Skip to content

Improved: Motif clustering #39

Merged
merged 7 commits into from
Jan 6, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
23 changes: 12 additions & 11 deletions bin/2.2_motif_estimation/bed_to_fasta.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,20 @@
#!/usr/bin/env Rscript
library("optparse")
if (!require(optparse)) install.packages("optparse"); library(optparse)

option_list <- list(
make_option(opt_str = c("-i", "--input"), default = NULL, help = "Input bed-file. Second last column must be sequences and last column must be the cluster_id.", metavar = "character"),
make_option(opt_str = c("-i", "--input"), default = NULL, help = "Input bed-file. Second last column must be sequences and last column must be the cluster id.", metavar = "character"),
make_option(opt_str = c("-p", "--prefix"), default = "" , help = "Prefix for file names. Default = '%default'", metavar = "character"),
make_option(opt_str = c("-m", "--min_seq"), default = 100, help = "Minimum amount of sequences in clusters. Default = %default", metavar = "integer")
)

opt_parser <- OptionParser(option_list = option_list,
description = "Convert BED-file to one FASTA-file per cluster")
opt_parser <- OptionParser(option_list = option_list,
description = "Convert BED-file to one FASTA-file per cluster.",
epilogue = "Author: Rene Wiegandt <Rene.Wiegandt@mpi-bn.mpg.de>")

opt <- parse_args(opt_parser)

#' Splitting BED-files depending on their cluster.
#' The Sequences of each cluster are written as an FASTA-file.
#' The Sequences of each cluster are written as a FASTA-file.
#' @param bedInput <string> BED-file with sequences and cluster-id as last two columns:
#' Sequence: second last column; Cluster ID: last column
#' @param prefix <string> prefix for filenames
Expand All @@ -22,21 +23,21 @@ opt <- parse_args(opt_parser)
#' @author René Wiegandt
#' @contact rene.wiegandt(at)mpi-bn.mpg.de
bed_to_fasta <- function(bedInput, prefix = "", min_seq = 100){

if (is.null(bedInput)) {
stop("ERROR: Input parameter cannot be null! Please specify the input parameter.")
}

bed <- data.table::fread(bedInput, sep = "\t")

# Get last column of data.table, which refers to the cluster, as a vector.
cluster_no <- as.vector(bed[[ncol(bed)]])
cluster_no <- bed[[ncol(bed)]]

# Split data.table bed on its last column (cluster_no) into list of data.frames
clusters <- split(bed, cluster_no, sorted = TRUE, flatten = FALSE)

# For each data.frame(cluster) in list clusters:
discard <- lapply(1:length(clusters), function(i){
discard <- lapply(seq_len(length(clusters)), function(i){
clust <- as.data.frame(clusters[i])
# Filter data.tables(clusters), which are to small
if (nrow(clust) >= as.numeric(min_seq) ) {
Expand Down
40 changes: 40 additions & 0 deletions bin/2.2_motif_estimation/label_cluster.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
#!/usr/bin/env Rscript
if (!require(optparse)) install.packages("optparse"); library(optparse)

option_list <- list(
make_option(opt_str = c("-i", "--input"), default = NULL, help = "Input TSV-file. Output from tomtom", metavar = "character"),
make_option(opt_str = c("-o", "--output"), default = NULL, help = "Output TSV-file.", metavar = "character")
)

opt_parser <- OptionParser(option_list = option_list,
description = "Adding Cluster ID to Query_ID Column.",
epilogue = "Author: Rene Wiegandt <Rene.Wiegandt@mpi-bn.mpg.de>")

opt <- parse_args(opt_parser)

#' Adding Cluster ID to Query_ID Column
#'
#' @param input <string> TSV-file. Output from tomtom.
#' @param input <string> Output name.
#'
#' @author Ren� Wiegandt
#' @contact rene.wiegandt(at)mpi-bn.mpg.de
label_cluster <- function(input, output){
#Reading TSV-file
tsv <- data.table::fread(input, header = T, sep = "\t")

#Getting cluster ID/number
splitted_name <- unlist(strsplit(input, "\\_|\\."))
cluster_number <- as.numeric(splitted_name[length(splitted_name) - 1]) + 1

#Adding cluster ID to first column
tsv$Query_ID <- paste0(tsv$Query_ID, ".", cluster_number)


data.table::fwrite(tsv, file = output, sep = "\t", col.names = FALSE)
}

# run function label_cluster with given parameteres if not in interactive context (e.g. run from shell)
if (!interactive()) {
label_cluster(opt$input, opt$output)
}
140 changes: 79 additions & 61 deletions bin/2.2_motif_estimation/merge_similar_clusters.R
Original file line number Diff line number Diff line change
@@ -1,61 +1,79 @@
#!/usr/bin/env Rscript

# Merging FASTA-files, which motifs are similar.
#
# @parameter tsv_in <string> Path to TSV file generated by Tomtom.
# The input for Tomtom is a from all clusters merged meme-file.
# @parameter file_list <string> Numerically sorted whitespace separated list of absolute fasta-file paths
# @parameter min_weight <INT> Minimum weight of edge allowed in graph clusters.


args = commandArgs(trailingOnly = TRUE)

tsv_in <- args[1]
file_list <- args[2]
min_weight <- args[3]

files <- unlist(as.list(strsplit(file_list, ",")))

# split the string on the character "." in the first to columns and safe the last value each, to get the number of the cluster.
tsv <- data.table::fread(tsv_in, header = TRUE, sep = "\t",colClasses = 'character')
query_cluster <- unlist(lapply(strsplit(tsv[["Query_ID"]],"\\."), function(l){
tail(l,n=1)
}))
target_cluster <- unlist(lapply(strsplit(tsv[["Target_ID"]],"\\."), function(l){
tail(l,n=1)
}))

# create data.table with only the cluster-numbers
sim_not_unique <- data.table::data.table(query_cluster,target_cluster)
# convert from character to numeric values
sim_not_unique[, query_cluster := as.numeric(query_cluster)]
sim_not_unique[, target_cluster := as.numeric(target_cluster)]

# remove rows if column 1 is idential to column 2
edgelist <- sim_not_unique[query_cluster != target_cluster]

# create graph from data.frame
g <- igraph::graph_from_edgelist(as.matrix(edgelist))
# converting graph to adjacency matrix
adj_matrix <- igraph::get.adjacency(g, names = T)
# generating weighted graph from adjacency matrix
g_adj <- igraph::graph_from_adjacency_matrix(adj_matrix, weighted = T)

# get subgraphs from graph with edges of weight > min_weight
s1 <- igraph::subgraph.edges(g_adj, igraph::E(g_adj)[igraph::E(g_adj)$weight>min_weight], del=F)
png('motif_clusters.png')
plot(s1)
dev.off()
clust <- igraph::clusters(s1)
if (clust$no < 1){
b <- lapply(files, function(f){
system(paste("cat",f,">",basename(f)))
})
}
# merge FASTA-files depending on the clustered graphs
a <- lapply(seq(from = 1, to = clust$no, by = 1), function(i){
cl <- as.vector(which(clust$membership %in% c(i)))
fasta_list <- paste(files[cl], collapse = " ")
name <- paste0("Cluster_",i,".fasta")
system(paste("cat",fasta_list,">",name))
})
#!/usr/bin/env Rscript
if (!require(optparse)) install.packages("optparse"); library(optparse)

option_list <- list(
make_option(opt_str = c("-i", "--input"), default = NULL, help = "Input TSV-file. Output from merged tomtom results", metavar = "character"),
make_option(opt_str = c("-l", "--list"), default = NULL, help = "Numerically sorted whitespace separated list of absolute fasta-file paths", metavar = "character"),
make_option(opt_str = c("-w", "--min"), default = NULL, help = "Minimum weight of edge allowed in graph clusters.", metavar = "character")
)

opt_parser <- OptionParser(option_list = option_list,
description = "Adding Cluster ID to Query_ID Column",
epilogue = "Author: Rene Wiegandt <Rene.Wiegandt@mpi-bn.mpg.de>")

opt <- parse_args(opt_parser)

#' Merging FASTA-files, which motifs are similar.
#'
#' @parameter tsv_in <string> Path to TSV file generated by Tomtom.
#' The input for Tomtom is a from all clusters merged meme-file.
#' @parameter file_list <string> Numerically sorted comma separated list of absolute fasta-file paths
#' @parameter min_weight <INT> Minimum weight of edge allowed in graph clusters.
#'
#' @author René Wiegandt
#' @contact rene.wiegandt(at)mpi-bn.mpg.de
merge_similar <- function(tsv_in, file_list, min_weight){

files <- unlist(strsplit(file_list, ","))

# split the string on the character "." in the first to columns and safe the last value each, to get the number of the cluster.
tsv <- data.table::fread(tsv_in, header = TRUE, sep = "\t",colClasses = 'character')
query_cluster <- vapply(strsplit(tsv[["Query_ID"]],"\\."), function(l){
tail(l, n = 1)
},"")
target_cluster <- vapply(strsplit(tsv[["Target_ID"]],"\\."), function(l){
tail(l, n = 1)
},"")

# create data.table with only the cluster-numbers
sim_not_unique <- data.table::data.table(as.numeric(query_cluster),as.numeric(target_cluster))

# remove rows if column 1 is identical to column 2
edgelist <- sim_not_unique[query_cluster != target_cluster]

# create graph from data.frame
g <- igraph::graph_from_edgelist(as.matrix(edgelist))
# converting graph to adjacency matrix
adj_matrix <- igraph::get.adjacency(g, names = T)
# generating weighted graph from adjacency matrix
g_adj <- igraph::graph_from_adjacency_matrix(adj_matrix, weighted = T)

# get subgraphs from graph with edges of weight > min_weight
s1 <- igraph::subgraph.edges(g_adj, igraph::E(g_adj)[igraph::E(g_adj)$weight > min_weight], del = F)
png('motif_clusters.png')
plot(s1)
dev.off()
clust <- igraph::clusters(s1)
if (clust$no < 1) {
b <- lapply(files, function(f){
system(paste("cat",f,">",basename(f)))
})
}
# merge FASTA-files depending on the clustered graphs
a <- lapply(seq(from = 1, to = clust$no, by = 1), function(i){
#get vector with cluster ids, which are clustered together in "motif cluster" i
cl <- as.vector(which(clust$membership %in% c(i)))
#create string, which represents a list, containing all FASTA-files to be merged
fasta_list <- paste(files[cl], collapse = " ")
#create name for merged FASTA-file
name <- paste0("Cluster_",i,".fasta")
#merge fasta files
system(paste("cat",fasta_list,">",name))
})
}


# run function merge_similar with given parameteres if not in interactive context (e.g. run from shell)
if (!interactive()) {
merge_similar(opt$input, opt$list, opt$min)
}