-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
kselftests: timers: Add test for frequency step
This test checks the response of the system clock to frequency steps made with adjtimex(). The frequency error and stability of the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock is measured in two intervals following the step. The test fails if values from the second interval exceed specified limits. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miroslav Lichvar <mlichvar@redhat.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Stephen Boyd <stephen.boyd@linaro.org> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
- Loading branch information
Miroslav Lichvar
authored and
John Stultz
committed
Jun 21, 2017
1 parent
7a5de55
commit 7673925
Showing
2 changed files
with
271 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
/* | ||
* This test checks the response of the system clock to frequency | ||
* steps made with adjtimex(). The frequency error and stability of | ||
* the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock | ||
* is measured in two intervals following the step. The test fails if | ||
* values from the second interval exceed specified limits. | ||
* | ||
* Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017 | ||
* | ||
* This program is free software; you can redistribute it and/or modify | ||
* it under the terms of version 2 of the GNU General Public License as | ||
* published by the Free Software Foundation. | ||
* | ||
* This program is distributed in the hope that it will be useful, but | ||
* WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
* General Public License for more details. | ||
*/ | ||
|
||
#include <math.h> | ||
#include <stdio.h> | ||
#include <sys/timex.h> | ||
#include <time.h> | ||
#include <unistd.h> | ||
|
||
#include "../kselftest.h" | ||
|
||
#define SAMPLES 100 | ||
#define SAMPLE_READINGS 10 | ||
#define MEAN_SAMPLE_INTERVAL 0.1 | ||
#define STEP_INTERVAL 1.0 | ||
#define MAX_PRECISION 100e-9 | ||
#define MAX_FREQ_ERROR 10e-6 | ||
#define MAX_STDDEV 1000e-9 | ||
|
||
struct sample { | ||
double offset; | ||
double time; | ||
}; | ||
|
||
static time_t mono_raw_base; | ||
static time_t mono_base; | ||
static long user_hz; | ||
static double precision; | ||
static double mono_freq_offset; | ||
|
||
static double diff_timespec(struct timespec *ts1, struct timespec *ts2) | ||
{ | ||
return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; | ||
} | ||
|
||
static double get_sample(struct sample *sample) | ||
{ | ||
double delay, mindelay = 0.0; | ||
struct timespec ts1, ts2, ts3; | ||
int i; | ||
|
||
for (i = 0; i < SAMPLE_READINGS; i++) { | ||
clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); | ||
clock_gettime(CLOCK_MONOTONIC, &ts2); | ||
clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); | ||
|
||
ts1.tv_sec -= mono_raw_base; | ||
ts2.tv_sec -= mono_base; | ||
ts3.tv_sec -= mono_raw_base; | ||
|
||
delay = diff_timespec(&ts3, &ts1); | ||
if (delay <= 1e-9) { | ||
i--; | ||
continue; | ||
} | ||
|
||
if (!i || delay < mindelay) { | ||
sample->offset = diff_timespec(&ts2, &ts1); | ||
sample->offset -= delay / 2.0; | ||
sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; | ||
mindelay = delay; | ||
} | ||
} | ||
|
||
return mindelay; | ||
} | ||
|
||
static void reset_ntp_error(void) | ||
{ | ||
struct timex txc; | ||
|
||
txc.modes = ADJ_SETOFFSET; | ||
txc.time.tv_sec = 0; | ||
txc.time.tv_usec = 0; | ||
|
||
if (adjtimex(&txc) < 0) { | ||
perror("[FAIL] adjtimex"); | ||
ksft_exit_fail(); | ||
} | ||
} | ||
|
||
static void set_frequency(double freq) | ||
{ | ||
struct timex txc; | ||
int tick_offset; | ||
|
||
tick_offset = 1e6 * freq / user_hz; | ||
|
||
txc.modes = ADJ_TICK | ADJ_FREQUENCY; | ||
txc.tick = 1000000 / user_hz + tick_offset; | ||
txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); | ||
|
||
if (adjtimex(&txc) < 0) { | ||
perror("[FAIL] adjtimex"); | ||
ksft_exit_fail(); | ||
} | ||
} | ||
|
||
static void regress(struct sample *samples, int n, double *intercept, | ||
double *slope, double *r_stddev, double *r_max) | ||
{ | ||
double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; | ||
int i; | ||
|
||
x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; | ||
|
||
for (i = 0; i < n; i++) { | ||
x = samples[i].time; | ||
y = samples[i].offset; | ||
|
||
x_sum += x; | ||
y_sum += y; | ||
xy_sum += x * y; | ||
x2_sum += x * x; | ||
} | ||
|
||
*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); | ||
*intercept = (y_sum - *slope * x_sum) / n; | ||
|
||
*r_max = 0.0, r2_sum = 0.0; | ||
|
||
for (i = 0; i < n; i++) { | ||
x = samples[i].time; | ||
y = samples[i].offset; | ||
r = fabs(x * *slope + *intercept - y); | ||
if (*r_max < r) | ||
*r_max = r; | ||
r2_sum += r * r; | ||
} | ||
|
||
*r_stddev = sqrt(r2_sum / n); | ||
} | ||
|
||
static int run_test(int calibration, double freq_base, double freq_step) | ||
{ | ||
struct sample samples[SAMPLES]; | ||
double intercept, slope, stddev1, max1, stddev2, max2; | ||
double freq_error1, freq_error2; | ||
int i; | ||
|
||
set_frequency(freq_base); | ||
|
||
for (i = 0; i < 10; i++) | ||
usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); | ||
|
||
reset_ntp_error(); | ||
|
||
set_frequency(freq_base + freq_step); | ||
|
||
for (i = 0; i < 10; i++) | ||
usleep(rand() % 2000000 * STEP_INTERVAL / 10); | ||
|
||
set_frequency(freq_base); | ||
|
||
for (i = 0; i < SAMPLES; i++) { | ||
usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); | ||
get_sample(&samples[i]); | ||
} | ||
|
||
if (calibration) { | ||
regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); | ||
mono_freq_offset = slope; | ||
printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", | ||
1e6 * mono_freq_offset); | ||
return 0; | ||
} | ||
|
||
regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); | ||
freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - | ||
freq_base; | ||
|
||
regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, | ||
&stddev2, &max2); | ||
freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - | ||
freq_base; | ||
|
||
printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", | ||
1e6 * freq_step, | ||
1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, | ||
1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); | ||
|
||
if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { | ||
printf("[FAIL]\n"); | ||
return 1; | ||
} | ||
|
||
printf("[OK]\n"); | ||
return 0; | ||
} | ||
|
||
static void init_test(void) | ||
{ | ||
struct timespec ts; | ||
struct sample sample; | ||
|
||
if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { | ||
perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); | ||
ksft_exit_fail(); | ||
} | ||
|
||
mono_raw_base = ts.tv_sec; | ||
|
||
if (clock_gettime(CLOCK_MONOTONIC, &ts)) { | ||
perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); | ||
ksft_exit_fail(); | ||
} | ||
|
||
mono_base = ts.tv_sec; | ||
|
||
user_hz = sysconf(_SC_CLK_TCK); | ||
|
||
precision = get_sample(&sample) / 2.0; | ||
printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", | ||
1e9 * precision); | ||
|
||
if (precision > MAX_PRECISION) { | ||
printf("[SKIP]\n"); | ||
ksft_exit_skip(); | ||
} | ||
|
||
printf("[OK]\n"); | ||
srand(ts.tv_sec ^ ts.tv_nsec); | ||
|
||
run_test(1, 0.0, 0.0); | ||
} | ||
|
||
int main(int argc, char **argv) | ||
{ | ||
double freq_base, freq_step; | ||
int i, j, fails = 0; | ||
|
||
init_test(); | ||
|
||
printf("Checking response to frequency step:\n"); | ||
printf(" Step 1st interval 2nd interval\n"); | ||
printf(" Freq Dev Max Freq Dev Max\n"); | ||
|
||
for (i = 2; i >= 0; i--) { | ||
for (j = 0; j < 5; j++) { | ||
freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; | ||
freq_step = 10e-6 * (1 << (6 * i)); | ||
fails += run_test(0, freq_base, freq_step); | ||
} | ||
} | ||
|
||
set_frequency(0.0); | ||
|
||
if (fails) | ||
ksft_exit_fail(); | ||
|
||
ksft_exit_pass(); | ||
} |