Skip to content

Commit

Permalink
RISC-V CPU Idle Support
Browse files Browse the repository at this point in the history
This series adds RISC-V CPU Idle support using SBI HSM suspend function.
The RISC-V SBI CPU idle driver added by this series is highly inspired
from the ARM PSCI CPU idle driver.

Special thanks Sandeep Tripathy for providing early feeback on SBI HSM
support in all above projects (RISC-V SBI specification, OpenSBI, and
Linux RISC-V).

* palmer/riscv-idle:
  RISC-V: Enable RISC-V SBI CPU Idle driver for QEMU virt machine
  dt-bindings: Add common bindings for ARM and RISC-V idle states
  cpuidle: Add RISC-V SBI CPU idle driver
  cpuidle: Factor-out power domain related code from PSCI domain driver
  RISC-V: Add SBI HSM suspend related defines
  RISC-V: Add arch functions for non-retentive suspend entry/exit
  RISC-V: Rename relocate() and make it global
  RISC-V: Enable CPU_IDLE drivers
  • Loading branch information
Palmer Dabbelt committed Mar 30, 2022
2 parents fdecfea + c5179ef commit bee7fbc
Show file tree
Hide file tree
Showing 27 changed files with 1,458 additions and 178 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -81,4 +81,4 @@ Example:
};
};

[1]. Documentation/devicetree/bindings/arm/idle-states.yaml
[1]. Documentation/devicetree/bindings/cpu/idle-states.yaml
2 changes: 1 addition & 1 deletion Documentation/devicetree/bindings/arm/psci.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ properties:
bindings in [1]) must specify this property.
[1] Kernel documentation - ARM idle states bindings
Documentation/devicetree/bindings/arm/idle-states.yaml
Documentation/devicetree/bindings/cpu/idle-states.yaml
patternProperties:
"^power-domain-":
Expand Down
Original file line number Diff line number Diff line change
@@ -1,25 +1,30 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/idle-states.yaml#
$id: http://devicetree.org/schemas/cpu/idle-states.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#

title: ARM idle states binding description
title: Idle states binding description

maintainers:
- Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
- Anup Patel <anup@brainfault.org>

description: |+
==========================================
1 - Introduction
==========================================
ARM systems contain HW capable of managing power consumption dynamically,
where cores can be put in different low-power states (ranging from simple wfi
to power gating) according to OS PM policies. The CPU states representing the
range of dynamic idle states that a processor can enter at run-time, can be
specified through device tree bindings representing the parameters required to
enter/exit specific idle states on a given processor.
ARM and RISC-V systems contain HW capable of managing power consumption
dynamically, where cores can be put in different low-power states (ranging
from simple wfi to power gating) according to OS PM policies. The CPU states
representing the range of dynamic idle states that a processor can enter at
run-time, can be specified through device tree bindings representing the
parameters required to enter/exit specific idle states on a given processor.
==========================================
2 - ARM idle states
==========================================
According to the Server Base System Architecture document (SBSA, [3]), the
power states an ARM CPU can be put into are identified by the following list:
Expand All @@ -43,8 +48,23 @@ description: |+
The device tree binding definition for ARM idle states is the subject of this
document.
==========================================
3 - RISC-V idle states
==========================================
On RISC-V systems, the HARTs (or CPUs) [6] can be put in platform specific
suspend (or idle) states (ranging from simple WFI, power gating, etc). The
RISC-V SBI v0.3 (or higher) [7] hart state management extension provides a
standard mechanism for OS to request HART state transitions.
The platform specific suspend (or idle) states of a hart can be either
retentive or non-rententive in nature. A retentive suspend state will
preserve HART registers and CSR values for all privilege modes whereas
a non-retentive suspend state will not preserve HART registers and CSR
values.
===========================================
2 - idle-states definitions
4 - idle-states definitions
===========================================
Idle states are characterized for a specific system through a set of
Expand Down Expand Up @@ -211,10 +231,10 @@ description: |+
properties specification that is the subject of the following sections.
===========================================
3 - idle-states node
5 - idle-states node
===========================================
ARM processor idle states are defined within the idle-states node, which is
The processor idle states are defined within the idle-states node, which is
a direct child of the cpus node [1] and provides a container where the
processor idle states, defined as device tree nodes, are listed.
Expand All @@ -223,7 +243,7 @@ description: |+
just supports idle_standby, an idle-states node is not required.
===========================================
4 - References
6 - References
===========================================
[1] ARM Linux Kernel documentation - CPUs bindings
Expand All @@ -238,9 +258,15 @@ description: |+
[4] ARM Architecture Reference Manuals
http://infocenter.arm.com/help/index.jsp
[6] ARM Linux Kernel documentation - Booting AArch64 Linux
[5] ARM Linux Kernel documentation - Booting AArch64 Linux
Documentation/arm64/booting.rst
[6] RISC-V Linux Kernel documentation - CPUs bindings
Documentation/devicetree/bindings/riscv/cpus.yaml
[7] RISC-V Supervisor Binary Interface (SBI)
http://github.com/riscv/riscv-sbi-doc/riscv-sbi.adoc
properties:
$nodename:
const: idle-states
Expand All @@ -253,7 +279,7 @@ properties:
On ARM 32-bit systems this property is optional
This assumes that the "enable-method" property is set to "psci" in the cpu
node[6] that is responsible for setting up CPU idle management in the OS
node[5] that is responsible for setting up CPU idle management in the OS
implementation.
const: psci

Expand All @@ -265,8 +291,8 @@ patternProperties:
as follows.
The idle state entered by executing the wfi instruction (idle_standby
SBSA,[3][4]) is considered standard on all ARM platforms and therefore
must not be listed.
SBSA,[3][4]) is considered standard on all ARM and RISC-V platforms and
therefore must not be listed.
In addition to the properties listed above, a state node may require
additional properties specific to the entry-method defined in the
Expand All @@ -275,7 +301,27 @@ patternProperties:
properties:
compatible:
const: arm,idle-state
enum:
- arm,idle-state
- riscv,idle-state

arm,psci-suspend-param:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
power_state parameter to pass to the ARM PSCI suspend call.
Device tree nodes that require usage of PSCI CPU_SUSPEND function
(i.e. idle states node with entry-method property is set to "psci")
must specify this property.
riscv,sbi-suspend-param:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
suspend_type parameter to pass to the RISC-V SBI HSM suspend call.
This property is required in idle state nodes of device tree meant
for RISC-V systems. For more details on the suspend_type parameter
refer the SBI specifiation v0.3 (or higher) [7].
local-timer-stop:
description:
Expand Down Expand Up @@ -317,6 +363,8 @@ patternProperties:
description:
A string used as a descriptive name for the idle state.

additionalProperties: false

required:
- compatible
- entry-latency-us
Expand Down Expand Up @@ -658,4 +706,150 @@ examples:
};
};
- |
// Example 3 (RISC-V 64-bit, 4-cpu systems, two clusters):
cpus {
#size-cells = <0>;
#address-cells = <1>;
cpu@0 {
device_type = "cpu";
compatible = "riscv";
reg = <0x0>;
riscv,isa = "rv64imafdc";
mmu-type = "riscv,sv48";
cpu-idle-states = <&CPU_RET_0_0 &CPU_NONRET_0_0
&CLUSTER_RET_0 &CLUSTER_NONRET_0>;
cpu_intc0: interrupt-controller {
#interrupt-cells = <1>;
compatible = "riscv,cpu-intc";
interrupt-controller;
};
};
cpu@1 {
device_type = "cpu";
compatible = "riscv";
reg = <0x1>;
riscv,isa = "rv64imafdc";
mmu-type = "riscv,sv48";
cpu-idle-states = <&CPU_RET_0_0 &CPU_NONRET_0_0
&CLUSTER_RET_0 &CLUSTER_NONRET_0>;
cpu_intc1: interrupt-controller {
#interrupt-cells = <1>;
compatible = "riscv,cpu-intc";
interrupt-controller;
};
};
cpu@10 {
device_type = "cpu";
compatible = "riscv";
reg = <0x10>;
riscv,isa = "rv64imafdc";
mmu-type = "riscv,sv48";
cpu-idle-states = <&CPU_RET_1_0 &CPU_NONRET_1_0
&CLUSTER_RET_1 &CLUSTER_NONRET_1>;
cpu_intc10: interrupt-controller {
#interrupt-cells = <1>;
compatible = "riscv,cpu-intc";
interrupt-controller;
};
};
cpu@11 {
device_type = "cpu";
compatible = "riscv";
reg = <0x11>;
riscv,isa = "rv64imafdc";
mmu-type = "riscv,sv48";
cpu-idle-states = <&CPU_RET_1_0 &CPU_NONRET_1_0
&CLUSTER_RET_1 &CLUSTER_NONRET_1>;
cpu_intc11: interrupt-controller {
#interrupt-cells = <1>;
compatible = "riscv,cpu-intc";
interrupt-controller;
};
};
idle-states {
CPU_RET_0_0: cpu-retentive-0-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x10000000>;
entry-latency-us = <20>;
exit-latency-us = <40>;
min-residency-us = <80>;
};
CPU_NONRET_0_0: cpu-nonretentive-0-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x90000000>;
entry-latency-us = <250>;
exit-latency-us = <500>;
min-residency-us = <950>;
};
CLUSTER_RET_0: cluster-retentive-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x11000000>;
local-timer-stop;
entry-latency-us = <50>;
exit-latency-us = <100>;
min-residency-us = <250>;
wakeup-latency-us = <130>;
};
CLUSTER_NONRET_0: cluster-nonretentive-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x91000000>;
local-timer-stop;
entry-latency-us = <600>;
exit-latency-us = <1100>;
min-residency-us = <2700>;
wakeup-latency-us = <1500>;
};
CPU_RET_1_0: cpu-retentive-1-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x10000010>;
entry-latency-us = <20>;
exit-latency-us = <40>;
min-residency-us = <80>;
};
CPU_NONRET_1_0: cpu-nonretentive-1-0 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x90000010>;
entry-latency-us = <250>;
exit-latency-us = <500>;
min-residency-us = <950>;
};
CLUSTER_RET_1: cluster-retentive-1 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x11000010>;
local-timer-stop;
entry-latency-us = <50>;
exit-latency-us = <100>;
min-residency-us = <250>;
wakeup-latency-us = <130>;
};
CLUSTER_NONRET_1: cluster-nonretentive-1 {
compatible = "riscv,idle-state";
riscv,sbi-suspend-param = <0x91000010>;
local-timer-stop;
entry-latency-us = <600>;
exit-latency-us = <1100>;
min-residency-us = <2700>;
wakeup-latency-us = <1500>;
};
};
};
...
6 changes: 6 additions & 0 deletions Documentation/devicetree/bindings/riscv/cpus.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -99,6 +99,12 @@ properties:
- compatible
- interrupt-controller

cpu-idle-states:
$ref: '/schemas/types.yaml#/definitions/phandle-array'
description: |
List of phandles to idle state nodes supported
by this hart (see ./idle-states.yaml).
required:
- riscv,isa
- interrupt-controller
Expand Down
14 changes: 14 additions & 0 deletions MAINTAINERS
Original file line number Diff line number Diff line change
Expand Up @@ -5069,6 +5069,20 @@ S: Supported
F: drivers/cpuidle/cpuidle-psci.h
F: drivers/cpuidle/cpuidle-psci-domain.c

CPUIDLE DRIVER - DT IDLE PM DOMAIN
M: Ulf Hansson <ulf.hansson@linaro.org>
L: linux-pm@vger.kernel.org
S: Supported
F: drivers/cpuidle/dt_idle_genpd.c
F: drivers/cpuidle/dt_idle_genpd.h

CPUIDLE DRIVER - RISC-V SBI
M: Anup Patel <anup@brainfault.org>
L: linux-pm@vger.kernel.org
L: linux-riscv@lists.infradead.org
S: Maintained
F: drivers/cpuidle/cpuidle-riscv-sbi.c

CRAMFS FILESYSTEM
M: Nicolas Pitre <nico@fluxnic.net>
S: Maintained
Expand Down
7 changes: 7 additions & 0 deletions arch/riscv/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ config RISCV
select CLONE_BACKWARDS
select CLINT_TIMER if !MMU
select COMMON_CLK
select CPU_PM if CPU_IDLE
select EDAC_SUPPORT
select GENERIC_ARCH_TOPOLOGY if SMP
select GENERIC_ATOMIC64 if !64BIT
Expand Down Expand Up @@ -534,4 +535,10 @@ source "kernel/power/Kconfig"

endmenu

menu "CPU Power Management"

source "drivers/cpuidle/Kconfig"

endmenu

source "arch/riscv/kvm/Kconfig"
3 changes: 3 additions & 0 deletions arch/riscv/Kconfig.socs
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,9 @@ config SOC_VIRT
select GOLDFISH
select RTC_DRV_GOLDFISH if RTC_CLASS
select SIFIVE_PLIC
select PM_GENERIC_DOMAINS if PM
select PM_GENERIC_DOMAINS_OF if PM && OF
select RISCV_SBI_CPUIDLE if CPU_IDLE
help
This enables support for QEMU Virt Machine.

Expand Down
2 changes: 2 additions & 0 deletions arch/riscv/configs/defconfig
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ CONFIG_SOC_SIFIVE=y
CONFIG_SOC_VIRT=y
CONFIG_SMP=y
CONFIG_HOTPLUG_CPU=y
CONFIG_PM=y
CONFIG_CPU_IDLE=y
CONFIG_VIRTUALIZATION=y
CONFIG_KVM=m
CONFIG_JUMP_LABEL=y
Expand Down
Loading

0 comments on commit bee7fbc

Please sign in to comment.