Skip to content

Commit

Permalink
Merge tag 'kvmarm-for-v5.2' of git://git.kernel.org/pub/scm/linux/ker…
Browse files Browse the repository at this point in the history
…nel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 5.2

- guest SVE support
- guest Pointer Authentication support
- Better discrimination of perf counters between host and guests

Conflicts:
	include/uapi/linux/kvm.h
  • Loading branch information
Paolo Bonzini committed May 15, 2019
2 parents 59c5c58 + 9eecfc2 commit dd53f61
Show file tree
Hide file tree
Showing 31 changed files with 1,914 additions and 181 deletions.
85 changes: 85 additions & 0 deletions Documentation/arm64/perf.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
Perf Event Attributes
=====================

Author: Andrew Murray <andrew.murray@arm.com>
Date: 2019-03-06

exclude_user
------------

This attribute excludes userspace.

Userspace always runs at EL0 and thus this attribute will exclude EL0.


exclude_kernel
--------------

This attribute excludes the kernel.

The kernel runs at EL2 with VHE and EL1 without. Guest kernels always run
at EL1.

For the host this attribute will exclude EL1 and additionally EL2 on a VHE
system.

For the guest this attribute will exclude EL1. Please note that EL2 is
never counted within a guest.


exclude_hv
----------

This attribute excludes the hypervisor.

For a VHE host this attribute is ignored as we consider the host kernel to
be the hypervisor.

For a non-VHE host this attribute will exclude EL2 as we consider the
hypervisor to be any code that runs at EL2 which is predominantly used for
guest/host transitions.

For the guest this attribute has no effect. Please note that EL2 is
never counted within a guest.


exclude_host / exclude_guest
----------------------------

These attributes exclude the KVM host and guest, respectively.

The KVM host may run at EL0 (userspace), EL1 (non-VHE kernel) and EL2 (VHE
kernel or non-VHE hypervisor).

The KVM guest may run at EL0 (userspace) and EL1 (kernel).

Due to the overlapping exception levels between host and guests we cannot
exclusively rely on the PMU's hardware exception filtering - therefore we
must enable/disable counting on the entry and exit to the guest. This is
performed differently on VHE and non-VHE systems.

For non-VHE systems we exclude EL2 for exclude_host - upon entering and
exiting the guest we disable/enable the event as appropriate based on the
exclude_host and exclude_guest attributes.

For VHE systems we exclude EL1 for exclude_guest and exclude both EL0,EL2
for exclude_host. Upon entering and exiting the guest we modify the event
to include/exclude EL0 as appropriate based on the exclude_host and
exclude_guest attributes.

The statements above also apply when these attributes are used within a
non-VHE guest however please note that EL2 is never counted within a guest.


Accuracy
--------

On non-VHE hosts we enable/disable counters on the entry/exit of host/guest
transition at EL2 - however there is a period of time between
enabling/disabling the counters and entering/exiting the guest. We are
able to eliminate counters counting host events on the boundaries of guest
entry/exit when counting guest events by filtering out EL2 for
exclude_host. However when using !exclude_hv there is a small blackout
window at the guest entry/exit where host events are not captured.

On VHE systems there are no blackout windows.
22 changes: 18 additions & 4 deletions Documentation/arm64/pointer-authentication.txt
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,21 @@ used to get and set the keys for a thread.
Virtualization
--------------

Pointer authentication is not currently supported in KVM guests. KVM
will mask the feature bits from ID_AA64ISAR1_EL1, and attempted use of
the feature will result in an UNDEFINED exception being injected into
the guest.
Pointer authentication is enabled in KVM guest when each virtual cpu is
initialised by passing flags KVM_ARM_VCPU_PTRAUTH_[ADDRESS/GENERIC] and
requesting these two separate cpu features to be enabled. The current KVM
guest implementation works by enabling both features together, so both
these userspace flags are checked before enabling pointer authentication.
The separate userspace flag will allow to have no userspace ABI changes
if support is added in the future to allow these two features to be
enabled independently of one another.

As Arm Architecture specifies that Pointer Authentication feature is
implemented along with the VHE feature so KVM arm64 ptrauth code relies
on VHE mode to be present.

Additionally, when these vcpu feature flags are not set then KVM will
filter out the Pointer Authentication system key registers from
KVM_GET/SET_REG_* ioctls and mask those features from cpufeature ID
register. Any attempt to use the Pointer Authentication instructions will
result in an UNDEFINED exception being injected into the guest.
178 changes: 178 additions & 0 deletions Documentation/virtual/kvm/api.txt
Original file line number Diff line number Diff line change
Expand Up @@ -1883,6 +1883,12 @@ Architectures: all
Type: vcpu ioctl
Parameters: struct kvm_one_reg (in)
Returns: 0 on success, negative value on failure
Errors:
 ENOENT:   no such register
 EINVAL:   invalid register ID, or no such register
 EPERM:    (arm64) register access not allowed before vcpu finalization
(These error codes are indicative only: do not rely on a specific error
code being returned in a specific situation.)

struct kvm_one_reg {
__u64 id;
Expand Down Expand Up @@ -2120,6 +2126,37 @@ contains elements ranging from 32 to 128 bits. The index is a 32bit
value in the kvm_regs structure seen as a 32bit array.
0x60x0 0000 0010 <index into the kvm_regs struct:16>

Specifically:
Encoding Register Bits kvm_regs member
----------------------------------------------------------------
0x6030 0000 0010 0000 X0 64 regs.regs[0]
0x6030 0000 0010 0002 X1 64 regs.regs[1]
...
0x6030 0000 0010 003c X30 64 regs.regs[30]
0x6030 0000 0010 003e SP 64 regs.sp
0x6030 0000 0010 0040 PC 64 regs.pc
0x6030 0000 0010 0042 PSTATE 64 regs.pstate
0x6030 0000 0010 0044 SP_EL1 64 sp_el1
0x6030 0000 0010 0046 ELR_EL1 64 elr_el1
0x6030 0000 0010 0048 SPSR_EL1 64 spsr[KVM_SPSR_EL1] (alias SPSR_SVC)
0x6030 0000 0010 004a SPSR_ABT 64 spsr[KVM_SPSR_ABT]
0x6030 0000 0010 004c SPSR_UND 64 spsr[KVM_SPSR_UND]
0x6030 0000 0010 004e SPSR_IRQ 64 spsr[KVM_SPSR_IRQ]
0x6060 0000 0010 0050 SPSR_FIQ 64 spsr[KVM_SPSR_FIQ]
0x6040 0000 0010 0054 V0 128 fp_regs.vregs[0] (*)
0x6040 0000 0010 0058 V1 128 fp_regs.vregs[1] (*)
...
0x6040 0000 0010 00d0 V31 128 fp_regs.vregs[31] (*)
0x6020 0000 0010 00d4 FPSR 32 fp_regs.fpsr
0x6020 0000 0010 00d5 FPCR 32 fp_regs.fpcr

(*) These encodings are not accepted for SVE-enabled vcpus. See
KVM_ARM_VCPU_INIT.

The equivalent register content can be accessed via bits [127:0] of
the corresponding SVE Zn registers instead for vcpus that have SVE
enabled (see below).

arm64 CCSIDR registers are demultiplexed by CSSELR value:
0x6020 0000 0011 00 <csselr:8>

Expand All @@ -2129,6 +2166,64 @@ arm64 system registers have the following id bit patterns:
arm64 firmware pseudo-registers have the following bit pattern:
0x6030 0000 0014 <regno:16>

arm64 SVE registers have the following bit patterns:
0x6080 0000 0015 00 <n:5> <slice:5> Zn bits[2048*slice + 2047 : 2048*slice]
0x6050 0000 0015 04 <n:4> <slice:5> Pn bits[256*slice + 255 : 256*slice]
0x6050 0000 0015 060 <slice:5> FFR bits[256*slice + 255 : 256*slice]
0x6060 0000 0015 ffff KVM_REG_ARM64_SVE_VLS pseudo-register

Access to register IDs where 2048 * slice >= 128 * max_vq will fail with
ENOENT. max_vq is the vcpu's maximum supported vector length in 128-bit
quadwords: see (**) below.

These registers are only accessible on vcpus for which SVE is enabled.
See KVM_ARM_VCPU_INIT for details.

In addition, except for KVM_REG_ARM64_SVE_VLS, these registers are not
accessible until the vcpu's SVE configuration has been finalized
using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE). See KVM_ARM_VCPU_INIT
and KVM_ARM_VCPU_FINALIZE for more information about this procedure.

KVM_REG_ARM64_SVE_VLS is a pseudo-register that allows the set of vector
lengths supported by the vcpu to be discovered and configured by
userspace. When transferred to or from user memory via KVM_GET_ONE_REG
or KVM_SET_ONE_REG, the value of this register is of type
__u64[KVM_ARM64_SVE_VLS_WORDS], and encodes the set of vector lengths as
follows:

__u64 vector_lengths[KVM_ARM64_SVE_VLS_WORDS];

if (vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX &&
((vector_lengths[(vq - KVM_ARM64_SVE_VQ_MIN) / 64] >>
((vq - KVM_ARM64_SVE_VQ_MIN) % 64)) & 1))
/* Vector length vq * 16 bytes supported */
else
/* Vector length vq * 16 bytes not supported */

(**) The maximum value vq for which the above condition is true is
max_vq. This is the maximum vector length available to the guest on
this vcpu, and determines which register slices are visible through
this ioctl interface.

(See Documentation/arm64/sve.txt for an explanation of the "vq"
nomenclature.)

KVM_REG_ARM64_SVE_VLS is only accessible after KVM_ARM_VCPU_INIT.
KVM_ARM_VCPU_INIT initialises it to the best set of vector lengths that
the host supports.

Userspace may subsequently modify it if desired until the vcpu's SVE
configuration is finalized using KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE).

Apart from simply removing all vector lengths from the host set that
exceed some value, support for arbitrarily chosen sets of vector lengths
is hardware-dependent and may not be available. Attempting to configure
an invalid set of vector lengths via KVM_SET_ONE_REG will fail with
EINVAL.

After the vcpu's SVE configuration is finalized, further attempts to
write this register will fail with EPERM.


MIPS registers are mapped using the lower 32 bits. The upper 16 of that is
the register group type:
Expand Down Expand Up @@ -2181,6 +2276,12 @@ Architectures: all
Type: vcpu ioctl
Parameters: struct kvm_one_reg (in and out)
Returns: 0 on success, negative value on failure
Errors include:
 ENOENT:   no such register
 EINVAL:   invalid register ID, or no such register
 EPERM:    (arm64) register access not allowed before vcpu finalization
(These error codes are indicative only: do not rely on a specific error
code being returned in a specific situation.)

This ioctl allows to receive the value of a single register implemented
in a vcpu. The register to read is indicated by the "id" field of the
Expand Down Expand Up @@ -2673,6 +2774,49 @@ Possible features:
- KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
Depends on KVM_CAP_ARM_PMU_V3.

- KVM_ARM_VCPU_PTRAUTH_ADDRESS: Enables Address Pointer authentication
for arm64 only.
Depends on KVM_CAP_ARM_PTRAUTH_ADDRESS.
If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
requested.

- KVM_ARM_VCPU_PTRAUTH_GENERIC: Enables Generic Pointer authentication
for arm64 only.
Depends on KVM_CAP_ARM_PTRAUTH_GENERIC.
If KVM_CAP_ARM_PTRAUTH_ADDRESS and KVM_CAP_ARM_PTRAUTH_GENERIC are
both present, then both KVM_ARM_VCPU_PTRAUTH_ADDRESS and
KVM_ARM_VCPU_PTRAUTH_GENERIC must be requested or neither must be
requested.

- KVM_ARM_VCPU_SVE: Enables SVE for the CPU (arm64 only).
Depends on KVM_CAP_ARM_SVE.
Requires KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):

* After KVM_ARM_VCPU_INIT:

- KVM_REG_ARM64_SVE_VLS may be read using KVM_GET_ONE_REG: the
initial value of this pseudo-register indicates the best set of
vector lengths possible for a vcpu on this host.

* Before KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):

- KVM_RUN and KVM_GET_REG_LIST are not available;

- KVM_GET_ONE_REG and KVM_SET_ONE_REG cannot be used to access
the scalable archietctural SVE registers
KVM_REG_ARM64_SVE_ZREG(), KVM_REG_ARM64_SVE_PREG() or
KVM_REG_ARM64_SVE_FFR;

- KVM_REG_ARM64_SVE_VLS may optionally be written using
KVM_SET_ONE_REG, to modify the set of vector lengths available
for the vcpu.

* After KVM_ARM_VCPU_FINALIZE(KVM_ARM_VCPU_SVE):

- the KVM_REG_ARM64_SVE_VLS pseudo-register is immutable, and can
no longer be written using KVM_SET_ONE_REG.

4.83 KVM_ARM_PREFERRED_TARGET

Expand Down Expand Up @@ -3887,6 +4031,40 @@ number of valid entries in the 'entries' array, which is then filled.
'index' and 'flags' fields in 'struct kvm_cpuid_entry2' are currently reserved,
userspace should not expect to get any particular value there.

4.119 KVM_ARM_VCPU_FINALIZE

Architectures: arm, arm64
Type: vcpu ioctl
Parameters: int feature (in)
Returns: 0 on success, -1 on error
Errors:
EPERM: feature not enabled, needs configuration, or already finalized
EINVAL: feature unknown or not present

Recognised values for feature:
arm64 KVM_ARM_VCPU_SVE (requires KVM_CAP_ARM_SVE)

Finalizes the configuration of the specified vcpu feature.

The vcpu must already have been initialised, enabling the affected feature, by
means of a successful KVM_ARM_VCPU_INIT call with the appropriate flag set in
features[].

For affected vcpu features, this is a mandatory step that must be performed
before the vcpu is fully usable.

Between KVM_ARM_VCPU_INIT and KVM_ARM_VCPU_FINALIZE, the feature may be
configured by use of ioctls such as KVM_SET_ONE_REG. The exact configuration
that should be performaned and how to do it are feature-dependent.

Other calls that depend on a particular feature being finalized, such as
KVM_RUN, KVM_GET_REG_LIST, KVM_GET_ONE_REG and KVM_SET_ONE_REG, will fail with
-EPERM unless the feature has already been finalized by means of a
KVM_ARM_VCPU_FINALIZE call.

See KVM_ARM_VCPU_INIT for details of vcpu features that require finalization
using this ioctl.

5. The kvm_run structure
------------------------

Expand Down
2 changes: 2 additions & 0 deletions arch/arm/include/asm/kvm_emulate.h
Original file line number Diff line number Diff line change
Expand Up @@ -343,4 +343,6 @@ static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu,
}
}

static inline void vcpu_ptrauth_setup_lazy(struct kvm_vcpu *vcpu) {}

#endif /* __ARM_KVM_EMULATE_H__ */
Loading

0 comments on commit dd53f61

Please sign in to comment.