-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
KVM: PPC: Avoid marking DMA-mapped pages dirty in real mode
At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm() which in turn reads the old TCE and if it was a valid entry, marks the physical page dirty if it was mapped for writing. Since it is in real mode, realmode_pfn_to_page() is used instead of pfn_to_page() to get the page struct. However SetPageDirty() itself reads the compound page head and returns a virtual address for the head page struct and setting dirty bit for that kills the system. This adds additional dirty bit tracking into the MM/IOMMU API for use in the real mode. Note that this does not change how VFIO and KVM (in virtual mode) set this bit. The KVM (real mode) changes include: - use the lowest bit of the cached host phys address to carry the dirty bit; - mark pages dirty when they are unpinned which happens when the preregistered memory is released which always happens in virtual mode; - add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit; - change iommu_tce_xchg_rm() to take the kvm struct for the mm to use in the new mm_iommu_ua_mark_dirty_rm() helper; - move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only caller anyway) to reduce the real mode KVM and IOMMU knowledge across different subsystems. This removes realmode_pfn_to_page() as it is not used anymore. While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for the real mode only and modules cannot call it anyway. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Loading branch information
Alexey Kardashevskiy
authored and
Paul Mackerras
committed
Sep 11, 2018
1 parent
bdf7ffc
commit 425333b
Showing
7 changed files
with
62 additions
and
89 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters