-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
To accommodate the different response time of SPI transfers on different boards and different SPI NOR devices, the Aspeed controllers provide a set of Read Timing Compensation registers to tune the timing delays depending on the frequency being used. The AST2600 SoC has one of these registers per device. On the AST2500 and AST2400 SoCs, the timing register is shared by all devices which is problematic to get good results other than for one device. The algorithm first reads a golden buffer at low speed and then performs reads with different clocks and delay cycle settings to find a breaking point. This selects a default good frequency for the CEx control register. The current settings are a bit optimistic as we pick the first delay giving good results. A safer approach would be to determine an interval and choose the middle value. Calibration is performed when the direct mapping for reads is created. Since the underlying spi-nor object needs to be initialized to create the spi_mem operation for direct mapping, we should be fine. Having a specific API would clarify the requirements though. Cc: Pratyush Yadav <p.yadav@ti.com> Reviewed-by: Joel Stanley <joel@jms.id.au> Tested-by: Joel Stanley <joel@jms.id.au> Tested-by: Tao Ren <rentao.bupt@gmail.com> Tested-by: Jae Hyun Yoo <quic_jaehyoo@quicinc.com> Signed-off-by: Cédric Le Goater <clg@kaod.org> Link: https://lore.kernel.org/r/20220509175616.1089346-9-clg@kaod.org Signed-off-by: Mark Brown <broonie@kernel.org>
- Loading branch information
Cédric Le Goater
authored and
Mark Brown
committed
May 16, 2022
1 parent
53526ab
commit eeaec1e
Showing
1 changed file
with
281 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters