Skip to content
Permalink
88c1336718
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
378 lines (278 sloc) 14.7 KB
"""
call_peaks uses the uncontinuous score from a bigWig file to estimate peaks
@author: Anastasiia Petrova
@contact: anastasiia.petrova(at)mpi-bn.mpg.de
"""
import argparse
import sys
import os
import re
import time
import multiprocessing
import logging
import subprocess
from Bio import SeqIO
import Bio.SeqIO.FastaIO as bio
import numpy as np
from collections import defaultdict
from scipy import stats
import pyBigWig
from statsmodels.sandbox.stats.multicomp import multipletests #for bonfferoni
import matplotlib.pyplot as plt
import random
import textwrap
logger = logging.getLogger('call_peaks')
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s : %(message)s", "%Y-%m-%d %H:%M")
def parse_args():
parser = argparse.ArgumentParser(prog = '', description = textwrap.dedent('''
This script produces a file with peaks in .bed format from the file with scores in .bigWig format.
'''), epilog='That is what you need to make this script work for you. Enjoy it')
#required_arguments = parser.add_argument_group('required arguments')
#required_arguments.add_argument('--bigwig', help='a bigWig-file with scores', required=True)
#required_arguments.add_argument('--bed', help='provide a file with peaks in .bed format', required=True)
#all other arguments are optional
#parser.add_argument('--output_directory', default='output', const='output', nargs='?', help='output directory, by default ./output/')
parser.add_argument('--output_file', default='call_peaks_output.bed', type=str, help='enter a name for the output file, by default ./call_peaks_output.bed')
parser.add_argument('--window_length', default=200, type=int, help='enter the length for a window, by defauld 200 bp')
parser.add_argument('--step', default=100, type=int, help='enter a step to move the window, by default 100 bp')
parser.add_argument('--threshold', default=0.3, type=float, help='enter the threshold for peaks searching, by defauld 0.3')
parser.add_argument('--silent', action='store_true', help='while working with data write the information only into ./call_peaks_log.txt')
args = parser.parse_args()
return args
def check_directory(directory):
if not os.path.exists(directory):
os.makedirs(directory)
#logger.info('a new directory ' + directory + ' was created')
print('a new directory ' + directory + ' was created')
#if there are chars that are not allowed, they will be replaced with '_', to the possibly invalid names there will be added '_' at the beginning of the name
def check_name(name_to_test):
badchars= re.compile(r'[^A-Za-z0-9_. ]+|^\.|\.$|^ | $|^$')
badnames= re.compile(r'(aux|com[1-9]|con|lpt[1-9]|prn)(\.|$)')
#replace all the chars that are not allowed with '_'
name = badchars.sub('_', name_to_test)
#check for the reserved by the os names
if badnames.match(name):
name = '_' + name
return name
def remove_file(file):
if os.path.isfile(file):
os.remove(file)
def make_name_from_path(full_path, output_directory, ending):
return os.path.join(output_directory, get_name_from_path(full_path) + ending)
def get_name_from_path(full_path):
return os.path.splitext(os.path.basename(full_path))[0]
def is_fasta(check_fasta):
if not os.path.isfile(check_fasta):
#logger.info('there is no file with genome, the exit is forced')
print('there is no file with genome, the exit is forced')
sys.exit()
else:
# modified code from https://stackoverflow.com/questions/44293407/how-can-i-check-whether-a-given-file-is-fasta
with open(check_fasta, "r") as handle:
fasta = SeqIO.parse(handle, "fasta")
return any(fasta) # False when `fasta` is empty, i.e. wasn't a FASTA file
def check_existing_input_files(args):
if not is_fasta(args.genome):
#logger.info('please make sure the input genome file has a fasta format')
print('please make sure the input genome file has a fasta format')
sys.exit()
if not os.path.isfile(args.condition1) or not os.path.isfile(args.condition2):
#logger.info('please make sure the both files with conditions to compare exist')
print('please make sure the both files with conditions to compare exist')
sys.exit()
if not args.condition1.endswith('.bw') or not args.condition2.endswith('.bw'):
#logger.info('please check if the both conditions files are in bigWig format')
print('please check if the both conditions files are in bigWig format')
sys.exit()
#check if the file with motifs exists
if not os.path.isfile(args.motifs):
#logger.info('there is no file with motifs, the exit is forced')
print('there is no file with motifs, the exit is forced')
sys.exit()
#check if the bed file exists
if not os.path.isfile(args.bed_file):
#logger.info('there is no such bed file ' + args.bed_file + ', the exit is forced')
print('there is no such bed file ' + args.bed_file + ', the exit is forced')
sys.exit()
def make_bed_dictionary(bed_file):
logger.info('reading of the bed file')
bed_dictionary = {}
with open(bed_file) as read_bed_file:
for bed_line in read_bed_file:
bed_line_array = re.split(r'\t', bed_line.rstrip('\n'))
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one
key = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2]
value = []
for i in range(3, len(bed_line_array)):
value.append(bed_line_array[i])
bed_dictionary[key] = value
else: #this is not a bed file, force exit
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line)
sys.exit()
read_bed_file.close()
return bed_dictionary
def find_window(bed_file):
#chromosom = 1 #start with the first chromosom
window_length = 0
with open(bed_file) as read_bed_file:
for bed_line in read_bed_file:
bed_line_array = re.split(r'\t', bed_line.rstrip('\n'))
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one
#if chromosom == int(bed_line_array[0]):
peak_len = int(bed_line_array[2]) - int(bed_line_array[1])
if peak_len > window_length:
window_length = peak_len
print(window_length)
def save_footprint(footprint_count, footprint_scores, all_footprints, chromosom, footprint_start, check_position, bonus_info_from_bed, footprints_dict):
print(footprint_scores)
print(len(footprint_scores))
print()
if len(footprint_scores) > 2: #exclude small regions to not work with them
first_max_pos = footprint_scores.index(max(footprint_scores))
last_max_pos = first_max_pos #assume that there is only one pos with max score
#find the region with the highest score
for j in range(first_max_pos, len(footprint_scores)):
if footprint_scores[j] < first_max_pos:
last_max_pos = j
else:
last_max_pos = len(footprint_scores)
if first_max_pos != last_max_pos:
#find a pos in the middle of these both
max_pos = int((last_max_pos - first_max_pos) / 2)
else:
max_pos = first_max_pos
footprint_score = np.mean(footprint_scores)
search_key = str(chromosom) + ":" + str(footprint_start) + "-" + str(check_position)
#check if this footprint is already saved and if so, save the footprint with bigger score
if search_key in footprints_dict.keys():
if footprint_score > all_footprints[footprints_dict[search_key]]['score']: #the value of footprints_dict[search_key] is a name of footprint
#update the score for this footprint
all_footprints[footprints_dict[search_key]]['score'] = footprint_score
#update the max_pos
all_footprints[footprints_dict[search_key]]['max_pos'] = max_pos
#else do nothing
else:
#make a new footprint
footprint_name = "footprint_" + str(footprint_count)
all_footprints[footprint_name] = all_footprints.get(footprint_name, {})
all_footprints[footprint_name] = {'chromosom': chromosom, 'start': footprint_start, 'end': check_position, 'score': footprint_score, 'len': len(footprint_scores), 'bonus': bonus_info_from_bed, 'max_pos': max_pos}
footprints_dict[search_key] = footprint_name
footprint_count += 1
#else do nothint
return footprint_count, all_footprints, footprints_dict
def search_in_window(all_footprints, footprint_count, chromosom, peak_start, peak_end, scores_in_peak, window_length, bed_dictionary_entry, step):
#logger.info("searching for footprints in window")
peak_len = len(scores_in_peak)
parts = []
footprints_dict = {}
#if necessary divide the peak with help of a sliding window
if peak_len <= window_length:
window_length = peak_len
parts.append(scores_in_peak)
else:
pos = 0
while pos < (peak_len - step):
if (pos + window_length) >= len(scores_in_peak):
part = scores_in_peak[pos:]
else:
part = scores_in_peak[pos:pos + window_length]
pos = pos + step
if len(part) != 1: #otherwise it makes no sense to look on the mean within this part and look for footprints
parts.append(part)
#print(peak_len)
#print("number of parts ", len(parts))
#look in each window and save the footprints
for window in parts:
bw_peak_background = np.mean(window) #find the mean of all scores within one peak
part = bw_peak_background/10 #10 procent of the background
bw_peak_background = bw_peak_background + part
check_position = 0 #for the whole peak
footprint_start = 1 #for each footprint
footprint_scores = [] #for each footprint
for i in range(len(window)):
position = i + 1 #calculate the relative position for a score
score = window[i] #extract one score from the list
if score >= bw_peak_background:
if position != (check_position + 1): #if this position is not the next with the last position we have checked
#save the last footprint
if check_position != 0: #if this is not the start of the first footprint within this peak
footprint_count, all_footprints, footprints_dict = save_footprint(footprint_count, footprint_scores, all_footprints, chromosom, footprint_start + peak_start, check_position + peak_start, bed_dictionary_entry, footprints_dict)
#start a new footprint
footprint_start = position
footprint_scores = []
check_position = position
footprint_scores.append(score) #save the current score
check_position = position
footprint_count, all_footprints, footprints_dict = save_footprint(footprint_count, footprint_scores, all_footprints, chromosom, footprint_start + peak_start, check_position + peak_start, bed_dictionary_entry, footprints_dict) #save the last footprint
return all_footprints, footprint_count
def find_peaks_from_bw(bed_dictionary, bw_file, window_length, step):
logger.info('looking for footprints withing peaks')
footprint_count = 1
all_footprints = {}
bw_open = pyBigWig.open(bw_file)
for header in bed_dictionary:
header_splitted = re.split(r':', header)
chromosom = header_splitted[0]
positions = re.split(r'-', header_splitted[-1])
peak_start = int(positions[0])
peak_end = int(positions[1])
scores_in_peak = np.nan_to_num(np.array(list(bw_open.values(chromosom, peak_start, peak_end)))) #save the scores to an array
peak_len = len(scores_in_peak)
all_footprints, footprint_count = search_in_window(all_footprints, footprint_count, chromosom, peak_start, peak_end, scores_in_peak, window_length, bed_dictionary[header], step)
all_footprints = sorted(all_footprints.items(), key = lambda x : (x[1]['chromosom'], x[1]['start']), reverse = False)
return all_footprints
def write_to_bed_file(all_footprints):
output_file_name = "not_sorted_footprints.bed" #save in the working directory
sorted_output_file_name = "footprints_new.bed"
header = ["#chr", "start", "end", "name", "score", "len", "max_pos", "bonus_info"] #a header to know what is in the columns
output_file = open(output_file_name, 'w') #open a file to write
logger.info("print to the output file")
output_file.write('\t'.join(header) + '\n') #write the header
for footprint in all_footprints:
output_file.write('\t'.join([footprint[1]['chromosom'], str(footprint[1]['start']), str(footprint[1]['end']), footprint[0], str(footprint[1]['score']), str(footprint[1]['len']), str(footprint[1]['max_pos']), '\t'.join(footprint[1]['bonus'])]) + '\n')
output_file.close()
#sort the bed file
logger.info('sorting the output file')
os.system("(head -n 2 " + output_file_name + " && tail -n +3 " + output_file_name + " | sort -k1,1V -k2,2n -k3,3n) > " + sorted_output_file_name)
logger.info('remove the non-sorted file')
remove_file(output_file_name)
def main():
start = time.time()
#peaks_bed_file = "./small_peaks.bed"
peaks_bed_file = "./control_peaks.bed"
#find_window(peaks_bed_file)
#bed_dictionary = {}
#bed_dictionary["chr1:3062743-3063132"] = ["control_1"]
#bed_dictionary["chr1:3343546-3344520"] = ["control_2"]
#bed_dictionary["chr1:3062810-3063132"] = ["control1"] #the 0.position has already a score bigger than the background
bw_file = "./control_footprints.bw"
window_length = 200
step = 100
args = parse_args()
#check_existing_input_files(args)
#check if there is an existing directory that user gave as input, otherwise create this directory from the path provided from the user
#check_directory(args.output_directory)
#fh = logging.FileHandler(os.path.join(args.output_directory, "call_peaks_log.txt"))
fh = logging.FileHandler("call_peaks_log.txt")
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
#if user do not want to see the information about the status of jobs, remove the handler, that writes to the terminal
if args.silent:
logger.removeHandler(ch)
#logger.info("call_peaks.py was called using these parameters:")
#logger.info(vars(args))
bed_dictionary = make_bed_dictionary(peaks_bed_file)
all_footprints = find_peaks_from_bw(bed_dictionary, bw_file, window_length, step)
write_to_bed_file(all_footprints)
#logger.info("call_peaks needed %s seconds to generate the output" % (time.time() - start))
for handler in logger.handlers:
handler.close()
logger.removeFilter(handler)
if __name__ == "__main__":
main()