Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ipd_extended/data_generation.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
378 lines (320 sloc)
14.9 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import re | |
import os | |
from pathlib import Path | |
from os import listdir | |
def artificial(): | |
# a = [str(i) + ";" + str(int((i / 200) % 2)) + ";0" + "\n" for i in range(20000)] | |
# with open("/Users/tatyanadembelova/Documents/study/thesis/ipd_extended/new_cubes/artificial20000.csv", "w") as f: | |
# f.writelines(a) | |
a = [str(i) + ";0" + ";0" + "\n" for i in range(10000)] | |
size = len(a) | |
a.extend([str(i + size) + ";1;0" + "\n" for i in range(10000)]) | |
with open("/Users/tatyanadembelova/Documents/study/thesis/ipd_extended/new_cubes/artificialtrick10000.csv", "w") as f: | |
f.writelines(a) | |
# synthetic case from uds | |
def correlated_data(m, n, sigma, f): | |
# l1 = int(n / 2) | |
# l2 = n - l1 | |
# Z = np.random.normal(0, 1, (m, l1)) | |
# A = np.matrix(np.random.uniform(1, 2, (l1, l1))) | |
# X1 = Z * A | |
# B = np.matrix(np.random.uniform(1, 2, (l1, l2))) | |
# W = X1 * B | |
# E = np.random.normal(0, sigma, (m, l2)) | |
# X2 = f(W) + E | |
# result = np.append(X1, X2, axis=1) | |
# print(result) | |
l1 = int(n / 2) | |
l2 = n - l1 | |
Z = np.random.normal(0, 1, (m, l1)) | |
A = np.matrix(np.random.uniform(1, 2, (l1, l1))) | |
X1 = Z * A | |
# A = np.matrix(np.random.uniform(1, 2, (m, l1))) | |
# X1 = A | |
B = np.matrix(np.random.uniform(1, 2, (l1, l2))) | |
W = X1 * B | |
E = np.random.normal(0, sigma, (m, l2)) | |
X2 = f(W) + E | |
result = np.append(X1, X2, axis=1) | |
print(result) | |
return result | |
def generate_uncorrelated_data(m, n): | |
return np.random.normal(0, 1, (m, n)) | |
def func1(X): | |
return 2 * X + 1 | |
def func2(X): | |
return np.log2(np.abs(X) + 1) | |
def func3(X): | |
return np.power(X, 2) | |
def synthetic_data_uni(m, r, s, sigma=0.1): | |
r_dims = np.random.uniform(-0.5, 0.5, (m, r)) if r > 0 else np.empty((m, r)) | |
parity_dim = -(np.count_nonzero(r_dims > 0, axis=1) % 2 * 2 - 1).reshape(m, 1) * np.random.uniform(0, 0.5, | |
(m, | |
1)) if r > 0 else np.empty( | |
(m, r)) | |
s_dims = np.random.uniform(-0.5, 0.5, (m, s)) | |
data = np.concatenate((r_dims, parity_dim, s_dims), axis=1) | |
if sigma: | |
e = np.random.normal(0, sigma, (m, r + s + 1)) | |
data = data + e | |
return data | |
def synthetic_data_uni_negative(m, r, s, sigma=0.1): | |
r_dims = np.random.uniform(-0.5, 0.5, (m, r)) if r > 0 else np.empty((m, r)) | |
parity_dim = (np.count_nonzero(r_dims > 0, axis=1) % 2 * 2 - 1).reshape(m, 1) * np.random.uniform(0, 0.5, | |
(m, | |
1)) if r > 0 else np.empty( | |
(m, r)) | |
s_dims = np.random.uniform(-0.5, 0.5, (m, s)) | |
data = np.concatenate((r_dims, parity_dim, s_dims), axis=1) | |
if sigma: | |
e = np.random.normal(0, sigma, (m, r + s + 1)) | |
data = data + e | |
return data | |
def synthetic_data_gauss(m, r, s, sigma=0.1): | |
r_dims = np.random.normal(0, 1, (m, r)) if r > 0 else np.empty((m, r)) | |
parity_dim = -(np.count_nonzero(r_dims > 0, axis=1) % 2 * 2 - 1).reshape(m, 1) * np.abs(np.random.normal(0, 1, | |
(m, | |
1))) if r > 0 else np.empty( | |
(m, r)) | |
s_dims = np.random.normal(0, 1, (m, s)) | |
data = np.concatenate((r_dims, parity_dim, s_dims), axis=1) | |
if sigma: | |
e = np.random.normal(0, sigma, (m, r + s + 1)) | |
data = data + e | |
return data | |
def synthetic_with_nearcopies(m, k, l, sigma=0.1): | |
k_dims = np.repeat(np.random.uniform(-0.5, 0, (m, 1)), k, axis=1) if k > 0 else np.empty((m, k)) | |
l_dims = np.repeat(np.random.uniform(0, 0.5, (m, 1)), l, axis=1) if l > 0 else np.empty((m, l)) | |
data = np.concatenate((k_dims, l_dims), axis=1) | |
if sigma: | |
e = np.random.normal(0, sigma, (m, k + l)) | |
data = data + e | |
return data | |
def synthetic_cube_in_cube(m, r, i, side, sigma=0.5): | |
if r < 1: | |
raise ValueError | |
h = int(m * sigma) | |
range = [-0.5, 0] if side == 'l' else [-0.25, 0.25] if side == 'm' else [0, 0.5] | |
contra_range = [0, 0.5] if side == 'l' else [-0.25, 0.25] if side == 'm' else [-0.5, 0] | |
r_dims = np.concatenate(( | |
# np.concatenate( | |
# (np.random.uniform(range[0], range[1], (h, 1)), | |
# np.random.uniform(contra_range[0], contra_range[1], (h, 1))), | |
# axis=1) | |
np.random.uniform(range[0], range[1], (h, r)) | |
, np.random.uniform(-0.5, 0.5, (m - h, r))), axis=0) | |
i_dims = np.random.uniform(-0.5, 0.5, (m, i)) if i > 0 else np.empty((m, i)) | |
data = np.concatenate((r_dims, i_dims), axis=1) | |
return data | |
def synthetic_cjs(): | |
return np.concatenate((np.concatenate((np.random.normal(0, 1, (100, 1)), np.random.normal(2, 1, (100, 1))), axis=1), | |
np.concatenate((np.random.normal(4, 1, (100, 1)), np.random.normal(5, 1, (100, 1))), | |
axis=1)), axis=0) | |
# def blobs(rows): | |
# blobs_number = 4 | |
# dims = 4 | |
# l = int(rows/blobs_number) | |
# blob1 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * -3, np.ones((l, 1)) * -3, np.ones((l, 1)) * -3, np.ones((l, 1)) * -3), axis=1) | |
# blob2 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 0, np.ones((l, 1)) * 0, np.ones((l, 1)) * 0, np.ones((l, 1)) * 0), axis=1) | |
# blob3 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3), axis=1) | |
# blob4 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 6, np.ones((l, 1)) * 6, np.ones((l, 1)) * 6, np.ones((l, 1)) * 6), axis=1) | |
# | |
# return np.concatenate((blob1, blob2, blob3, blob4), axis=0) | |
# # return np.concatenate((blob1, blob2, blob3), axis=0) | |
def cubes(rows): | |
cubes_number = 4 | |
dims = 4 | |
l = int(rows/cubes_number) | |
blob1 = np.random.uniform(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * -1.7, np.ones((l, 1)) * -1.7, np.ones((l, 1)) * -1.7, np.ones((l, 1)) * -1.7), axis=1) | |
blob2 = np.random.uniform(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 0, np.ones((l, 1)) * 0, np.ones((l, 1)) * 0, np.ones((l, 1)) * 0), axis=1) | |
blob3 = np.random.uniform(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 1.5, np.ones((l, 1)) * 1.5, np.ones((l, 1)) * 1.5, np.ones((l, 1)) * 1.5), axis=1) | |
blob4 = np.random.uniform(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3), axis=1) | |
background = np.random.uniform(-2, 4, (l, dims)) | |
# blob3 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3, np.ones((l, 1)) * 3), axis=1) | |
# blob4 = np.random.normal(0, 1, (l, dims)) + np.concatenate((np.ones((l, 1)) * 6, np.ones((l, 1)) * 6, np.ones((l, 1)) * 6, np.ones((l, 1)) * 6), axis=1) | |
# return np.concatenate((blob1, blob2, background), axis=0) | |
return np.concatenate((blob1, blob2, blob3, blob4, background), axis=0) | |
# return np.concatenate((blob1, blob2, blob3, background), axis=0) | |
def append_irrelevant_features(file, n): | |
if n == 0: | |
raise ValueError("# of irrelevant features is 0") | |
data = pd.read_csv(file, delimiter=";", header=None, na_values='?') | |
rows = data.shape[0] | |
last_dim = data.shape[1] - 1 | |
irrel_data = np.random.uniform(-0.5, 0.5, (rows, n)) | |
return np.concatenate([data.loc[:, :last_dim - 1], irrel_data, data.loc[:, last_dim].to_frame()], axis=1) | |
def generate(): | |
# -------generating dataset | |
# data = synthetic_cube_in_cube(rows, rel_features, irrel_features, 'l') | |
# data__ = synthetic_cjs() | |
# data = correlated_data(rows, rel_features + irrel_features, 1, func1) | |
# data = cubes(rows) | |
# # add zeroes as default class | |
# data = np.concatenate((data, np.zeros((data.shape[0], 1))), axis=1) | |
# -------appending irrelevant features to existing dataset | |
data = append_irrelevant_features(source, irrel_features) | |
# storing to disk | |
pd.DataFrame(data).to_csv(file, sep=';', header=False, index=False, float_format='%.2f') | |
def cube_func(r): | |
if -1.5 <= r[0] <= -0.5 and -1.5 <= r[1] <= -0.5 and -1.5 <= r[2] <= -0.5: | |
return 1 | |
if 0 <= r[0] <= 1 and 0 <= r[1] <= 1 and 0 <= r[2] <= 1: | |
return 2 | |
if 1.5 <= r[0] <= 2.5 and 1.5 <= r[1] <= 2.5 and 1.5 <= r[2] <= 2.5: | |
return 3 | |
if 3.0 <= r[0] <= 4.0 and 3.0 <= r[1] <= 4.0 and 3.0 <= r[2] <= 4.0: | |
return 3 | |
# if -1.7 <= r[0] <= -0.7 and -1.7 <= r[1] <= -0.7 and -1.7 <= r[2] <= -0.7: | |
# return 1 | |
# if 0 <= r[0] <= 1 and 0 <= r[1] <= 1 and 0 <= r[2] <= 1: | |
# return 2 | |
# if 1.5 <= r[0] <= 2.5 and 1.5 <= r[1] <= 2.5 and 1.5 <= r[2] <= 2.5: | |
# return 3 | |
# elif 3 <= r[0] <= 4 and 3 <= r[1] <= 4 and 3 <= r[2] <= 4: | |
# return 4 | |
# elif 0 <= r[0] <= 1 and 0 <= r[1] <= 1: | |
# return 3 | |
else: | |
return 0 | |
def update_class(file, new_file): | |
data = pd.read_csv(file, delimiter=";", header=None, na_values='?') | |
zeros_dim = data.shape[1] - 1 | |
classes = data.apply(cube_func, axis=1).to_frame() | |
new_data = np.concatenate([data.loc[:, :zeros_dim - 1], classes], axis=1) | |
pd.DataFrame(new_data).to_csv(new_file, sep=';', header=False, index=False, float_format='%.2f') | |
# def update_out_txt(directory): | |
# directory = str(directory) | |
# if not os.path.exists(directory + "/out.txt"): | |
# return | |
# search = re.search("(\dd_(\d).*.csv)", directory) | |
# run = search.group(1) | |
# classes_count = int(search.group(2)) + 1 | |
# classes = pd.read_csv("synthetic_cases/cubes/" + run, delimiter=";", header=None, na_values='?') | |
# classes = classes[classes.shape[1] - 1] | |
# | |
# class_row = 0 | |
# with open(directory + "/out.txt", "r") as old_out: | |
# with open(directory + "/out2.txt", "w") as new_out: | |
# for line in old_out: | |
# if "@attribute class {" in line: | |
# line = "@attribute class {" + ",".join(['"' + str(i) + '.0"' for i in range(classes_count)]) + "}" | |
# if ',"0.0"' in line: | |
# line = line.replace(',"0.0"', ',"' + str(classes[class_row]) + '"') | |
# class_row += 1 | |
# new_out.write(line) | |
# def export_out(directory): | |
# directory = str(directory) | |
# if not os.path.exists(directory + "/out2.txt"): | |
# return | |
# destination = "logs_test/arff/" + directory.replace(".csv", "").replace("logs_test/", "") + ".arff" | |
# search = re.search("_(\d)d_.*", directory) | |
# rel_dim_count = int(search.group(1)) | |
# | |
# with open(directory + "/out2.txt", "r") as out_txt: | |
# with open(destination, "w") as new_out: | |
# for line in out_txt: | |
# if line.startswith("@attribute class"): | |
# line = line + "\n" | |
# if "@attribute dim" in line: | |
# if int(re.search("@attribute dim(\d+) ", line).group(1)) >= rel_dim_count: | |
# continue | |
# | |
# if not line.startswith("@") and line.strip() != "": | |
# split = line.split(",") | |
# line = ",".join(split[:rel_dim_count]) + ',' + split[-1] | |
# new_out.write(line) | |
def correct_weka_output(): | |
file = "test_experiment_all.arff" | |
file2 = "test_experiment_all2.arff" | |
pathlist = listdir("logs_quality/arff") | |
with open(file, "r") as old_out: | |
with open(file2, "w") as output2: | |
path_id = 0 | |
counter = 0 | |
for line in old_out: | |
if line.startswith("DB"): | |
line = line.replace("DB", str(pathlist[path_id].replace(".arff", ""))) | |
counter += 1 | |
if counter == 100: | |
path_id += 1 | |
counter = 0 | |
output2.write(line) | |
if __name__ == '__main__': | |
# artificial() | |
# exit(1) | |
# file = 'synthetic_cases/synthetic_cube_in_cube_10.csv' | |
for source_name in ["gas_small.csv"]: | |
source = 'data/' + source_name | |
file = 'data/' + source_name.replace(".csv", "") + '_r128.csv' | |
if os.path.isfile(file): | |
raise ValueError(file + " already exists!") | |
# parameters | |
# rows = 6000 | |
# rel_features = 10 | |
irrel_features = 100 | |
generate() | |
# pd.DataFrame(correlated_data(4000, 3, 0.5, func3)).to_csv("synthetic_cases/uds_new.csv", index=False) | |
# update_out_txt("logs_test/ID_PERFECT_0.3_4d_4_cubes_xor_9.csv") | |
# export_out("logs_test/ID_PERFECT_0.3_4d_4_cubes_xor_9.csv") | |
# ------UPDATE THE EXISTING CUBE DATASETS WITH ACTUAL CLASSES | |
# | |
# problem = "3d_4_cubes_xor" | |
# update_class("synthetic_cases/cubes/" + problem + ".csv", | |
# "synthetic_cases/sup_cubes/" + problem + ".csv") | |
# for i in range(1, 11): | |
# update_class("synthetic_cases/cubes/" + problem + "_" + str(i) + ".csv", | |
# "synthetic_cases/sup_cubes/" + problem + "_" + str(i) + ".csv") | |
# -----CORRECT WEKA OUTPUT (PUT CORRECT DB NAMES) | |
# correct_weka_output() | |
# -----UPDATE OUT FILE | |
# pathlist = Path("logs_quality").glob('*.csv') | |
# for path in pathlist: | |
# export_out(path) | |
# ------APPENDING IRRELEVANT FEATURES | |
# for source_name in [ | |
# "2d_2_cubes_aligned.csv", | |
# "2d_2_cubes_xor.csv", | |
# "2d_3_cubes_aligned_xor.csv", | |
# "3d_2_cubes_aligned.csv", | |
# "3d_2_cubes_xor.csv", | |
# "3d_3_cubes_aligned.csv", | |
# "3d_3_cubes_aligned_xor.csv", | |
# "3d_3_cubes_xor.csv", | |
# "3d_4_cubes_1_aligned_xor.csv", | |
# "3d_4_cubes_2_aligned.csv", | |
# "3d_4_cubes_xor.csv", | |
# "4d_2_cubes_aligned.csv", | |
# "4d_3_cubes_aligned_xor.csv", | |
# "4d_3_cubes_xor.csv", | |
# "4d_4_cubes_2_aligned.csv", | |
# "4d_4_cubes_aligned_xor.csv", | |
# "4d_4_cubes_xor.csv", | |
# ]: | |
# for i in [4,5,6,7,8,9,10]: | |
# # file = 'synthetic_cases/synthetic_cube_in_cube_10.csv' | |
# source = 'synthetic_cases/cubes/' + source_name | |
# file = 'synthetic_cases/cubes/' + source_name.replace(".csv", "") + '_' + str(i) + '.csv' | |
# | |
# if os.path.isfile(file): | |
# raise ValueError(file + " already exists!") | |
# | |
# # parameters | |
# rows = 4000 | |
# # rel_features = 10 | |
# irrel_features = i | |
# | |
# generate() | |
# ----GENERATION---- | |
# file = 'synthetic_cases/cubes/4d_4_cubes_xor.csv' | |
# | |
# if os.path.isfile(file): | |
# raise ValueError(file + " already exists!") | |
# | |
# # parameters | |
# rows = 4000 | |
# rel_features = 2 | |
# irrel_features = 0 | |
# | |
# generate() |