Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
import pandas as pd
import os
import signal
import sys
import constants as cst
import re
import subprocess as sp
import util
global_min = -2
MAX_DIM_COUNT = 4
def parse_ideal_cuts(experiment_name):
name = util.parse_dataset_name(experiment_name)
try:
cuts = []
with open(cst.PERFECT_DISCRETIZATIONS_DIR + "cut_" + name + ".txt", "r") as f:
cut = []
for line in f:
if line.startswith("dimension"):
continue
if line.startswith("---"):
cuts.append(cut)
cut = []
continue
cut.append(float(line.strip()))
return cuts
except FileNotFoundError:
return None
def _find_min_dist_cut(cut, cuts, start_id=0):
min_dist = float('Inf')
min_cut_id = None
for i, c in enumerate(cuts[start_id:], start=start_id):
if i > 0 and cuts[i - 1] > c:
raise ValueError("cuts" + str(cuts) + " is not ordered!")
temp_dist = abs(c - cut)
if min_dist > temp_dist:
min_dist = temp_dist
min_cut_id = i
# elif min_cut_id:
# break
return min_dist, min_cut_id
def _find_max_sim_cut(cut, cuts, start_id=0):
max_sim = -float("Inf")
max_sim_cut_id = None
for i, c in enumerate(cuts[start_id:], start=start_id):
if i > 0 and cuts[i - 1] > c:
raise ValueError("cuts" + str(cuts) + " is not ordered!")
if c == cut:
temp_sim = 1
else:
if c > cut:
middle_dist = (c - cuts[i - 1]) / 2
temp_sim = (middle_dist - (c - cut)) / middle_dist
else:
# if the cut is further ahead the last cut from cuts
if i == len(cuts) - 1:
middle_dist = (c - cuts[i - 1]) / 2
else:
middle_dist = (cuts[i + 1] - c) / 2
# if (cuts[i + 1] - c) / 2 > (cut - c):
temp_sim = (middle_dist - (cut - c)) / middle_dist
if max_sim < temp_sim:
max_sim = temp_sim
max_sim_cut_id = i
elif max_sim_cut_id is not None and cut < c:
break
return max_sim, max_sim_cut_id
def disc_similarity(expected_cuts, cuts):
cuts = cuts.copy()
cuts.insert(0, min(expected_cuts))
# if abs(expected_cuts[-1] - cuts[-1]) > 0.02:
# raise ValueError("expected_cuts and cuts have very different last cut: ", expected_cuts[-1], cuts[-1])
# if len(expected_cuts) == 1 and len(cuts) == 1:
# return 1
#
# # don't check the same last cut
# expected_cuts = expected_cuts[:-1]
# cuts = cuts[:-1]
similarity = 0
sim_exp_cut_id = _find_max_sim_cut(cuts[0], expected_cuts)
prev_cut_id = sim_exp_cut_id[1]
temp_sim = sim_exp_cut_id[0]
exp_match = 0
for i, cut in enumerate(cuts[1:], start=1):
if i > 0 and cuts[i - 1] > cut:
raise ValueError("cuts" + str(cuts) + " is not ordered!")
sim_exp_cut_id = _find_max_sim_cut(cut, expected_cuts, prev_cut_id)
if sim_exp_cut_id[1] == prev_cut_id:
# counter += 1
temp_sim *= sim_exp_cut_id[0]
else:
# print("temp_sim:", temp_sim)
similarity += temp_sim
temp_sim = sim_exp_cut_id[0]
exp_match += 1
prev_cut_id = sim_exp_cut_id[1]
# print("temp_sim:", temp_sim)
similarity += temp_sim
exp_match += 1
return similarity, exp_match
# def disc_distance(expected_cuts, cuts):
# distance = 0
# dist_exp_cut_id = _find_min_dist_cut(cuts[0], expected_cuts)
# prev_cut_id = dist_exp_cut_id[1]
# temp_distance = dist_exp_cut_id[0]
#
# counter = 0
#
# for i, cut in enumerate(cuts[1:], start=1):
# if i > 0 and cuts[i - 1] > cut:
# raise ValueError("cuts" + str(cuts) + " is not ordered!")
#
# dist_exp_cut_id = _find_min_dist_cut(cut, expected_cuts, prev_cut_id)
# if dist_exp_cut_id[1] == prev_cut_id:
# # counter += 1
# temp_distance += dist_exp_cut_id[0]
# else:
# distance += temp_distance * 2 ** counter
# temp_distance = dist_exp_cut_id[0]
# counter = 0
#
# prev_cut_id = dist_exp_cut_id[1]
#
# distance += temp_distance * 2 ** counter
#
# return distance
# prepare slim db
def prepare_compression1(experiment_name):
try:
dat_file = cst.SLIM_DATA_DIR + experiment_name + "/" + experiment_name + ".dat"
if not os.path.exists(dat_file):
print("no initial dat-file for experiment", experiment_name)
return False
with open(cst.SLIM_CONVERT_CONF, "r+") as conf_file:
new_lines = []
for line in conf_file:
if line.startswith("dbName"):
line = "dbName = [" + experiment_name + "]\n"
new_lines.append(line)
conf_file.seek(0)
conf_file.writelines(new_lines)
conf_file.truncate()
output = sp.check_output([cst.SLIM_BIN, cst.SLIM_CONVERT_CONF])
if "exception" in str(output):
print('exception during preparation for', experiment_name)
return False
except sp.CalledProcessError:
print('Prepare compression: conversion failed for', experiment_name)
return False
return True
def run_compression1(name, interaction_type=None, rows=None, rf=None, i=None, c=None, offset=None):
# 1. check slim db
# convert dat-file to db-file if it does not exist
if not os.path.exists(cst.SLIM_DATA_DIR + name + "/" + name + ".db"):
if not prepare_compression1(name):
print("run_compression failed for", name)
return [name, "", ""]
# 2. modify compress.conf
with open(cst.SLIM_COMPRESS_CONF, "r+") as conf_file:
new_lines = []
for line in conf_file:
if line.startswith("iscName"):
line = "iscName = " + name + "-all-1d\n"
new_lines.append(line)
conf_file.seek(0)
conf_file.writelines(new_lines)
conf_file.truncate()
# 3. compress it
output = None
try:
output = str(sp.check_output([cst.SLIM_BIN, cst.SLIM_COMPRESS_CONF], timeout=30))
except sp.TimeoutExpired:
# timeout_counter = 0
# while timeout_counter < 5:
# try:
# output = str(sp.check_output([cst.SLIM_BIN, cst.SLIM_COMPRESS_CONF], timeout=60))
# break
# except sp.TimeoutExpired:
# timeout_counter += 1
# if not output:
# print("timeout exceeded " + str(timeout_counter) + " times for " + name)
# return [name, "", ""]
print("timeout exceeded", name)
return [name, "", ""]
except sp.CalledProcessError:
return [name, "", ""]
search_start = re.search('Start:\\\\t\\\\t.+?,(\d+)\)', output)
if search_start:
start_comp = search_start.group(1)
else:
print("compression start is not found", name)
start_comp = ""
search_end = re.search('Result:\\\\t\\\\t.+?,(\d+)\)', output)
if search_end:
result_comp = search_end.group(1)
else:
print("compression end is not found", name)
result_comp = ""
return [name, start_comp, result_comp]
def run_compression(base_dir):
global results
base_dir = cst.BASE + base_dir + "/"
comp_dict = util.read_csv(base_dir + "Compression.csv")
results = []
for root, dirs, files in os.walk(base_dir):
dir_num = len(dirs)
counter = 0
for experiment_name in dirs:
if comp_dict is not None and experiment_name in comp_dict:
continue
counter += 1
print("compressing", experiment_name, counter, "/", dir_num)
res = ",".join(run_compression1(experiment_name))
results.append(res + "\n")
print('processing finished')
with open(base_dir + "Compression.csv", "a") as f:
f.writelines(results)
# returns runtime in seconds and mdl of compression
# def compute_compression(name):
# escaped_name = util.get_escaped_name(name)
# # 1. check slim db
# if not os.path.exists(cst.SLIM_DATA_DIR + escaped_name + "/" + escaped_name + ".db"):
# print("no slim db file for " + escaped_name)
# return [name, None]
#
# # 2. modify compress.conf
# with open(cst.SLIM_COMPRESS_CONF, "r+") as conf_file:
# new_lines = []
# for line in conf_file:
# if line.startswith("iscName"):
# line = "iscName = " + escaped_name + "-all-1d\n"
# new_lines.append(line)
# conf_file.seek(0)
# conf_file.writelines(new_lines)
# conf_file.truncate()
#
# # 3. compress it
# output = None
# try:
# output = str(sp.check_output([cst.SLIM_BIN, cst.SLIM_COMPRESS_CONF], timeout=5))
# except sp.TimeoutExpired:
# timeout_counter = 0
# while timeout_counter < 5:
# try:
# output = str(sp.check_output([cst.SLIM_BIN, cst.SLIM_COMPRESS_CONF], timeout=5))
# break
# except sp.TimeoutExpired:
# timeout_counter += 1
# if not output:
# print("timeout exceeded " + str(timeout_counter) + " times for " + name)
# return [name, None]
# except sp.CalledProcessError:
# return [name, None]
#
# start_comp = re.search('Start:\\\\t\\\\t.+?,(\d+)\)', output).group(1)
# result_comp = re.search('Result:\\\\t\\\\t.+?,(\d+)\)', output).group(1)
# return [name, start_comp, result_comp]
# def compute_problem_quality_measure(directory,
# problem,
# method,
# distances=('ID', 'CJS'),
# threshold_range=(0.3, 0.5, 0.8),
# irr_features_range=range(11)):
# ideal_cuts = parse_cuts("ideal_disc/cut_" + problem + ".txt")
# if method == cst.Method.TRIVIAL or method is cst.Method.PERFECT:
# name = method.name + "-" + problem
# print('compute_measures', name)
# values = compute_precision_recall_runtime(ideal_cuts, directory, name)
# compression = compute_compression(name)
#
# if not values:
# print('no value')
#
# return ([values[0]], values[1], [compression]) if values else None
# # return ([values[0]], values[1]) if values else None
#
# runtime_values = []
# values = []
# compression = []
# for dist in distances:
# for threshold in threshold_range:
# threshold = str(threshold)
# if method == cst.Method.PREDEFINED:
# counter = 1
# while counter < 11:
# name = dist + "-" + method.name + "-s" + str(counter) + "-" + threshold + "-" + problem
# counter += 1
#
# print('compute_measures', name)
# value = compute_precision_recall_runtime(ideal_cuts, directory, name)
# if not value:
# print('no value')
# break
# runtime_values.append(value[0])
# values.extend(value[1])
# compression.append(compute_compression(name))
#
# elif method == cst.Method.ORIGINAL:
# # else:
# for irr_feat in irr_features_range:
# name = dist + "-" + method.name + "-" + threshold + "-" + problem + (
# "" if irr_feat == 0 else "-" + str(irr_feat))
#
# print('compute_measures', name)
# value = compute_precision_recall_runtime(ideal_cuts, directory, name)
# if not value:
# print('no value')
# continue
# runtime_values.append(value[0])
# values.extend(value[1])
# compression.append(compute_compression(name))
# return runtime_values, values, compression
# # return runtime_values, values
# def prepare_compression(directory,
# problem,
# method,
# distances=('ID', 'CJS'),
# threshold_range=(0.3, 0.5, 0.8),
# irr_features_range=range(11)):
# if method == cst.Method.TRIVIAL:
# name = "TRIVIAL-" + problem
# print('prepare compression', name)
# prepare_compression1(directory, name)
# return
#
# for dist in distances:
# for threshold in threshold_range:
# threshold = str(threshold)
# if method == cst.Method.PREDEFINED:
# counter = 1
# while counter < 11:
# name = dist + "-" + method.name + "-s" + str(counter) + "-" + threshold + "-" + problem
# counter += 1
#
# print('prepare compression', name)
# prepare_compression1(directory, name)
#
# # elif method == cst.Method.ORIGINAL:
# else:
# for irr_feat in irr_features_range:
# name = dist + "-" + method.name + "-" + threshold + "-" + problem + (
# "" if irr_feat == 0 else "-" + str(irr_feat))
#
# print('prepare compression', name)
# prepare_compression1(directory, name)
def parse_runtimes(name):
try:
runtimes = []
with open(name, "r") as f:
for line in f:
if line.startswith("subspace mining runtime:"):
runtimes.append(float(re.search("(?:subspace mining runtime:) (.*)(?: seconds)", line).group(1)))
if line.startswith("full runtime:"):
if len(runtimes) == 0:
runtimes.append(0)
runtimes.append(float(re.search("(?:full runtime:) (.*)(?: seconds)", line).group(1)))
if len(runtimes) == 0:
return [0, 0]
return runtimes
except FileNotFoundError:
return None
# def compute_precision_recall_runtime(ideal_cuts, directory, name):
# data_dir = name.replace("-", "_")
# cuts = parse_cuts(directory + "/" + data_dir + ".csv/cut.txt")
# if not cuts:
# return None
#
# runtimes = parse_runtimes(directory + "/" + data_dir + ".csv/log.txt")
# runtime_values = [name]
# runtime_values.extend(runtimes)
# values = []
# for i in range(MAX_DIM_COUNT):
# if len(ideal_cuts) <= i:
# break
# values.append(
# [name + "-dim" + str(i + 1), disc_precision(ideal_cuts[i], cuts[i]), disc_recall(ideal_cuts[i], cuts[i])])
# return runtime_values, values
def disc_precision(expected, current):
similarity = disc_similarity(expected, current)
return similarity[0] / (len(current) + 1)
def disc_recall(expected, current):
similarity = disc_similarity(expected, current)
# todo should be without + 1
return similarity[0] / (len(expected) + 1)
def disc_f1(expected, current):
similarity = disc_similarity(expected, current)
recall = similarity[0] / (len(expected) + 1)
precision = similarity[0] / (len(current) + 1)
return (2 * precision * recall) / (precision + recall)
def signal_handler(signal, frame):
global stop_signal, results
print('Writing down Compression.csv')
print(cst.BASE + base_dir + "Compression.csv")
with open(cst.BASE + base_dir + "/Compression.csv", "a") as f:
f.writelines(results)
sys.exit(0)
global stop_signal
stop_signal = False
if __name__ == '__main__':
global base_dir
base_dir = sys.argv[1]
signal.signal(signal.SIGINT, signal_handler)
print('signal registered')
# compression and classification quality measures
run_compression(base_dir)
# if len(sys.argv) == 1:
# print(
# 'Usage: discretization_quality_measure.py '
# '-p=<problem> '
# '-m=<[original|greedy_topk|trivial|...]> '
# '-cor=<[uds]> '
# '-dist=<[id, cjs]> '
# '-t=<threshold float> '
# '-r=<number of rows> ')
# command = '-b=logs -f=synthetic_cases/synthetic_3d_parity_problem.csv -d=; -dist=ID'
# print('Running default: ', command)
# command_list = command.split(' ')
# else:
# command_list = sys.argv[1:]
#
# problem_arg = list(filter(lambda x: x.startswith("-p="), command_list))
# # if not problem_arg:
# # raise ValueError('No problem provided!')
# base_dir_arg = list(filter(lambda x: x.startswith("-b="), command_list))
# if not base_dir_arg:
# raise ValueError('No logs base dir provided!')
# method_arg = list(filter(lambda x: x.startswith("-m="), command_list))
# # if not method_arg:
# # raise ValueError('No method provided!')
# distance_measure_arg = list(filter(lambda x: x.startswith("-dist="), command_list))
# # if not distance_measure_arg:
# # raise ValueError('No distance measure provided!')
# threshold_arg = list(filter(lambda x: x.startswith("-t="), command_list))
# # if not threshold_arg:
# # raise ValueError('No threshold provided!')
# # irr_feat_start_arg = list(filter(lambda x: x.startswith("-is="), command_list))
# # irr_feat_end_arg = list(filter(lambda x: x.startswith("-ie="), command_list))
#
# base_dir = base_dir_arg[0].replace('-b=', '')
# if not os.path.exists(base_dir):
# os.makedirs(base_dir)
# if problem_arg:
# problem = problem_arg[0].replace('-p=', '')
# if method_arg:
# method = cst.Method[method_arg[0].replace('-m=', '').upper()]
# if distance_measure_arg:
# distance_measure = cst.DistanceMeasure[distance_measure_arg[0].replace('-dist=', '').upper()]
# if threshold_arg:
# threshold = float(threshold_arg[0].replace('-t=', ''))
#
# problems = [
# # "2d_3_cubes_aligned_xor",
# # "2d_2_cubes_aligned",
# # "2d_2_cubes_xor",
# # "3d_2_cubes_aligned",
# # "3d_2_cubes_xor",
# # "3d_3_cubes_aligned",
# # "3d_3_cubes_aligned_xor",
# # "3d_3_cubes_xor",
# # "3d_4_cubes_1_aligned_xor",
# # "3d_4_cubes_2_aligned",
# # "3d_4_cubes_xor",
# # "4d_2_cubes_aligned",
# # "4d_3_cubes_aligned_xor",
# # "4d_3_cubes_xor",
# # "4d_4_cubes_aligned_xor",
# # "4d_4_cubes_2_aligned",
# "4d_4_cubes_xor",
# ]
#
# runtime = []
# perf = []
# compression = []
#
# cols = ['run-dim', 'precision', 'recall']
# runtime_cols = ['run', 'subspace mining runtime', 'full runtime']
# compression_cols = ['run', 'start compression', 'result compression']
#
# disc_distances = []
# for problem in problems:
# print('problem:', problem)
#
# for method in [cst.Method.TRIVIAL, cst.Method.ORIGINAL, cst.Method.PREDEFINED]:
# # for method in [cst.Method.PERFECT]:
# print('method:', method)
# data = compute_problem_quality_measure(base_dir, problem, method=method)
# if not data:
# continue
# runtime.extend(data[0])
# perf.extend(data[1])
# compression.extend(data[2])
# time = util.now()
# pd.DataFrame(perf, columns=cols).to_csv(base_dir + "/Precision_recall_" + time + ".csv")
# pd.DataFrame(runtime, columns=runtime_cols).to_csv(base_dir + "/Discretization_runtimes_" + time + ".csv")
# pd.DataFrame(compression, columns=compression_cols).to_csv(base_dir + "/Compression_" + time + ".csv")