Skip to content

Commit

Permalink
drm/nouveau/pll/gk104: fix PLL instability due to bad configuration w…
Browse files Browse the repository at this point in the history
…ith gddr5

This patch uses an approach closer to the nvidia driver to configure
both PLLs for high gddr5 memory clocks (usually above 2400MHz)

Previously nouveau used the one PLL as it was used for the lower clocks
and just adjusted the second PLL to get as close as possible to the
requested clock.  This means for my card, that I got a 4050 MHz clock
although 4008 MHz was requested.

Now the driver iterates over a list of PLL configuration also used by
the nvidia driver and then adjust the second PLL to get near the
requested clock.  Also it hold to some restriction I found while
analyzing the PLL configurations

This won't fix all gddr5 high clock issues itself, but it should be
fine on hybrid gpu systems as found on many laptops these days.  Also
switching while normal desktop usage should be a lot more stable than
before.

v2: move the pll code into ramgk104

Signed-off-by: Karol Herbst <nouveau@karolherbst.de>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
  • Loading branch information
Karol Herbst authored and Ben Skeggs committed Nov 3, 2015
1 parent 0d42743 commit 78eaf33
Showing 1 changed file with 77 additions and 23 deletions.
100 changes: 77 additions & 23 deletions drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramgk104.c
Original file line number Diff line number Diff line change
Expand Up @@ -970,6 +970,67 @@ gk104_ram_calc_data(struct gk104_ram *ram, u32 khz, struct nvkm_ram_data *data)
return -EINVAL;
}

static int
gk104_calc_pll_output(int fN, int M, int N, int P, int clk)
{
return ((clk * N) + (((u16)(fN + 4096) * clk) >> 13)) / (M * P);
}

static int
gk104_pll_calc_hiclk(int target_khz, int crystal,
int *N1, int *fN1, int *M1, int *P1,
int *N2, int *M2, int *P2)
{
int best_clk = 0, best_err = target_khz, p_ref, n_ref;
bool upper = false;

*M1 = 1;
/* M has to be 1, otherwise it gets unstable */
*M2 = 1;
/* can be 1 or 2, sticking with 1 for simplicity */
*P2 = 1;

for (p_ref = 0x7; p_ref >= 0x5; --p_ref) {
for (n_ref = 0x25; n_ref <= 0x2b; ++n_ref) {
int cur_N, cur_clk, cur_err;

cur_clk = gk104_calc_pll_output(0, 1, n_ref, p_ref, crystal);
cur_N = target_khz / cur_clk;
cur_err = target_khz
- gk104_calc_pll_output(0xf000, 1, cur_N, 1, cur_clk);

/* we found a better combination */
if (cur_err < best_err) {
best_err = cur_err;
best_clk = cur_clk;
*N2 = cur_N;
*N1 = n_ref;
*P1 = p_ref;
upper = false;
}

cur_N += 1;
cur_err = gk104_calc_pll_output(0xf000, 1, cur_N, 1, cur_clk)
- target_khz;
if (cur_err < best_err) {
best_err = cur_err;
best_clk = cur_clk;
*N2 = cur_N;
*N1 = n_ref;
*P1 = p_ref;
upper = true;
}
}
}

/* adjust fN to get closer to the target clock */
*fN1 = (u16)((((best_err / *N2 * *P2) * (*P1 * *M1)) << 13) / crystal);
if (upper)
*fN1 = (u16)(1 - *fN1);

return gk104_calc_pll_output(*fN1, 1, *N1, *P1, crystal);
}

static int
gk104_ram_calc_xits(struct gk104_ram *ram, struct nvkm_ram_data *next)
{
Expand All @@ -994,31 +1055,24 @@ gk104_ram_calc_xits(struct gk104_ram *ram, struct nvkm_ram_data *next)
* kepler boards, no idea how/why they're chosen.
*/
refclk = next->freq;
if (ram->mode == 2)
refclk = fuc->mempll.refclk;

/* calculate refpll coefficients */
ret = gt215_pll_calc(subdev, &fuc->refpll, refclk, &ram->N1,
&ram->fN1, &ram->M1, &ram->P1);
fuc->mempll.refclk = ret;
if (ret <= 0) {
nvkm_error(subdev, "unable to calc refpll\n");
return -EINVAL;
}

/* calculate mempll coefficients, if we're using it */
if (ram->mode == 2) {
/* post-divider doesn't work... the reg takes the values but
* appears to completely ignore it. there *is* a bit at
* bit 28 that appears to divide the clock by 2 if set.
*/
fuc->mempll.min_p = 1;
fuc->mempll.max_p = 2;

ret = gt215_pll_calc(subdev, &fuc->mempll, next->freq,
&ram->N2, NULL, &ram->M2, &ram->P2);
ret = gk104_pll_calc_hiclk(next->freq, subdev->device->crystal,
&ram->N1, &ram->fN1, &ram->M1, &ram->P1,
&ram->N2, &ram->M2, &ram->P2);
fuc->mempll.refclk = ret;
if (ret <= 0) {
nvkm_error(subdev, "unable to calc plls\n");
return -EINVAL;
}
nvkm_debug(subdev, "sucessfully calced PLLs for clock %i kHz"
" (refclock: %i kHz)\n", next->freq, ret);
} else {
/* calculate refpll coefficients */
ret = gt215_pll_calc(subdev, &fuc->refpll, refclk, &ram->N1,
&ram->fN1, &ram->M1, &ram->P1);
fuc->mempll.refclk = ret;
if (ret <= 0) {
nvkm_error(subdev, "unable to calc mempll\n");
nvkm_error(subdev, "unable to calc refpll\n");
return -EINVAL;
}
}
Expand Down

0 comments on commit 78eaf33

Please sign in to comment.