-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
arm64: lib: Implement optimized memcmp routine
This patch, based on Linaro's Cortex Strings library, adds an assembly optimized memcmp() function. Signed-off-by: Zhichang Yuan <zhichang.yuan@linaro.org> Signed-off-by: Deepak Saxena <dsaxena@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Loading branch information
zhichang.yuan
authored and
Catalin Marinas
committed
May 23, 2014
1 parent
b29a51f
commit d875c9b
Showing
4 changed files
with
263 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
lib-y := bitops.o clear_user.o delay.o copy_from_user.o \ | ||
copy_to_user.o copy_in_user.o copy_page.o \ | ||
clear_page.o memchr.o memcpy.o memmove.o memset.o \ | ||
strchr.o strrchr.o | ||
memcmp.o strchr.o strrchr.o |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,258 @@ | ||
/* | ||
* Copyright (C) 2013 ARM Ltd. | ||
* Copyright (C) 2013 Linaro. | ||
* | ||
* This code is based on glibc cortex strings work originally authored by Linaro | ||
* and re-licensed under GPLv2 for the Linux kernel. The original code can | ||
* be found @ | ||
* | ||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ | ||
* files/head:/src/aarch64/ | ||
* | ||
* This program is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License version 2 as | ||
* published by the Free Software Foundation. | ||
* | ||
* This program is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
*/ | ||
|
||
#include <linux/linkage.h> | ||
#include <asm/assembler.h> | ||
|
||
/* | ||
* compare memory areas(when two memory areas' offset are different, | ||
* alignment handled by the hardware) | ||
* | ||
* Parameters: | ||
* x0 - const memory area 1 pointer | ||
* x1 - const memory area 2 pointer | ||
* x2 - the maximal compare byte length | ||
* Returns: | ||
* x0 - a compare result, maybe less than, equal to, or greater than ZERO | ||
*/ | ||
|
||
/* Parameters and result. */ | ||
src1 .req x0 | ||
src2 .req x1 | ||
limit .req x2 | ||
result .req x0 | ||
|
||
/* Internal variables. */ | ||
data1 .req x3 | ||
data1w .req w3 | ||
data2 .req x4 | ||
data2w .req w4 | ||
has_nul .req x5 | ||
diff .req x6 | ||
endloop .req x7 | ||
tmp1 .req x8 | ||
tmp2 .req x9 | ||
tmp3 .req x10 | ||
pos .req x11 | ||
limit_wd .req x12 | ||
mask .req x13 | ||
|
||
ENTRY(memcmp) | ||
cbz limit, .Lret0 | ||
eor tmp1, src1, src2 | ||
tst tmp1, #7 | ||
b.ne .Lmisaligned8 | ||
ands tmp1, src1, #7 | ||
b.ne .Lmutual_align | ||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */ | ||
lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */ | ||
/* | ||
* The input source addresses are at alignment boundary. | ||
* Directly compare eight bytes each time. | ||
*/ | ||
.Lloop_aligned: | ||
ldr data1, [src1], #8 | ||
ldr data2, [src2], #8 | ||
.Lstart_realigned: | ||
subs limit_wd, limit_wd, #1 | ||
eor diff, data1, data2 /* Non-zero if differences found. */ | ||
csinv endloop, diff, xzr, cs /* Last Dword or differences. */ | ||
cbz endloop, .Lloop_aligned | ||
|
||
/* Not reached the limit, must have found a diff. */ | ||
tbz limit_wd, #63, .Lnot_limit | ||
|
||
/* Limit % 8 == 0 => the diff is in the last 8 bytes. */ | ||
ands limit, limit, #7 | ||
b.eq .Lnot_limit | ||
/* | ||
* The remained bytes less than 8. It is needed to extract valid data | ||
* from last eight bytes of the intended memory range. | ||
*/ | ||
lsl limit, limit, #3 /* bytes-> bits. */ | ||
mov mask, #~0 | ||
CPU_BE( lsr mask, mask, limit ) | ||
CPU_LE( lsl mask, mask, limit ) | ||
bic data1, data1, mask | ||
bic data2, data2, mask | ||
|
||
orr diff, diff, mask | ||
b .Lnot_limit | ||
|
||
.Lmutual_align: | ||
/* | ||
* Sources are mutually aligned, but are not currently at an | ||
* alignment boundary. Round down the addresses and then mask off | ||
* the bytes that precede the start point. | ||
*/ | ||
bic src1, src1, #7 | ||
bic src2, src2, #7 | ||
ldr data1, [src1], #8 | ||
ldr data2, [src2], #8 | ||
/* | ||
* We can not add limit with alignment offset(tmp1) here. Since the | ||
* addition probably make the limit overflown. | ||
*/ | ||
sub limit_wd, limit, #1/*limit != 0, so no underflow.*/ | ||
and tmp3, limit_wd, #7 | ||
lsr limit_wd, limit_wd, #3 | ||
add tmp3, tmp3, tmp1 | ||
add limit_wd, limit_wd, tmp3, lsr #3 | ||
add limit, limit, tmp1/* Adjust the limit for the extra. */ | ||
|
||
lsl tmp1, tmp1, #3/* Bytes beyond alignment -> bits.*/ | ||
neg tmp1, tmp1/* Bits to alignment -64. */ | ||
mov tmp2, #~0 | ||
/*mask off the non-intended bytes before the start address.*/ | ||
CPU_BE( lsl tmp2, tmp2, tmp1 )/*Big-endian.Early bytes are at MSB*/ | ||
/* Little-endian. Early bytes are at LSB. */ | ||
CPU_LE( lsr tmp2, tmp2, tmp1 ) | ||
|
||
orr data1, data1, tmp2 | ||
orr data2, data2, tmp2 | ||
b .Lstart_realigned | ||
|
||
/*src1 and src2 have different alignment offset.*/ | ||
.Lmisaligned8: | ||
cmp limit, #8 | ||
b.lo .Ltiny8proc /*limit < 8: compare byte by byte*/ | ||
|
||
and tmp1, src1, #7 | ||
neg tmp1, tmp1 | ||
add tmp1, tmp1, #8/*valid length in the first 8 bytes of src1*/ | ||
and tmp2, src2, #7 | ||
neg tmp2, tmp2 | ||
add tmp2, tmp2, #8/*valid length in the first 8 bytes of src2*/ | ||
subs tmp3, tmp1, tmp2 | ||
csel pos, tmp1, tmp2, hi /*Choose the maximum.*/ | ||
|
||
sub limit, limit, pos | ||
/*compare the proceeding bytes in the first 8 byte segment.*/ | ||
.Ltinycmp: | ||
ldrb data1w, [src1], #1 | ||
ldrb data2w, [src2], #1 | ||
subs pos, pos, #1 | ||
ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */ | ||
b.eq .Ltinycmp | ||
cbnz pos, 1f /*diff occurred before the last byte.*/ | ||
cmp data1w, data2w | ||
b.eq .Lstart_align | ||
1: | ||
sub result, data1, data2 | ||
ret | ||
|
||
.Lstart_align: | ||
lsr limit_wd, limit, #3 | ||
cbz limit_wd, .Lremain8 | ||
|
||
ands xzr, src1, #7 | ||
b.eq .Lrecal_offset | ||
/*process more leading bytes to make src1 aligned...*/ | ||
add src1, src1, tmp3 /*backwards src1 to alignment boundary*/ | ||
add src2, src2, tmp3 | ||
sub limit, limit, tmp3 | ||
lsr limit_wd, limit, #3 | ||
cbz limit_wd, .Lremain8 | ||
/*load 8 bytes from aligned SRC1..*/ | ||
ldr data1, [src1], #8 | ||
ldr data2, [src2], #8 | ||
|
||
subs limit_wd, limit_wd, #1 | ||
eor diff, data1, data2 /*Non-zero if differences found.*/ | ||
csinv endloop, diff, xzr, ne | ||
cbnz endloop, .Lunequal_proc | ||
/*How far is the current SRC2 from the alignment boundary...*/ | ||
and tmp3, tmp3, #7 | ||
|
||
.Lrecal_offset:/*src1 is aligned now..*/ | ||
neg pos, tmp3 | ||
.Lloopcmp_proc: | ||
/* | ||
* Divide the eight bytes into two parts. First,backwards the src2 | ||
* to an alignment boundary,load eight bytes and compare from | ||
* the SRC2 alignment boundary. If all 8 bytes are equal,then start | ||
* the second part's comparison. Otherwise finish the comparison. | ||
* This special handle can garantee all the accesses are in the | ||
* thread/task space in avoid to overrange access. | ||
*/ | ||
ldr data1, [src1,pos] | ||
ldr data2, [src2,pos] | ||
eor diff, data1, data2 /* Non-zero if differences found. */ | ||
cbnz diff, .Lnot_limit | ||
|
||
/*The second part process*/ | ||
ldr data1, [src1], #8 | ||
ldr data2, [src2], #8 | ||
eor diff, data1, data2 /* Non-zero if differences found. */ | ||
subs limit_wd, limit_wd, #1 | ||
csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/ | ||
cbz endloop, .Lloopcmp_proc | ||
.Lunequal_proc: | ||
cbz diff, .Lremain8 | ||
|
||
/*There is differnence occured in the latest comparison.*/ | ||
.Lnot_limit: | ||
/* | ||
* For little endian,reverse the low significant equal bits into MSB,then | ||
* following CLZ can find how many equal bits exist. | ||
*/ | ||
CPU_LE( rev diff, diff ) | ||
CPU_LE( rev data1, data1 ) | ||
CPU_LE( rev data2, data2 ) | ||
|
||
/* | ||
* The MS-non-zero bit of DIFF marks either the first bit | ||
* that is different, or the end of the significant data. | ||
* Shifting left now will bring the critical information into the | ||
* top bits. | ||
*/ | ||
clz pos, diff | ||
lsl data1, data1, pos | ||
lsl data2, data2, pos | ||
/* | ||
* We need to zero-extend (char is unsigned) the value and then | ||
* perform a signed subtraction. | ||
*/ | ||
lsr data1, data1, #56 | ||
sub result, data1, data2, lsr #56 | ||
ret | ||
|
||
.Lremain8: | ||
/* Limit % 8 == 0 =>. all data are equal.*/ | ||
ands limit, limit, #7 | ||
b.eq .Lret0 | ||
|
||
.Ltiny8proc: | ||
ldrb data1w, [src1], #1 | ||
ldrb data2w, [src2], #1 | ||
subs limit, limit, #1 | ||
|
||
ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */ | ||
b.eq .Ltiny8proc | ||
sub result, data1, data2 | ||
ret | ||
.Lret0: | ||
mov result, #0 | ||
ret | ||
ENDPROC(memcmp) |