Skip to content
Permalink
8472ea875e
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
106 lines (94 sloc) 5.5 KB
#190814 colData
#remove columns with 1 factor
#preprocessing
#check if multiple colnames after shortening are there
countBRCA <- readRDS("GDCdata/countBRCA.rds")
methylation <- readRDS("P:/mmRmeta/GDCdata/processed_data_brca/tcga-methyl-brca.rds")
methylation <- filter_duplicates(methylation) %>% filter_zero
#preprocess your the assay in SummarizedExperiment, in this case gene expression is in assay one. This function concists of 2 parts:
#filter_duplicated: filters out duplicated gene names
#filter_rare
subBRCA <- preprocess_assay(countBRCA)
#merge expression of duplicated patients/samples
subBRCA <- merge_duplicated(subBRCA, assay_index = 1, method = "median", shorten_rownames = T, original_names = T, parallel = T )
#preprocess coldata / metadata of SE, consits of:
#factorize_columns: make factors out of columns
#filter out columns with only NA val
#filter out columns with only 1 factor level
subBRCA <- preprocess_coldata(subBRCA)
#keep only samples that are Primary Solid Tumors and female
subBRCA <- filter_for_factor(subBRCA, column_value = "Primary solid Tumor") %>% filter_for_factor(. , column_value = "female")
#reorder factor levels by counts
subBRCA <- reorder_all(subBRCA)
#preprocess subset again
subBRCA <- preprocess_assay(subBRCA)
#use siber on SE
siberBRCA <- use_siber(subBRCA, 1)
#rearange out of siber
siberBRCA <- siberBRCA %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
#get names of genes with siber >= 1.5
geneBRCA <- rownames(siberBRCA[siberBRCA$BI >= 1.5,])
#subset SE by names, add normalized assay, log transform assay
subBRCA <- subBRCA[geneBRCA,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
#use mclust and verify output
clust <- use_mclust(subBRCA, 2, G = c(1:2), modelNames = "V")
clust <- verify_mclust(clust)
clust <- verify_mclust(clust, min_proportion = 0.05)
#subset data by names in clust
subBRCA <- filter_fold_change(clust, subBRCA)
#add classification
subBRCA <- add_assay_classification(subBRCA, clust)
#21.08.19, for every PAM subtype
lumACarcinoma <- filter_for_factor(subBRCA, column_value = "LumA" ) %>% preprocess_assay()
LumBCarcinoma <- filter_for_factor(subBRCA, column_value = "LumB") %>% preprocess_assay()
BasalCarcinoma <- filter_for_factor(subBRCA, column_value = "Basal") %>% preprocess_assay()
Her2Carcinoma <- filter_for_factor(subBRCA, column_value = "Her2") %>% preprocess_assay()
NormalCarcinoma <- filter_for_factor(subBRCA, column_value = "Normal") %>% preprocess_assay()
siberlumA <- use_siber(lumACarcinoma, 1)
siberlumA <- siberlumA %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
siberLumB<- use_siber(LumBCarcinoma, 1)
siberLumB <- siberLumB %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
siberBasal <- use_siber(BasalCarcinoma, 1)
siberBasal <- siberBasal %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
siberHer2<- use_siber(Her2Carcinoma, 1)
siberHer2 <- siberHer2 %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
siberNormal<- use_siber(NormalCarcinoma, 1)
siberNormal<- siberNormal %>% tibble::rownames_to_column() %>% arrange(., -BI,) %>% tibble::column_to_rownames()
genelumA <- rownames(siberlumA[siberlumA$BI >= 1.5,])
genelumB <- rownames(siberLumB[siberLumB$BI >= 1.5,])
geneBasal <- rownames(siberBasal[siberBasal$BI >= 1.5,])
geneHer2 <- rownames(siberHer2[siberHer2$BI >= 1.5,])
geneNormal <- rownames(siberNormal[siberNormal$BI >= 1.5,])
#extract genes over 1.5
lumACarcinoma <- lumACarcinoma[genelumA,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
LumBCarcinoma <- LumBCarcinoma[genelumB,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
BasalCarcinoma <- BasalCarcinoma[geneBasal,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
Her2Carcinoma <- Her2Carcinoma[geneHer2,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
NormalCarcinoma <- NormalCarcinoma[geneNormal,] %>% add_assay_norm(., 1, add_info_metadata = F) %>% transform_assay(.)
lumAClust <- use_mclust(lumACarcinoma, 2, parallel = T, G = c(1:2), modelNames = "V")
lumAClust <- verify_mclust(lumAClust)
lumAClust <- verify_mclust(lumAClust, min_proportion = 0.05)
lumAClust <- verify_mclust(lumAClust)
lumAClust <- filter_unimodal(lumAClust)
subA <- filter_fold_change(lumAClust, summarized_experiment = lumACarcinoma)
exp <- assay(subBRCA, 2)["ENSG00000256618",]
meta <- unnest_dataframe(colData(subBRCA))
meta$exp <- exp
########## GO Plot install.packages('GOplot')
install.packages('GOplot')
plot_heatmap(subBRCA, 2, col_annotaion = a)
coldat <- unnest_dataframe(colData(subBRCA))
anno <- calculate_annotation(unnest_dataframe(colData(subBRCA)), columns = "subtype_BRCA_Subtype_PAM50")
expression <- assay(subBRCA, 2)
a <- ComplexHeatmap::HeatmapAnnotation(select(coldat, c("subtype_BRCA_Subtype_PAM50", "primary_diagnosis")))
ComplexHeatmap::Heatmap(matrix = expression, top_annotation = a, show_column_names = F, show_row_names = F, show_column_dend = F)
a <- methylation[1:500,]
a <- assay(a, 1)
a <- t(a)
b <- data.frame(a) %>% dplyr::select_if(~!all(is.na(.)))
plot_heatmap(a, 1, col_annotation = "subtype_BRCA_Subtype_PAM50", show_column_names = F, show_row_names = F, show_row_dend = F, show_column_dend = F)
a <- t(assay(subBRCA, 2)[1:100,1:100])
b <- dist(scale(a), method = "euclidean")
c <- hclust(b, method = "ward.D2")
a <- add_coldata_classification(subBRCA, 3, T)
b <- unnest_dataframe(colData(a)) %>% group_by()