Skip to content

Commit

Permalink
Merge branch 'bpf-bounded-loops'
Browse files Browse the repository at this point in the history
Alexei Starovoitov says:

====================
v2->v3: fixed issues in backtracking pointed out by Andrii.
The next step is to add a lot more tests for backtracking.

v1->v2: addressed Andrii's feedback.

this patch set introduces verifier support for bounded loops and
adds several other improvements.
Ideally they would be introduced one at a time,
but to support bounded loop the verifier needs to 'step back'
in the patch 1. That patch introduces tracking of spill/fill
of constants through the stack. Though it's a useful feature
it hurts cilium tests.
Patch 3 introduces another feature by extending is_branch_taken
logic to 'if rX op rY' conditions. This feature is also
necessary to support bounded loops.
Then patch 4 adds support for the loops while adding
key heuristics with jmp_processed.
Introduction of parentage chain of verifier states in patch 4
allows patch 9 to add backtracking of precise scalar registers
which finally resolves degradation from patch 1.

The end result is much faster verifier for existing programs
and new support for loops.
See patch 8 for many kinds of loops that are now validated.
Patch 9 is the most tricky one and could be rewritten with
a different algorithm in the future.
====================

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
  • Loading branch information
Daniel Borkmann committed Jun 19, 2019
2 parents a324aae + b5dc016 commit 94079b6
Show file tree
Hide file tree
Showing 23 changed files with 2,317 additions and 114 deletions.
69 changes: 68 additions & 1 deletion include/linux/bpf_verifier.h
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,8 @@ struct bpf_reg_state {
*/
s32 subreg_def;
enum bpf_reg_liveness live;
/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
bool precise;
};

enum bpf_stack_slot_type {
Expand Down Expand Up @@ -190,14 +192,77 @@ struct bpf_func_state {
struct bpf_stack_state *stack;
};

struct bpf_idx_pair {
u32 prev_idx;
u32 idx;
};

#define MAX_CALL_FRAMES 8
struct bpf_verifier_state {
/* call stack tracking */
struct bpf_func_state *frame[MAX_CALL_FRAMES];
struct bpf_verifier_state *parent;
/*
* 'branches' field is the number of branches left to explore:
* 0 - all possible paths from this state reached bpf_exit or
* were safely pruned
* 1 - at least one path is being explored.
* This state hasn't reached bpf_exit
* 2 - at least two paths are being explored.
* This state is an immediate parent of two children.
* One is fallthrough branch with branches==1 and another
* state is pushed into stack (to be explored later) also with
* branches==1. The parent of this state has branches==1.
* The verifier state tree connected via 'parent' pointer looks like:
* 1
* 1
* 2 -> 1 (first 'if' pushed into stack)
* 1
* 2 -> 1 (second 'if' pushed into stack)
* 1
* 1
* 1 bpf_exit.
*
* Once do_check() reaches bpf_exit, it calls update_branch_counts()
* and the verifier state tree will look:
* 1
* 1
* 2 -> 1 (first 'if' pushed into stack)
* 1
* 1 -> 1 (second 'if' pushed into stack)
* 0
* 0
* 0 bpf_exit.
* After pop_stack() the do_check() will resume at second 'if'.
*
* If is_state_visited() sees a state with branches > 0 it means
* there is a loop. If such state is exactly equal to the current state
* it's an infinite loop. Note states_equal() checks for states
* equvalency, so two states being 'states_equal' does not mean
* infinite loop. The exact comparison is provided by
* states_maybe_looping() function. It's a stronger pre-check and
* much faster than states_equal().
*
* This algorithm may not find all possible infinite loops or
* loop iteration count may be too high.
* In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
*/
u32 branches;
u32 insn_idx;
u32 curframe;
u32 active_spin_lock;
bool speculative;

/* first and last insn idx of this verifier state */
u32 first_insn_idx;
u32 last_insn_idx;
/* jmp history recorded from first to last.
* backtracking is using it to go from last to first.
* For most states jmp_history_cnt is [0-3].
* For loops can go up to ~40.
*/
struct bpf_idx_pair *jmp_history;
u32 jmp_history_cnt;
};

#define bpf_get_spilled_reg(slot, frame) \
Expand Down Expand Up @@ -312,7 +377,9 @@ struct bpf_verifier_env {
} cfg;
u32 subprog_cnt;
/* number of instructions analyzed by the verifier */
u32 insn_processed;
u32 prev_insn_processed, insn_processed;
/* number of jmps, calls, exits analyzed so far */
u32 prev_jmps_processed, jmps_processed;
/* total verification time */
u64 verification_time;
/* maximum number of verifier states kept in 'branching' instructions */
Expand Down
Loading

0 comments on commit 94079b6

Please sign in to comment.