Skip to content
Permalink
cc532bf00d
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
284 lines (227 sloc) 12.6 KB
#! /bin/Rscript
library("optparse")
option_list <- list(
make_option(opt_str = c("-i", "--input"), default = NULL, help = "Input bed-file. Last column must be sequences.", metavar = "character"),
make_option(opt_str = c("-k", "--kmer"), default = 10, help = "Kmer length. Default = %default", metavar = "integer"),
make_option(opt_str = c("-m", "--motif"), default = 10, help = "Estimated motif length. Default = %default", metavar = "integer"),
make_option(opt_str = c("-o", "--output"), default = "reduced.bed", help = "Output file. Default = %default", metavar = "character"),
make_option(opt_str = c("-t", "--threads"), default = 1, help = "Number of threads to use. Use 0 for all available cores. Default = %default", metavar = "integer"),
make_option(opt_str = c("-c", "--clean"), default = TRUE, help = "Delete all temporary files. Default = %default", metavar = "logical"),
make_option(opt_str = c("-s", "--min_seq_length"), default = NULL, help = "Remove sequences below this length. Defaults to the maximum value of motif and kmer and can not be lower.", metavar = "integer", type = "integer"),
make_option(opt_str = c("-n", "--minoverlap_kmer"), default = NULL, help = "Minimum required overlap between kmer. Used to create reduced sequence ranges out of merged kmer. Can not be greater than kmer length. Default = kmer - 1", metavar = "integer", type = "integer"),
make_option(opt_str = c("-v", "--minoverlap_motif"), default = NULL, help = "Minimum required overlap between motif and kmer to consider kmer significant. Used for kmer cutoff calculation. Can not be greater than motif and kmer length. Default = ceiling(motif / 2)", metavar = "integer", type = "integer"),
make_option(opt_str = c("-f", "--motif_occurence"), default = 1, help = "Define how many motifs are expected per sequence. This value is used during kmer cutoff calculation. Default = %default meaning that there should be approximately one motif per sequence.", metavar = "double")
)
opt_parser <- OptionParser(option_list = option_list,
description = "Reduces each sequence to its most frequent region.",
epilogue = "Author: Hendrik Schultheis <Hendrik.Schultheis@mpi-bn.mpg.de>")
opt <- parse_args(opt_parser)
#' Reduces each sequence to its most frequent region.
#'
#' @param input Input bed-file. Last column must be sequences.
#' @param kmer Kmer length. Default = 10
#' @param motif Estimated motif length. Default = 10
#' @param output Output file. Default = reduced.bed
#' @param threads Number of threads to use. Default = 1. Use 0 for all cores.
#' @param clean Delete all temporary files.
#' @param minoverlap_kmer Minimum required overlap between kmer. Used to create reduced sequence ranges out of merged kmer. Can not be greater than kmer length . Default = kmer - 1
#' @param minoverlap_motif Minimum required overlap between motif and kmer to consider kmer significant. Used for kmer cutoff calculation. Can not be greater than motif and kmer length. Default = ceiling(motif / 2)
#' @param min_seq_length Remove sequences below this length. Defaults to the maximum value of motif and kmer and can not be lower.
#' @param motif_occurence Define how many motifs are expected per sequence. This value is used during kmer cutoff calculation. Default = 1 meaning that there should be approximately one motif per sequence.
#'
#' @details If there is a header supplied other then the default data.table nameing scheme ('V1', 'V2', etc.) it will be kept.
#'
reduce_sequence <- function(input, kmer = 10, motif = 10, output = "reduced.bed", threads = NULL, clean = TRUE, minoverlap_kmer = kmer - 1, minoverlap_motif = ceiling(motif / 2), min_seq_length = max(c(motif, kmer)), motif_occurence = 1) {
if (system("which jellyfish", ignore.stdout = TRUE) != 0) {
stop("Required program jellyfish not found! Please check whether it is installed.")
}
if (missing(input)) {
stop("No input specified! Please forward a valid bed-file.")
}
# get number of available cores
if (threads == 0) {
threads <- parallel::detectCores()
}
message("Loading bed...")
# load bed
# columns: chr, start, end, name, ..., sequence
bed_table <- data.table::fread(input = input)
# check for header and save it if provided
default_col_names <- grepl(pattern = "^V+\\d$", names(bed_table), perl = TRUE)
if (!any(default_col_names)) {
keep_col_names <- TRUE
col_names <- names(bed_table)
} else {
keep_col_names <- FALSE
}
names(bed_table)[1:4] <- c("chr", "start", "end", "name")
names(bed_table)[ncol(bed_table)] <- "sequence"
# index
data.table::setkey(bed_table, name, physical = FALSE)
# check for duplicated names
if (anyDuplicated(bed_table[, "name"])) {
warning("Found duplicated names. Making names unique.")
bed_table[, name := make.unique(name)]
}
# remove sequences below minimum length
if (min_seq_length < max(c(kmer, motif))) {
stop("Minimum sequence length must be greater or equal to ", max(c(motif, kmer)), " (maximum value of kmer and motif).")
}
total_rows <- nrow(bed_table)
bed_table <- bed_table[nchar(sequence) > min_seq_length]
if (total_rows > nrow(bed_table)) {
message("Removed ", total_rows - nrow(bed_table), " sequence(s) below minimum length of ", min_seq_length)
}
# TODO forward fasta file as parameter so no bed -> fasta conversion is needed.
message("Writing fasta...")
# save as fasta
fasta_file <- paste0(basename(input), ".fasta")
seqinr::write.fasta(sequences = as.list(bed_table[[ncol(bed_table)]]), names = bed_table[[4]], as.string = TRUE, file.out = fasta_file)
message("Counting kmer...")
# count k-mer
hashsize <- 4 ^ kmer
count_output_binary <- "mer_count_binary.jf"
input <- fasta_file
jellyfish_call <- paste("jellyfish count ", "-m", kmer, "-s", hashsize, "-o", count_output_binary, input)
system(command = jellyfish_call, wait = TRUE)
mer_count_table <- "mer_count_table.jf"
jellyfish_dump_call <- paste("jellyfish dump --column --tab --output", mer_count_table, count_output_binary)
system(command = jellyfish_dump_call, wait = TRUE)
message("Reduce kmer.")
# load mer table
# columns: kmer, count
kmer_counts <- data.table::fread(input = mer_count_table, header = FALSE)
# order kmer descending
data.table::setorder(kmer_counts, -V2)
# compute number of hits to keep
keep_hits <- significant_kmer(bed_table, kmer = kmer, motif = motif, minoverlap = minoverlap_motif, motif_occurence = motif_occurence)
# reduce kmer
reduced_kmer <- reduce_kmer(kmer = kmer_counts, significant = keep_hits)
message("Find kmer in sequences.")
# find k-mer in sequences
# columns: name, start, end, width
ranges_table <- find_kmer_regions(bed = bed_table, kmer_counts = reduced_kmer, minoverlap = minoverlap_kmer, threads = threads)
names(ranges_table)[1:2] <- c("relative_start", "relative_end")
# merge ranged_table with bed_table + keep column order
merged <- merge(x = bed_table, y = ranges_table, by = "name", sort = FALSE)[, union(names(bed_table), names(ranges_table)), with = FALSE]
# delete sequences without hit
merged <- na.omit(merged, cols = c("relative_start", "relative_end"))
message("Removed ", nrow(bed_table) - nrow(merged), " sequence(s) without hit.")
message("Reduce sequences.")
# create subsequences
merged[, sequence := stringr::str_sub(sequence, relative_start, relative_end)]
# bed files count from 0
merged[, `:=`(relative_start = relative_start - 1, relative_end = relative_end - 1)]
# change start end location
merged[, `:=`(start = start + relative_start, end = start + relative_end)]
# clean table
merged[, `:=`(relative_start = NULL, relative_end = NULL, width = NULL)]
if (clean) {
file.remove(fasta_file, count_output_binary, mer_count_table)
}
# keep provided column names
if (keep_col_names) {
names(merged) <- col_names
}
data.table::fwrite(merged, file = output, sep = "\t", col.names = keep_col_names)
}
#' Predict how many interesting kmer are possible for the given data.
#'
#' @param bed Bed table with sequences in last column
#' @param kmer Length of kmer
#' @param motif Length of motif
#' @param minoverlap Minimum number of bases overlapping between kmer and motif. Must be <= motif & <= kmer. Defaults to ceiling(motif / 2).
#' @param motif_occurence Define how many motifs are expected per sequence. Default = 1
#'
#' @return Number of interesting kmer.
significant_kmer <- function(bed, kmer, motif, minoverlap = ceiling(motif / 2), motif_occurence = 1) {
if (minoverlap > kmer || minoverlap > motif) {
stop("Kmer & motif must be greater or equal to minoverlap!")
}
if (motif_occurence <= 0) {
stop("Motif_occurence must be a numeric value above 0!")
}
# minimum sequence length to get all interesting overlaps
min_seq_length <- motif + 2 * (kmer - minoverlap)
seq_lengths <- nchar(bed[[ncol(bed)]])
# reduce to max interesting length
seq_lengths <- ifelse(seq_lengths > min_seq_length, min_seq_length, seq_lengths)
# calculate max possible kmer
topx <- sum(seq_lengths - kmer + 1)
return(topx * motif_occurence)
}
#' Orders kmer table after count descending and keeps all kmer with a cumulative sum below the given significance threshold.
#'
#' @param kmer Kmer data.table columns: kmer, count
#' @param significant Value from significant_kmer function.
#'
#' @return reduced data.table
reduce_kmer <- function(kmer, significant) {
data.table::setorderv(kmer, cols = names(kmer)[2], order = -1)
# TODO don't use 'V2'
kmer[, cumsum := cumsum(V2)]
return(kmer[cumsum <= significant])
}
#' create list of significant ranges (one for each bed entry)
#'
#' @param bed Data.table of bed with sequence in last column
#' @param kmer_counts Data.table of counted kmer. Column1 = kmer, column2 = count.
#' @param minoverlap Minimum overlapping nucleotides between kmers to be merged. Positive integer. Must be smaller than kmer length.
#' @param threads Number of threads.
#'
#' @return Data.table with relative positions and width (start, end, width).
#'
#' TODO Include number of motifs per sequence (aka motif_occurence). Attempt to keep best 2 regions for occurence = 2? Probably high impact on performance.
find_kmer_regions <- function(bed, kmer_counts, minoverlap = 1 , threads = NULL) {
if (nchar(kmer_counts[1, 1]) <= minoverlap) {
stop("Minoverlap must be smaller than kmer length!")
}
names(kmer_counts)[1:2] <- c("kmer", "count")
data.table::setorder(kmer_counts, -count)
seq_ranges <- pbapply::pblapply(seq_len(nrow(bed)), cl = threads, function(x) {
seq <- bed[x][[ncol(bed)]]
name <- bed[x][[4]]
#### locate ranges
ranges <- data.table::data.table(do.call(rbind, stringi::stri_locate_all_fixed(seq, pattern = kmer_counts[[1]])))
ranges <- na.omit(ranges, cols = c("start", "end"))
if (nrow(ranges) < 1) {
return(data.table::data.table(start = NA, end = NA, width = NA, name = name))
}
# add kmer sequences
ranges[, sub_seq := stringr::str_sub(seq, start, end)]
# add kmer count
ranges[, count := kmer_counts[ranges[["sub_seq"]], "count", on = "kmer"]]
#### reduce ranges
reduced_ranges <- IRanges::IRanges(start = ranges[["start"]], end = ranges[["end"]], names = ranges[["sub_seq"]])
# list of overlapping ranges
edge_list <- as.matrix(IRanges::findOverlaps(reduced_ranges, minoverlap = minoverlap, drop.self = FALSE, drop.redundant = TRUE))
# get components (groups of connected ranges)
graph <- igraph::graph_from_edgelist(edge_list, directed = FALSE)
# vector of node membership (indices correspond to ranges above)
member <- as.factor(igraph::components(graph)$membership)
# list of membership vectors
node_membership <- lapply(levels(member), function(x) {
which(member == x)
})
# calculate component score (= sum of kmer count)
score <- vapply(node_membership, FUN.VALUE = numeric(1), function(x) {
sum(kmer_counts[x, "count"])
})
selected_ranges <- node_membership[[which(score == max(score))[1]]]
# reduce selected ranges
reduced_ranges <- IRanges::reduce(reduced_ranges[selected_ranges])
reduced_ranges <- data.table::as.data.table(reduced_ranges)[, name := name]
return(reduced_ranges)
})
# create ranges table
conserved_regions_table <- data.table::rbindlist(seq_ranges)
return(conserved_regions_table)
}
# call function with given parameter if not in interactive context (e.g. run from shell)
if (!interactive()) {
# show apply progressbar
pbo <- pbapply::pboptions(type = "timer")
# remove last parameter (help param)
params <- opt[-length(opt)]
do.call(reduce_sequence, args = params)
}