Skip to content

Commit

Permalink
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6
Browse files Browse the repository at this point in the history
* master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6: (70 commits)
  USB: remove duplicate device id from zc0301
  USB: remove duplicate device id from usb_storage
  USB: remove duplicate device id from keyspan
  USB: remove duplicate device id from ftdi_sio
  USB: remove duplicate device id from visor
  USB: a bit more coding style cleanup
  usbcore: trivial whitespace fixes
  usb-storage: use first bulk endpoints, not last
  EHCI: fix interrupt-driven remote wakeup
  USB: switch ehci-hcd to new polling scheme
  USB: autosuspend for usb printer driver
  USB Input: Added kernel module to support all GTCO CalComp USB InterWrite School products
  USB: Sierra Wireless auto set D0
  USB: usb ethernet gadget recognizes HUSB2DEV
  USB: list atmel husb2_udc gadget controller
  USB: gadgetfs AIO tweaks
  USB: gadgetfs behaves better on userspace init bug
  USB: gadgetfs race fix
  USB: gadgetfs simplifications
  USB: gadgetfs cleanups
  ...
  • Loading branch information
Linus Torvalds committed Feb 8, 2007
2 parents f2aca47 + 6435816 commit c96e2c9
Show file tree
Hide file tree
Showing 139 changed files with 5,820 additions and 1,563 deletions.
21 changes: 11 additions & 10 deletions Documentation/usb/proc_usb_info.txt
Original file line number Diff line number Diff line change
Expand Up @@ -213,15 +213,16 @@ C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA

Interface descriptor info (can be multiple per Config):

I: If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | |__Driver name
| | | | | | | or "(none)"
| | | | | | |__InterfaceProtocol
| | | | | |__InterfaceSubClass
| | | | |__InterfaceClass
| | | |__NumberOfEndpoints
| | |__AlternateSettingNumber
| |__InterfaceNumber
I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | | |__Driver name
| | | | | | | | or "(none)"
| | | | | | | |__InterfaceProtocol
| | | | | | |__InterfaceSubClass
| | | | | |__InterfaceClass
| | | | |__NumberOfEndpoints
| | | |__AlternateSettingNumber
| | |__InterfaceNumber
| |__ "*" indicates the active altsetting (others are " ")
|__Interface info tag

A given interface may have one or more "alternate" settings.
Expand Down Expand Up @@ -277,7 +278,7 @@ of the USB devices on a system's root hub. (See more below
on how to do this.)

The Interface lines can be used to determine what driver is
being used for each device.
being used for each device, and which altsetting it activated.

The Configuration lines could be used to list maximum power
(in milliamps) that a system's USB devices are using.
Expand Down
152 changes: 150 additions & 2 deletions Documentation/usb/usbmon.txt
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ that the file size is not excessive for your favourite editor.

The '1t' type data consists of a stream of events, such as URB submission,
URB callback, submission error. Every event is a text line, which consists
of whitespace separated words. The number of position of words may depend
of whitespace separated words. The number or position of words may depend
on the event type, but there is a set of words, common for all types.

Here is the list of words, from left to right:
Expand Down Expand Up @@ -170,4 +170,152 @@ dd65f0e8 4128379808 C Bo:005:02 0 31 >

* Raw binary format and API

TBD
The overall architecture of the API is about the same as the one above,
only the events are delivered in binary format. Each event is sent in
the following structure (its name is made up, so that we can refer to it):

struct usbmon_packet {
u64 id; /* 0: URB ID - from submission to callback */
unsigned char type; /* 8: Same as text; extensible. */
unsigned char xfer_type; /* ISO (0), Intr, Control, Bulk (3) */
unsigned char epnum; /* Endpoint number and transfer direction */
unsigned char devnum; /* Device address */
u16 busnum; /* 12: Bus number */
char flag_setup; /* 14: Same as text */
char flag_data; /* 15: Same as text; Binary zero is OK. */
s64 ts_sec; /* 16: gettimeofday */
s32 ts_usec; /* 24: gettimeofday */
int status; /* 28: */
unsigned int length; /* 32: Length of data (submitted or actual) */
unsigned int len_cap; /* 36: Delivered length */
unsigned char setup[8]; /* 40: Only for Control 'S' */
}; /* 48 bytes total */

These events can be received from a character device by reading with read(2),
with an ioctl(2), or by accessing the buffer with mmap.

The character device is usually called /dev/usbmonN, where N is the USB bus
number. Number zero (/dev/usbmon0) is special and means "all buses".
However, this feature is not implemented yet. Note that specific naming
policy is set by your Linux distribution.

If you create /dev/usbmon0 by hand, make sure that it is owned by root
and has mode 0600. Otherwise, unpriviledged users will be able to snoop
keyboard traffic.

The following ioctl calls are available, with MON_IOC_MAGIC 0x92:

MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1)

This call returns the length of data in the next event. Note that majority of
events contain no data, so if this call returns zero, it does not mean that
no events are available.

MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)

The argument is a pointer to the following structure:

struct mon_bin_stats {
u32 queued;
u32 dropped;
};

The member "queued" refers to the number of events currently queued in the
buffer (and not to the number of events processed since the last reset).

The member "dropped" is the number of events lost since the last call
to MON_IOCG_STATS.

MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4)

This call sets the buffer size. The argument is the size in bytes.
The size may be rounded down to the next chunk (or page). If the requested
size is out of [unspecified] bounds for this kernel, the call fails with
-EINVAL.

MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5)

This call returns the current size of the buffer in bytes.

MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg)

This call waits for events to arrive if none were in the kernel buffer,
then returns the first event. Its argument is a pointer to the following
structure:

struct mon_get_arg {
struct usbmon_packet *hdr;
void *data;
size_t alloc; /* Length of data (can be zero) */
};

Before the call, hdr, data, and alloc should be filled. Upon return, the area
pointed by hdr contains the next event structure, and the data buffer contains
the data, if any. The event is removed from the kernel buffer.

MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg)

This ioctl is primarily used when the application accesses the buffer
with mmap(2). Its argument is a pointer to the following structure:

struct mon_mfetch_arg {
uint32_t *offvec; /* Vector of events fetched */
uint32_t nfetch; /* Number of events to fetch (out: fetched) */
uint32_t nflush; /* Number of events to flush */
};

The ioctl operates in 3 stages.

First, it removes and discards up to nflush events from the kernel buffer.
The actual number of events discarded is returned in nflush.

Second, it waits for an event to be present in the buffer, unless the pseudo-
device is open with O_NONBLOCK.

Third, it extracts up to nfetch offsets into the mmap buffer, and stores
them into the offvec. The actual number of event offsets is stored into
the nfetch.

MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8)

This call removes a number of events from the kernel buffer. Its argument
is the number of events to remove. If the buffer contains fewer events
than requested, all events present are removed, and no error is reported.
This works when no events are available too.

FIONBIO

The ioctl FIONBIO may be implemented in the future, if there's a need.

In addition to ioctl(2) and read(2), the special file of binary API can
be polled with select(2) and poll(2). But lseek(2) does not work.

* Memory-mapped access of the kernel buffer for the binary API

The basic idea is simple:

To prepare, map the buffer by getting the current size, then using mmap(2).
Then, execute a loop similar to the one written in pseudo-code below:

struct mon_mfetch_arg fetch;
struct usbmon_packet *hdr;
int nflush = 0;
for (;;) {
fetch.offvec = vec; // Has N 32-bit words
fetch.nfetch = N; // Or less than N
fetch.nflush = nflush;
ioctl(fd, MON_IOCX_MFETCH, &fetch); // Process errors, too
nflush = fetch.nfetch; // This many packets to flush when done
for (i = 0; i < nflush; i++) {
hdr = (struct ubsmon_packet *) &mmap_area[vec[i]];
if (hdr->type == '@') // Filler packet
continue;
caddr_t data = &mmap_area[vec[i]] + 64;
process_packet(hdr, data);
}
}

Thus, the main idea is to execute only one ioctl per N events.

Although the buffer is circular, the returned headers and data do not cross
the end of the buffer, so the above pseudo-code does not need any gathering.
5 changes: 5 additions & 0 deletions arch/powerpc/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -529,6 +529,11 @@ config PPC_PS3
bool "Sony PS3 (incomplete)"
depends on PPC_MULTIPLATFORM && PPC64
select PPC_CELL
select USB_ARCH_HAS_OHCI
select USB_OHCI_LITTLE_ENDIAN
select USB_OHCI_BIG_ENDIAN_MMIO
select USB_ARCH_HAS_EHCI
select USB_EHCI_BIG_ENDIAN_MMIO
help
This option enables support for the Sony PS3 game console
and other platforms using the PS3 hypervisor.
Expand Down
2 changes: 1 addition & 1 deletion drivers/i2c/chips/isp1301_omap.c
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/usb_ch9.h>
#include <linux/usb/ch9.h>
#include <linux/usb_gadget.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
Expand Down
1 change: 0 additions & 1 deletion drivers/media/video/zc0301/zc0301_sensor.h
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,6 @@ static const struct usb_device_id zc0301_id_table[] = { \
{ ZC0301_USB_DEVICE(0x046d, 0x08ae, 0xff), }, /* PAS202 */ \
{ ZC0301_USB_DEVICE(0x055f, 0xd003, 0xff), }, /* TAS5130 */ \
{ ZC0301_USB_DEVICE(0x055f, 0xd004, 0xff), }, /* TAS5130 */ \
{ ZC0301_USB_DEVICE(0x046d, 0x08ae, 0xff), }, /* PAS202 */ \
{ ZC0301_USB_DEVICE(0x0ac8, 0x0301, 0xff), }, \
{ ZC0301_USB_DEVICE(0x0ac8, 0x301b, 0xff), }, /* PB-0330/HV7131 */ \
{ ZC0301_USB_DEVICE(0x0ac8, 0x303b, 0xff), }, /* PB-0330 */ \
Expand Down
2 changes: 1 addition & 1 deletion drivers/usb/atm/speedtch.c
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
#include <linux/stat.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/usb_ch9.h>
#include <linux/usb/ch9.h>
#include <linux/workqueue.h>

#include "usbatm.h"
Expand Down
16 changes: 5 additions & 11 deletions drivers/usb/class/usblp.c
Original file line number Diff line number Diff line change
Expand Up @@ -398,6 +398,9 @@ static int usblp_open(struct inode *inode, struct file *file)
retval = 0;
#endif

retval = usb_autopm_get_interface(intf);
if (retval < 0)
goto out;
usblp->used = 1;
file->private_data = usblp;

Expand Down Expand Up @@ -442,6 +445,7 @@ static int usblp_release(struct inode *inode, struct file *file)
usblp->used = 0;
if (usblp->present) {
usblp_unlink_urbs(usblp);
usb_autopm_put_interface(usblp->intf);
} else /* finish cleanup from disconnect */
usblp_cleanup (usblp);
mutex_unlock (&usblp_mutex);
Expand Down Expand Up @@ -1203,14 +1207,9 @@ static int usblp_suspend (struct usb_interface *intf, pm_message_t message)
{
struct usblp *usblp = usb_get_intfdata (intf);

/* this races against normal access and open */
mutex_lock (&usblp_mutex);
mutex_lock (&usblp->mut);
/* we take no more IO */
usblp->sleeping = 1;
usblp_unlink_urbs(usblp);
mutex_unlock (&usblp->mut);
mutex_unlock (&usblp_mutex);

return 0;
}
Expand All @@ -1220,15 +1219,9 @@ static int usblp_resume (struct usb_interface *intf)
struct usblp *usblp = usb_get_intfdata (intf);
int r;

mutex_lock (&usblp_mutex);
mutex_lock (&usblp->mut);

usblp->sleeping = 0;
r = handle_bidir (usblp);

mutex_unlock (&usblp->mut);
mutex_unlock (&usblp_mutex);

return r;
}

Expand All @@ -1251,6 +1244,7 @@ static struct usb_driver usblp_driver = {
.suspend = usblp_suspend,
.resume = usblp_resume,
.id_table = usblp_ids,
.supports_autosuspend = 1,
};

static int __init usblp_init(void)
Expand Down
13 changes: 0 additions & 13 deletions drivers/usb/core/Kconfig
Original file line number Diff line number Diff line change
Expand Up @@ -33,19 +33,6 @@ config USB_DEVICEFS

Most users want to say Y here.

config USB_BANDWIDTH
bool "Enforce USB bandwidth allocation (EXPERIMENTAL)"
depends on USB && EXPERIMENTAL
help
If you say Y here, the USB subsystem enforces USB bandwidth
allocation and will prevent some device opens from succeeding
if they would cause USB bandwidth usage to go above 90% of
the bus bandwidth.

If you say N here, these conditions will cause warning messages
about USB bandwidth usage to be logged and some devices or
drivers may not work correctly.

config USB_DYNAMIC_MINORS
bool "Dynamic USB minor allocation (EXPERIMENTAL)"
depends on USB && EXPERIMENTAL
Expand Down
Loading

0 comments on commit c96e2c9

Please sign in to comment.