-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
powerpc: Documentation for transactional memory on powerpc
Signed-off-by: Matt Evans <matt@ozlabs.org> Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
- Loading branch information
Michael Neuling
authored and
Benjamin Herrenschmidt
committed
Feb 15, 2013
1 parent
81afe7d
commit db8ff90
Showing
1 changed file
with
175 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
Transactional Memory support | ||
============================ | ||
|
||
POWER kernel support for this feature is currently limited to supporting | ||
its use by user programs. It is not currently used by the kernel itself. | ||
|
||
This file aims to sum up how it is supported by Linux and what behaviour you | ||
can expect from your user programs. | ||
|
||
|
||
Basic overview | ||
============== | ||
|
||
Hardware Transactional Memory is supported on POWER8 processors, and is a | ||
feature that enables a different form of atomic memory access. Several new | ||
instructions are presented to delimit transactions; transactions are | ||
guaranteed to either complete atomically or roll back and undo any partial | ||
changes. | ||
|
||
A simple transaction looks like this: | ||
|
||
begin_move_money: | ||
tbegin | ||
beq abort_handler | ||
|
||
ld r4, SAVINGS_ACCT(r3) | ||
ld r5, CURRENT_ACCT(r3) | ||
subi r5, r5, 1 | ||
addi r4, r4, 1 | ||
std r4, SAVINGS_ACCT(r3) | ||
std r5, CURRENT_ACCT(r3) | ||
|
||
tend | ||
|
||
b continue | ||
|
||
abort_handler: | ||
... test for odd failures ... | ||
|
||
/* Retry the transaction if it failed because it conflicted with | ||
* someone else: */ | ||
b begin_move_money | ||
|
||
|
||
The 'tbegin' instruction denotes the start point, and 'tend' the end point. | ||
Between these points the processor is in 'Transactional' state; any memory | ||
references will complete in one go if there are no conflicts with other | ||
transactional or non-transactional accesses within the system. In this | ||
example, the transaction completes as though it were normal straight-line code | ||
IF no other processor has touched SAVINGS_ACCT(r3) or CURRENT_ACCT(r3); an | ||
atomic move of money from the current account to the savings account has been | ||
performed. Even though the normal ld/std instructions are used (note no | ||
lwarx/stwcx), either *both* SAVINGS_ACCT(r3) and CURRENT_ACCT(r3) will be | ||
updated, or neither will be updated. | ||
|
||
If, in the meantime, there is a conflict with the locations accessed by the | ||
transaction, the transaction will be aborted by the CPU. Register and memory | ||
state will roll back to that at the 'tbegin', and control will continue from | ||
'tbegin+4'. The branch to abort_handler will be taken this second time; the | ||
abort handler can check the cause of the failure, and retry. | ||
|
||
Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR, FPCSR | ||
and a few other status/flag regs; see the ISA for details. | ||
|
||
Causes of transaction aborts | ||
============================ | ||
|
||
- Conflicts with cache lines used by other processors | ||
- Signals | ||
- Context switches | ||
- See the ISA for full documentation of everything that will abort transactions. | ||
|
||
|
||
Syscalls | ||
======== | ||
|
||
Performing syscalls from within transaction is not recommended, and can lead | ||
to unpredictable results. | ||
|
||
Syscalls do not by design abort transactions, but beware: The kernel code will | ||
not be running in transactional state. The effect of syscalls will always | ||
remain visible, but depending on the call they may abort your transaction as a | ||
side-effect, read soon-to-be-aborted transactional data that should not remain | ||
invisible, etc. If you constantly retry a transaction that constantly aborts | ||
itself by calling a syscall, you'll have a livelock & make no progress. | ||
|
||
Simple syscalls (e.g. sigprocmask()) "could" be OK. Even things like write() | ||
from, say, printf() should be OK as long as the kernel does not access any | ||
memory that was accessed transactionally. | ||
|
||
Consider any syscalls that happen to work as debug-only -- not recommended for | ||
production use. Best to queue them up till after the transaction is over. | ||
|
||
|
||
Signals | ||
======= | ||
|
||
Delivery of signals (both sync and async) during transactions provides a second | ||
thread state (ucontext/mcontext) to represent the second transactional register | ||
state. Signal delivery 'treclaim's to capture both register states, so signals | ||
abort transactions. The usual ucontext_t passed to the signal handler | ||
represents the checkpointed/original register state; the signal appears to have | ||
arisen at 'tbegin+4'. | ||
|
||
If the sighandler ucontext has uc_link set, a second ucontext has been | ||
delivered. For future compatibility the MSR.TS field should be checked to | ||
determine the transactional state -- if so, the second ucontext in uc->uc_link | ||
represents the active transactional registers at the point of the signal. | ||
|
||
For 64-bit processes, uc->uc_mcontext.regs->msr is a full 64-bit MSR and its TS | ||
field shows the transactional mode. | ||
|
||
For 32-bit processes, the mcontext's MSR register is only 32 bits; the top 32 | ||
bits are stored in the MSR of the second ucontext, i.e. in | ||
uc->uc_link->uc_mcontext.regs->msr. The top word contains the transactional | ||
state TS. | ||
|
||
However, basic signal handlers don't need to be aware of transactions | ||
and simply returning from the handler will deal with things correctly: | ||
|
||
Transaction-aware signal handlers can read the transactional register state | ||
from the second ucontext. This will be necessary for crash handlers to | ||
determine, for example, the address of the instruction causing the SIGSEGV. | ||
|
||
Example signal handler: | ||
|
||
void crash_handler(int sig, siginfo_t *si, void *uc) | ||
{ | ||
ucontext_t *ucp = uc; | ||
ucontext_t *transactional_ucp = ucp->uc_link; | ||
|
||
if (ucp_link) { | ||
u64 msr = ucp->uc_mcontext.regs->msr; | ||
/* May have transactional ucontext! */ | ||
#ifndef __powerpc64__ | ||
msr |= ((u64)transactional_ucp->uc_mcontext.regs->msr) << 32; | ||
#endif | ||
if (MSR_TM_ACTIVE(msr)) { | ||
/* Yes, we crashed during a transaction. Oops. */ | ||
fprintf(stderr, "Transaction to be restarted at 0x%llx, but " | ||
"crashy instruction was at 0x%llx\n", | ||
ucp->uc_mcontext.regs->nip, | ||
transactional_ucp->uc_mcontext.regs->nip); | ||
} | ||
} | ||
|
||
fix_the_problem(ucp->dar); | ||
} | ||
|
||
|
||
Failure cause codes used by kernel | ||
================================== | ||
|
||
These are defined in <asm/reg.h>, and distinguish different reasons why the | ||
kernel aborted a transaction: | ||
|
||
TM_CAUSE_RESCHED Thread was rescheduled. | ||
TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap. | ||
TM_CAUSE_SYSCALL Currently unused; future syscalls that must abort | ||
transactions for consistency will use this. | ||
TM_CAUSE_SIGNAL Signal delivered. | ||
TM_CAUSE_MISC Currently unused. | ||
|
||
These can be checked by the user program's abort handler as TEXASR[0:7]. | ||
|
||
|
||
GDB | ||
=== | ||
|
||
GDB and ptrace are not currently TM-aware. If one stops during a transaction, | ||
it looks like the transaction has just started (the checkpointed state is | ||
presented). The transaction cannot then be continued and will take the failure | ||
handler route. Furthermore, the transactional 2nd register state will be | ||
inaccessible. GDB can currently be used on programs using TM, but not sensibly | ||
in parts within transactions. |