. (Default: 0.8)
--sequence_coverage INT Minimum aligned nucleotides on both sequences. (Default: 8)
--memory INT Memory limit in MB. 0 for unlimited. (Default: 800)
--throw_away_seq INT Remove all sequences equal or below this length before clustering. (Default: 9)
--strand INT Align +/+ & +/- (= 1). Or align only +/+ (= 0). (Default: 0)
Motif estimation:
--min_seq INT Sets the minimum number of sequences required for the FASTA-files given to GLAM2. (Default: 100)
--motif_min_key INT Minimum number of key positions (aligned columns) in the alignment done by GLAM2. (Default: 8)
--motif_max_key INT Maximum number of key positions (aligned columns) in the alignment done by GLAM2.f (Default: 20)
--iteration INT Number of iterations done by glam2. More Iterations: better results, higher runtime. (Default: 10000)
--tomtom_treshold float Threshold for similarity score. (Default: 0.01)
--best_motif INT Get the best X motifs per cluster. (Default: 3)
Moitf clustering:
--cluster_motif Boolean If 1 pipeline clusters motifs. If its 0 it does not. (Defaul: 0)
--edge_weight INT Minimum weight of edges in motif-cluster-graph (Default: 5)
--motif_similarity_thresh FLOAT Threshold for motif similarity score (Default: 0.00001)
Creating GTF:
--tissues List/String List of one or more keywords for tissue-/category-activity, categories must be specified as in JSON
config
All arguments can be set in the configuration files
```
"""
System.exit(2)
} else {
Channel.fromPath(params.bigwig).map {it -> [it.simpleName, it]}.set {bigwig_input}
Channel.fromPath(params.bed).into {bed_input; bed_for_tfbsscan}
Channel.fromPath(params.genome_fasta).into {fa_overlap; fa_scan; fa_overlap_2}
Channel.fromPath(params.motif_db).into {db_for_motivscan; db_for_tomtom}
Channel.fromPath(params.config).set {config}
}
/*
Checking for parameter input!
*/
int_params = ["window_length", "step", "min_size_fp", "max_size_fp", "kmer",
"aprox_motif_len", "motif_occurence", "min_seq_length", "global",
"sequence_coverage", "memory", "throw_away_seq", "strand",
"min_seq", "motif_min_key", "motif_max_key", "iteration",
"edge_weight", "best_motif"]
req_params = ["bigwig", "bed", "genome_fasta", "motif_db", "config"]
valid_organism = ["hg38", "hg19", "mm9", "mm10"]
params.each { key, value ->
if(int_params.contains(key)) {
if (!("${value}" ==~ /\d+/ )){
println("ERROR: $key needs to be an Integer")
System.exit(2)
}
}
if(req_params.contains(key)) {
if(!file(value).exists()) {
println("ERROR: $key not found. Please check the given path.")
System.exit(2)
}
}
}
if (!("${params.identity}" ==~ /^0\.[8-9][[0-9]*]?|^1(\.0)?/ )){
println("ERROR: --identity needs to be float in range 0.8 to 1.0")
System.exit(2)
}
if (!valid_organism.contains(params.organism)) {
println("ERROR: Invalid organism! Valid organisms: " + valid_organism)
System.exit(2)
}
if (!("${params.percentage}" ==~ /\d+/ ) || params.percentage < 0 || params.percentage > 100 ){
println("ERROR: --percentage needs to be an Integer between 0 and 100")
System.exit(2)
}
if (!("${params.tomtom_treshold}" ==~ /([0-9]*\.[0-9]+|[0-9]+)/)) {
println("ERROR: --tomtom_treshold needs to be an Integer or float, e.g. 0.01")
System.exit(2)
}
if (!("${params.motif_similarity_thresh}" ==~ /([0-9]*\.[0-9]+|[0-9]+)/)) {
println("ERROR: --motif_similarity_thresh needs to be an Integer or float, e.g. 0.01")
System.exit(2)
}
path_bin = path_bin?.endsWith('/') ? path_bin.substring( 0, path_bin.length() -1 ) : path_bin
bigwig_input.combine(bed_input).set{footprint_in}
/*
This process uses the uncontinuous score from a bigWig file to estimate footpints within peaks of interest
*/
process footprint_extraction {
conda "${path_env}"
tag{name}
publishDir "${params.out}/footprint_extraction/", mode: 'copy', pattern: '*.bed'
publishDir "${params.out}/footprint_extraction/log", mode: 'copy', pattern: '*.log'
input:
set name, file (bigWig), file (bed) from footprint_in
output:
set name, file ('*.bed') into bed_for_overlap_with_TFBS
script:
"""
python ${path_bin}/footprints_extraction.py --bigwig ${bigWig} --bed ${bed} --output_file ${name}_called_peaks.bed --window_length ${params.window_length} --step ${params.step} --percentage ${params.percentage}
"""
}
for_tfbs = fa_overlap.combine(db_for_motivscan).combine(bed_for_tfbsscan)
/*
*/
process extract_known_TFBS {
conda "${path_env}"
publishDir "${params.out}/known_TFBS/", mode: 'copy', pattern: '*.bed'
input:
set file (fasta), file (db), file (bed) from for_tfbs
output:
val ('done') into known_TFBS_for_overlap
when:
params.tfbs_path == ""
script:
"""
python ${path_bin}/tfbsscan.py --use moods --core ${params.threads} -m ${db} -g ${fasta} -o ${params.create_known_tfbs_path} -b ${bed}
"""
}
/*
Sets path to known tfbs BED-files. If tfbs_path is set the process extract_known_TFBS is skipped, so the paths are differnt.
*/
if(params.tfbs_path == "") {
bed_for_overlap_with_TFBS.combine(known_TFBS_for_overlap.toList()).combine(fa_overlap_2).set {for_overlap}
motif_path = params.create_known_tfbs_path
} else {
Channel.from('skipped').set {workaround}
bed_for_overlap_with_TFBS.combine(workaround).combine(fa_overlap_2).set {for_overlap}
tfbs = params.tfbs_path?.endsWith('/') ? params.tfbs_path: params.tfbs_path.substring( 0, params.tfbs_path.length() -1 )
motif_path = tfbs
}
/*
*/
process overlap_with_known_TFBS {
conda "${path_env}"
publishDir "${params.out}/unknown_overlap/", mode :'copy'
input:
set name, file (bed_footprints), val (bed_motifs), file (fasta) from for_overlap
output:
set name, file ("${name}_unknown.bed") into bed_for_reducing
script:
motif_list = bed_motifs.toString().replaceAll(/\s|\[|\]/,"")
"""
${path_bin}/compareBed.sh --data ${bed_footprints} --motifs ${motif_path} --fasta ${fasta} -o ${name}_unknown.bed -min ${params.min_size_fp} -max ${params.max_size_fp} -p ${path_bin}
"""
}
/*
*/
process reduce_bed {
conda "${path_env}"
echo true
publishDir "${params.out}/cluster/reduced_bed/", mode: 'copy'
input:
set name, file (bed) from bed_for_reducing
output:
set name, file ('*.bed') into bed_for_clustering
script:
"""
Rscript ${path_bin}/reduce_bed.R -i ${bed} -k ${params.kmer} -m ${params.aprox_motif_len} -o ${name}_reduced.bed -t ${params.threads} -f ${params.motif_occurence} -s ${params.min_seq_length}
"""
}
/*
*/
process clustering {
conda "${path_env}"
echo true
publishDir "${params.out}/cluster/", mode: 'copy', pattern: '*.bed'
input:
set name, file (bed) from bed_for_clustering
output:
set name, file ('*.bed') into bed_for_motif_esitmation
script:
"""
Rscript ${path_bin}/cdhit_wrapper.R -i ${bed} -A ${params.sequence_coverage} -o ${name}_clusterd.bed -c ${params.identity} -G ${params.global} -M ${params.memory} -l ${params.throw_away_seq} -r ${params.strand} -T ${params.threads}
"""
}
/*
Converting BED-File to one FASTA-File per cluster
*/
process bed_to_clustered_fasta {
conda "${path_env}"
publishDir "${params.out}/esimated_motifs/clustered_motifs/clustered_fasta/", mode: 'copy'
tag{name}
input:
set name, file (bed) from bed_for_motif_esitmation
output:
file ('*.FASTA') into fasta_for_glam2
file ('*.FASTA') into fasta_for_motif_cluster
script:
"""
Rscript ${path_bin}/bed_to_fasta.R -i ${bed} -p ${name} -m ${params.min_seq}
"""
}
//flatten list and adding name of file to channel value
fasta_for_glam2 = fasta_for_glam2.flatten().map {it -> [it.simpleName, it]}
//combine fasta files in one list
fasta_for_motif_cluster = fasta_for_motif_cluster.toList()
/*
Running GLAM2 on FASTA-files.
Generating Motifs through alignment and scoring best local matches.
*/
process glam2 {
tag{name}
publishDir "${params.out}/esimated_motifs/clustered_motifs/${name}/", mode: 'copy'
input:
set name, file (fasta) from fasta_for_glam2
output:
file("${name}/*.meme") into meme_to_merge
set name, file("${name}/*.meme") into meme_for_tomtom
set name, file("${name}/*.meme") into meme_for_filter
file ('*')
script:
"""
glam2 n ${fasta} -O ./${name}/ -a ${params.motif_min_key} -b ${params.motif_max_key} -z 5 -n ${params.iteration}
"""
}
/*
Combining all MEME-files to one big MEME-file.
The paths are sorted numerically depending on the cluster number.
*/
process merge_meme {
publishDir "${params.out}/esimated_motifs/merged_meme/", mode: 'copy'
input:
val (memelist) from meme_to_merge.toList()
output:
file ('merged_meme.meme') into merged_meme
when:
params.cluster_motif == 1
script:
memes = memelist.collect{it.toString().replaceAll(/\/glam2.meme/,"") }
meme_sorted = memes.sort(false) { it.toString().tokenize('_')[-1] as Integer }
meme_sorted_full = meme_sorted.collect {it.toString() + "/glam2.meme"}
meme_list = meme_sorted_full.toString().replaceAll(/\,|\[|\]/,"")
"""
meme2meme ${meme_list} > merged_meme.meme
"""
}
/*
Running Tomtom on merged meme-files.
Output table has the information which clusters are similar to each other.
*/
process find_similar_motifs {
publishDir "${params.out}/esimated_motifs/cluster_similarity/", mode: 'copy'
input:
file (merged_meme) from merged_meme
output:
file ('all_to_all.tsv') into motif_similarity
when:
params.cluster_motif == 1
script:
"""
tomtom ${merged_meme} ${merged_meme} -thresh ${params.motif_similarity_thresh} -text --norc | sed '/^#/ d' | sed '/^\$/d' > all_to_all.tsv
"""
}
files_for_merge_fasta = motif_similarity.combine(fasta_for_motif_cluster)
/*
Merging FASTA-files of similar clusters
*/
process merge_fasta {
conda "${path_env}"
publishDir "${params.out}/esimated_motifs/merged_fasta/", mode: 'copy'
echo true
input:
set file (motiv_sim), val (fasta_list) from files_for_merge_fasta
output:
file ('*.fasta') into motif_clustered_fasta_list
file('*.png')
when:
params.cluster_motif == 1
script:
fa_sorted = fasta_list.sort(false) { it.getBaseName().tokenize('_')[-1] as Integer }
fastalist = fa_sorted.toString().replaceAll(/\s|\[|\]/,"")
"""
Rscript ${path_bin}/merge_similar_clusters.R ${motiv_sim} ${fastalist} ${params.edge_weight}
"""
}
motif_clustered_fasta_flat = motif_clustered_fasta_list.flatten()
process clustered_glam2 {
publishDir "${params.out}/final_esimated_motifs/${name}/", mode: 'copy'
input:
file (fasta) from motif_clustered_fasta_flat
output:
set name, file ('*.meme') into clustered_meme_for_tomtom
set name, file ('*.meme') into clustered_meme_for_filter
file('*')
when:
params.cluster_motif == 1
script:
name = fasta.getBaseName()
"""
glam2 n ${fasta} -O . -a ${params.motif_min_key} -b ${params.motif_max_key} -z 5 -n ${params.iteration}
"""
}
if(params.cluster_motif == 1){
for_tomtom = clustered_meme_for_tomtom
for_filter = clustered_meme_for_filter
} else {
for_tomtom = meme_for_tomtom
for_filter = meme_for_filter
}
/*
Running Tomtom on meme-files generated by GLAM2.
Tomtom searches motifs in databases.
*/
process tomtom {
tag{name}
publishDir "${params.out}/esimated_motifs/tomtom/", mode: 'copy'
input:
set name, file (meme) from for_tomtom
output:
set name, file ('*.tsv') into tsv_for_filter
script:
"""
tomtom ${meme} ${params.motif_db} -thresh ${params.tomtom_treshold} -mi 1 -text | sed '/^#/ d' | sed '/^\$/d' > ${name}_known_motif.tsv
"""
}
//Joining channels with meme and tsv files. Filter joined channel on line count.
//Only meme-files which corresponding tsv files have linecount <= 1 are writen to next channel.
for_filter2 = for_filter.join( tsv_for_filter )
for_filter2
.filter { name, meme, tsv ->
long count = tsv.readLines().size()
count <= 1
}
.into { meme_for_scan; check }
//If channel 'check' is empty print errormessage
process check_for_unknown_motifs {
echo true
input:
val x from check.ifEmpty('EMPTY')
when:
x == 'EMPTY'
"""
echo '>>> STOPPED: No unknown Motifs were found.'
"""
}
//Get the best(first) Motif from each MEME-file
process get_best_motif {
conda "${path_env}"
publishDir "${params.out}/esimated_motifs/unknown_motifs/", mode: 'copy'
input:
set name, file(meme), file(tsv) from meme_for_scan
output:
set name, file('*_best.meme') into best_motif
script:
"""
python ${path_bin}/get_best_motif.py ${meme} ${name}_best.meme ${params.best_motif}
"""
}
best_motif.combine(fa_scan).set {files_for_genome_scan}
/*
process genome_scan {
conda "${path_env}"
input:
set name, file(meme), file(fasta) from files_for_genome_scan
output:
file ('.bed') into bed_for_uropa, bed_for_cluster_quality
script:
"""
"""
}
process cluster_quality {
input:
file (bed) from bed_for_cluster_quality
output:
file ('*.bed') into bed_for_final_filter
script:
"""
"""
} */
process create_GTF {
conda "${path_env}"
publishDir "${params.out}/gtf/", mode: 'copy'
output:
file ('*.gtf') into gtf
when:
gtf_path == ""
script:
"""
python ${path_bin}/RegGTFExtractor.py ${params.organism} --tissue ${params.tissues} --wd ${path_bin}
"""
}
if (gtf_path == "") {
gtf_for_uropa = gtf
} else {
gtf_for_uropa = Channel.fromPath(params.gtf_path)
}
/*
bed_for_final_filter.combine(gtf_for_uropa).set {uropa_in}
// Create configuration file for UROPA.
// Takes template and replaces bed- and gtf-placeholders with actual paths.
process create_uropa_config {
publishDir '/mnt/agnerds/Rene.Wiegandt/10_Master/', mode: 'copy'
input:
set val(bed), val(gtf) from uropa_in.toList()
file (conf) from config
output:
file ('uropa.config') into uropa_config
script:
"""
sed -- 's/placeholder_gtf/${gtf}/g; s/placeholder_bed/${bed}/g' ${conf} > uropa.config.final
"""
}
process UROPA {
input:
file (config) from uropa_config
output:
set file ("*_allhits.txt"), file ("*_finalhits.txt") into uropa_for_filter
script:
"""
"""
}
process filter {
input:
output:
script:
"""
"""
} */
workflow.onComplete {
log.info"""
Pipeline execution summary
---------------------------
Completed at: ${workflow.complete}
Duration : ${workflow.duration}
Success : ${workflow.success}
workDir : ${workflow.workDir}
exit status : ${workflow.exitStatus}
Error report: ${workflow.errorReport ?: '-'}
"""
}