Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
weighted_MEA/winnie_old.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1202 lines (905 sloc)
51.1 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
WiNNie - Weighted motif eNrichmeNt analysis uses the weights received from TOBIAS in bigwig files to find enriched motifs | |
@author: Anastasiia Petrova | |
@contact: anastasiia.petrova(at)mpi-bn.mpg.de | |
""" | |
import argparse | |
import sys | |
import os | |
import re | |
import time | |
import multiprocessing | |
import logging | |
import subprocess | |
from Bio import SeqIO | |
import Bio.SeqIO.FastaIO as bio | |
import numpy as np | |
from collections import defaultdict | |
from scipy import stats | |
import pyBigWig | |
from statsmodels.sandbox.stats.multicomp import multipletests #for bonfferoni | |
import matplotlib.pyplot as plt | |
import random | |
import textwrap | |
import MOODS.scan | |
import MOODS.tools | |
import MOODS.parsers | |
logger = logging.getLogger('my_ame') | |
logger.setLevel(logging.INFO) | |
formatter = logging.Formatter("%(asctime)s : %(message)s", "%Y-%m-%d %H:%M") | |
fh = logging.FileHandler('my_ame_log.txt') | |
fh.setLevel(logging.INFO) | |
fh.setFormatter(formatter) | |
logger.addHandler(fh) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.INFO) | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
""" | |
#catch all the information about input and output files as well as information on the used tool (fimo or moods) | |
def parse_args(): | |
#formatter_class = argparse.RawDescriptionHelpFormatter(prog='winnie', description=textwrap.dedent('''\ | |
# Please do not mess ip this text! | |
# -------------------------- | |
# ''' | |
# )) | |
parser = argparse.ArgumentParser(prog = 'winnie', description = textwrap.dedent(''' | |
This script takes a list of motifs loaded from jaspar.genereg.net as a combined text file in MEME or .PFM format, a genome file in FASTA format and optionaly a .bed file (the one you want to be merged with the whole genome file) as input. If you want to merge a .bed file with the whole genome file, please enter --bed_file or -b bevor your .bed file. The tool will provide a file output_merge.fa, which you can also use for your research later on. If you already have a merged file, please give this one as genome file input. If there are several motifs in the input file, the tool will create a separate output file for each motif. Choose if you want to use fimo or moods with --use, this script uses by default fimo. Please note that the tool can not provide the calculation of q values with fimo due to the text mode that fimo needs to use. The tool sends merged genome file and motifs to fimo or moods, saves the sorted output for each of the given motifs as moods/fimo_output_[alternate name and id of the motif].txt in the output directory, then calculates the start and the end as real positions on the chromosom and writes this information in the ouput files. The columns in the output file are: chromosom, start, end, the name and score of TF. If a .bed file was given as input, the tool will also add the additional columns from it to the output. If the output file is empty, there were no machtes within given genome regions. Please note, if you want to have all intermediate output files, enter --clean nothing | |
'''), epilog='That is what you need to make this script work for you. Enjoy it') | |
#required_arguments = parser.add_argument_group('required arguments') | |
#required_arguments.add_argument('-m', '--motifs', help='file in MEME format with mofits loaded from jaspar.genereg.net') | |
#required_arguments.add_argument('-g', '--genome', help='a whole genome file or regions of interest in FASTA format to be scanned with motifs') | |
#all other arguments are optional | |
#parser.add_argument('-o', '--output_directory', default='output', const='output', nargs='?', help='output directory, default ./output/') | |
#parser.add_argument('-b', '--bed_file', nargs='?', help='a .bed file to be merged with the whole genome file to find regions of interest') | |
#parser.add_argument('--use', '--use_tool', default='fimo', const='fimo', nargs='?', choices=['fimo', 'moods'], help='choose the tool to work with, default tool is fimo') | |
#parser.add_argument('--clean', nargs='*', choices=['nothing', 'all', 'cut_motifs', 'fimo_output', 'merge_output', 'moods_output'], dest='cleans', help='choose the files you want to delete from the output directory, the default is deleting all the temporary files from the directory') | |
#parser.add_argument('--fimo', help='enter additional options for fimo using = inside "", for example fimo="--norc" to not score the reverse complement DNA strand. By default the --text mode is used and the calculation of the q values due to the --text mode is not possible') | |
#parser.add_argument('--cores', type=int, help='number of cores allowed to use by this tool, by default the tool uses 2 cores', default=2) | |
#parser.add_argument('-p', '--p_value', type=float, help='enter the p value, the default p value is 0.0001. Please note that if you enter the p value using --fimo="--thresh ..." as well, the one within --fimo call will be used', default=0.0001) | |
#parser.add_argument('--resolve_overlaps', action='store_true', help='delete overlaps with greater p value, by default no overlaps are deleted') | |
#parser.add_argument('--hide_info', action='store_true', help='while working with data write the information only into ./log.txt') | |
#parser.add_argument('--moods_bg', nargs='+', type=float, help='set the bg for moods, by default moods uses the bg is 0.25 0.25 0.25 0.25') | |
args = parser.parse_args() | |
return args | |
""" | |
def check_directory(directory): | |
if not os.path.exists(directory): | |
os.makedirs(directory) | |
logger.info('a new directory ' + directory + ' was created') | |
#merge the whole genome with the regions mentioned in .bed file | |
def merge(genome, bed_file, output_directory): | |
print("entered merging") | |
logger.info('the merging of files ' + genome + ' and ' + bed_file + ' will end soon, the result file is output_merged.fa') | |
output_merge = os.path.join(output_directory, "output_merged.fa") | |
#if os.path.isfile(output_merge): | |
# output_merge = os.path.join(output_directory, "custom_output_merge.fa") | |
os.system("bedtools getfasta -fi " + genome + " -bed " + bed_file + " -fo " + output_merge) | |
print("merging is finished") | |
return output_merge | |
#split the motifs each in other file | |
def split_motifs(motifs, output_directory, usage): | |
logger.info("the file with motifs " + motifs + " will be checked for motifs and if needed splitted in files each containing only one motif") | |
first_line = subprocess.getoutput("head -1 " + motifs) #find the first line of the input file | |
if usage == "moods": | |
if first_line.startswith(">"): | |
#the motif file probably has the .pfm format, try to read and split it | |
splitted_motifs = read_pfm(motifs, output_directory) | |
else: #maybe the file with motifs is in MEME format, so try to convert it | |
logger.info("the input file has not the expected format, I will try to convert it to .pfm format") | |
splitted_motifs = convert_meme_to_pfm(motifs, output_directory) | |
elif usage == "fimo": | |
if first_line.startswith("MEME version"): | |
#the motifs file has probably the MEME format, try to read and split it | |
splitted_motifs = read_meme(motifs, output_directory) | |
#if the there was a convertion before, delete all the .pfm files as we don't need them | |
for filename in os.listdir(output_directory): | |
if filename.endswith(".pfm"): | |
remove_file(os.path.join(output_directory, filename)) | |
else: #maybe the file with motifs is in .pfm format, so try to convert is | |
logger.info("the input file has not the expected format, I will try to convert it to MEME format") | |
splitted_motifs = convert_pfm_to_meme(motifs, output_directory) | |
return splitted_motifs | |
def read_pfm(motifs, output_directory): | |
splitted_motifs = [] #to save the names of files after splitting | |
motif = [] #to save the motif itself, which will be written to the file | |
with open(motifs) as read_file: | |
lines = 0 | |
for line in read_file: | |
#as the motif has first line with the name and 4 lines with information, if the 5th line is something else than the name of the next motif, the exit will be forced | |
if lines == 5 and not line.startswith(">"): | |
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file') | |
sys.exit() | |
else: | |
if line.startswith(">"): | |
if 'written_file' in locals(): | |
written_file.write(''.join(motif)) | |
motif = [] | |
lines = 0 | |
written_file.close() | |
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip()) | |
motif_id = re.split(' ', line[1:])[0] #[1:] meands do not use the first character | |
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm') | |
splitted_motifs.append(motif_name) | |
written_file = open(motif_name, 'w') | |
if lines >= 1 and lines <= 4: #one motif has 5 lines, the first consists the name, the next 4 - the information we need to proceed the data within moods | |
motif.append(line) | |
lines = lines + 1 | |
written_file.write(''.join(motif)) | |
written_file.close() | |
return splitted_motifs | |
def read_meme(motifs, output_directory): | |
splitted_motifs = [] #to save the names of files after splitting | |
motif = [] #to save the motif itself, which will be written to the file | |
head = [] #define a list for header, as fimo needs a header in each motif file it proceedes | |
with open(motifs) as read_file: | |
lines = 0 | |
for line in read_file: | |
#make the head part | |
if lines <= 8: | |
if lines == 0 and not line.startswith("MEME version"): | |
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file') | |
sys.exit() | |
head.append(line) | |
else: | |
#search for motifs and save each to another file | |
if line.startswith("MOTIF"): | |
if 'written_file' in locals(): | |
written_file.write(''.join(motif)) | |
motif = [] | |
written_file.close() | |
#the alternate name will be checked for validity and the invalid chars will be replaced with '_' | |
if len(re.split(' ', line.rstrip())) == 3: #in the input motif file the motif id and the alternate name are splitted using the tab, otherwise they are splitted using _, but we do not want to change it if so | |
motif_alternate_name = check_name(re.split(' ', line)[2].rstrip()) | |
motif_id = re.split(' ', line)[1] | |
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.meme') | |
else: | |
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip()) | |
motif_name = os.path.join(output_directory, motif_alternate_name + '.meme') | |
#make a list with all the motif names to know which files to iterate when fimo is called | |
splitted_motifs.append(motif_name) | |
written_file = open(motif_name, 'w') | |
written_file.write(''.join(head)) | |
motif.append(line) | |
lines = lines + 1 | |
#write the last motif | |
written_file.write(''.join(motif)) | |
written_file.close() | |
read_file.close() | |
return splitted_motifs | |
def convert_meme_to_pfm(motifs, output_directory): | |
#i can only convert the file to pfm if the motifs file is in MEME format | |
splitted_motifs = [] #to save the names of files after splitting | |
rows = [[] for row in range(4)] | |
with open(motifs) as read_file: | |
lines = 0 | |
for line in read_file: | |
if lines == 0 and not line.startswith("MEME version"): | |
logger.info('please make sure that the file with motifs has a right format and the number of lines is right in the motif file') | |
sys.exit() | |
else: | |
#search for motifs and save each to another file | |
if line.startswith("MOTIF"): | |
if 'written_file' in locals(): | |
for row in rows: | |
written_file.write('\t'.join(row) + '\n') | |
rows = [[] for row in range(4)] | |
written_file.close() | |
#the alternate name will be checked for validity and the invalid chars will be replaced with '_' | |
if len(re.split(' ', line.rstrip())) == 3: #in the input motif file the motif id and the alternate name are splitted using the tab, otherwise they are splitted using _, but we do not want to change it if so | |
motif_alternate_name = check_name(re.split(' ', line)[2].rstrip()) | |
motif_id = re.split(' ', line)[1] | |
motif_name = os.path.join(output_directory, motif_alternate_name + '_' + motif_id + '.pfm') | |
else: | |
motif_alternate_name = check_name(re.split(' ', line)[1].rstrip()) | |
motif_name = os.path.join(output_directory, motif_alternate_name + '.pfm') | |
#make a list with all the motif names to know which files to iterate when fimo is called | |
splitted_motifs.append(motif_name) | |
written_file = open(motif_name, 'w') | |
elif line.startswith("letter-probability matrix"): | |
columns = int(re.split(' ', re.split('w= ', line)[1])[0]) #find the number of columns from the line out of the motifs file | |
nsites = int(re.split(' ', re.split('nsites= ', line)[1])[0]) #find the nsites to count the frequency count for .pfm file | |
elif line.startswith(' '): #each line with information about frequency starts in MEME format with ' ' | |
for i in range(len(rows)): | |
rows[i].append(str(round(float(re.findall(r'\S+', line)[i])*nsites))) #split the line, do not mention how much whitespaces are in between, multiply it with nsites and save it to the corresponding row | |
lines = lines + 1 | |
#write the last motif | |
for row in rows: | |
written_file.write('\t'.join(row) + '\n') | |
written_file.close() | |
read_file.close() | |
return splitted_motifs | |
def convert_pfm_to_meme(motifs, output_directory): | |
#i can only convert the file to meme, if motifs file is in .pfm format | |
#first we need to split the pfm motifs as the jaspar2meme does not work with the files containing several motifs, but with the directory consisting files each with only one motif in pfm format | |
pfm_motifs = read_pfm(motifs, output_directory) | |
converted_name = os.path.join(output_directory, "converted_motifs.meme") | |
os.system("jaspar2meme -pfm " + output_directory + " > " + converted_name) | |
#need to call split motifs for meme file | |
splitted_motifs = split_motifs(converted_name, output_directory, "fimo") | |
remove_file(converted_name) | |
return splitted_motifs | |
#if there are chars that are not allowed, they will be replaced with '_', to the possibly invalid names there will be added '_' at the beginning of the name | |
def check_name(name_to_test): | |
badchars= re.compile(r'[^A-Za-z0-9_. ]+|^\.|\.$|^ | $|^$') | |
badnames= re.compile(r'(aux|com[1-9]|con|lpt[1-9]|prn)(\.|$)') | |
#replace all the chars that are not allowed with '_' | |
name = badchars.sub('_', name_to_test) | |
#check for the reserved by the os names | |
if badnames.match(name): | |
name = '_' + name | |
return name | |
def call_moods(one_motif, genome, output_directory, p_value, moods_bg, fisher_dict_bg, fisher_dict, control, overexpression, control_dict, overexpression_dict, differences): | |
#check if this is a bigwig file | |
bw_control = pyBigWig.open(control) | |
bw_overexpression = pyBigWig.open(overexpression) | |
if not bw_control.isBigWig() or not bw_overexpression.isBigWig(): | |
logger.info("please provide the bigwig file!") | |
sys.exit() | |
else: | |
# prepare everything for moods | |
# setting standard parameters for moods | |
pseudocount = 0.0001 | |
if moods_bg == None: | |
bg = MOODS.tools.flat_bg(4) | |
else: | |
bg = tuple(moods_bg) | |
logger.info("moods will work with the p_value " + str(p_value) + " and the bg " + str(bg)) | |
motif_name = os.path.basename(one_motif) | |
matrix_names = [os.path.basename(one_motif)] | |
matrices = [] | |
matrices_rc = [] | |
valid, matrix = pfm_to_log_odds(one_motif, bg, pseudocount) | |
key_for_bed_dict = '' | |
if valid: | |
logger.info("please be patient, moods is working on the data") | |
matrices.append(matrix) | |
matrices_rc.append(MOODS.tools.reverse_complement(matrix,4)) | |
matrices_all = matrices + matrices_rc | |
thresholds = [MOODS.tools.threshold_from_p(m, bg, p_value, 4) for m in matrices_all] | |
scanner = MOODS.scan.Scanner(7) | |
scanner.set_motifs(matrices_all, bg, thresholds) | |
with open(genome) as handle: | |
seq_iterator = bio.SimpleFastaParser(handle) | |
for header, seq in seq_iterator: | |
header_splitted = re.split(r':', header) | |
if len(header_splitted) == 1: #if there are no positions given | |
header = header + ":0-" #set the first position as 0 and split it once more | |
header_splitted = re.split(r':', header) | |
logger.info("moods works with " + header) | |
else: #the given genome file is a file with peaks, so use the header of the peak as a key to search in the bed dictionary for additional information later on | |
key_for_bed_dict = header | |
#------------------------delete?------------------------------------- | |
if not key_for_bed_dict in fisher_dict_bg.keys(): | |
fisher_dict_bg[key_for_bed_dict] = 0 | |
fisher_dict[key_for_bed_dict] = 0 | |
#peak_length = int(re.split(r'-', header_splitted[1])[1]) - int(re.split(r'-', header_splitted[1])[0]) #find the length of the peak | |
#fisher_dict[key_for_bed_dict] = np.zeros(peak_length) #initialize array of 0.0 with the length of the peak | |
#---------------------------------------------------------------- | |
chromosom = header_splitted[0] | |
positions = re.split(r'-', header_splitted[-1]) | |
#compute the background difference for this peak | |
#bw_global_score_control = np.mean(np.nan_to_num(np.array(list(bw_control.values(chromosom, int(positions[0]), int(positions[1])))))) | |
#bw_global_score_overexpression = np.mean(np.nan_to_num(np.array(list(bw_overexpression.values(chromosom, int(positions[0]), int(positions[1])))))) | |
# | |
#bw_global_difference = bw_global_score_control - bw_global_score_overexpression | |
#print(bw_global_difference) | |
results = scanner.scan(seq) | |
fr = results[:len(matrix_names)] #forward strand | |
rr = results[len(matrix_names):] #reverse strand | |
results = [[(r.pos, r.score, '+', ()) for r in fr[i]] + | |
[(r.pos, r.score, '-', ()) for r in rr[i]] for i in range(len(matrix_names))] #use + and - to indicate strand | |
for (matrix, matrix_name, result) in zip(matrices, matrix_names, results): | |
motif_id = re.split(r'_', matrix_name)[-1].replace(".pfm", '') #find the id of the given morif | |
motif_alternate_name = matrix_name.replace(motif_id, '')[:-1] #the alternate name of the motif is the name of the file without id and with cutted last character, that is _ | |
if len(matrix) == 4: | |
l = len(matrix[0]) | |
if len(matrix) == 16: | |
l = len(matrix[0] + 1) | |
for r in sorted(result, key=lambda r: r[0]): | |
strand = r[2] | |
pos = r[0] | |
hitseq = seq[pos:pos+l] #sequence | |
score = format(r[1], '.15f') #round to 15 digits after floating point, already type str | |
if key_for_bed_dict != '': | |
start = pos + 1 | |
end = pos + len(hitseq) | |
#chromosom = key_for_bed_dict #instead of only the name of chromosom write the key to search in the bed_file | |
else: | |
start = int(positions[0]) + pos + 1 | |
end = start + len(hitseq) - 1 | |
"""# ---------------------------------------delete??------------------------------- | |
if key_for_bed_dict not in scores_dict: #if this peak has no matches yet | |
#fill the peak with 0 | |
peak_length = int(positions[1]) - int(positions[0]) + 1 | |
scores_dict[key_for_bed_dict] = np.full(peak_length, 0.0) | |
"""#------------------------------------------------------------------------------- | |
#find the real start and end positions on the chromosom | |
real_start = int(positions[0]) + int(start) #start of the peak + start of the motif within the peak, do not add 1, as bigwig is 0-based | |
real_end = real_start + len(hitseq) | |
#count this match to the fisher_dict_bg | |
fisher_dict_bg[key_for_bed_dict] += 1 | |
#get the values from bw file | |
bw_scores_control = np.mean(np.nan_to_num(np.array(list(bw_control.values(chromosom, real_start, real_end))))) | |
bw_scores_overexpression = np.mean(np.nan_to_num(np.array(list(bw_overexpression.values(chromosom, real_start, real_end))))) | |
control_dict = save_bw_score(one_motif, key_for_bed_dict, control_dict, bw_scores_control, hitseq, score) | |
overexpression_dict = save_bw_score(one_motif, key_for_bed_dict, overexpression_dict, bw_scores_overexpression, hitseq, score) | |
bw_difference = abs(bw_scores_overexpression - bw_scores_control) | |
if not np.isnan(bw_difference) and bw_difference != 0.0: #do not need to check for nan | |
differences.append(bw_difference) | |
"""#--------------------------------------------------delete????------------------------------ | |
if not key_for_bed_dict in matches_dict: | |
# and not start in matches_dict[key_for_bed_dict]: #and float(matches_dict[key_for_bed_dict][start]['difference']) < bw_difference: #if there is no information saved about this match yet and if so, the saved difference is smaller that the one we have just found | |
matches_dict[key_for_bed_dict] = matches_dict.get(key_for_bed_dict, {}) | |
matches_dict[key_for_bed_dict][start] = {'moods_score': score, 'hitseq': hitseq, 'difference': bw_difference} | |
""" | |
""" | |
for i in range(len(hitseq)): | |
#check for the score, if there is already some score saved on this position, save the greatest (better) score | |
if scores_dict[key_for_bed_dict][int(start) + i] != 0.0: | |
#print(scores_dict[key_for_bed_dict][int(start) + i]) | |
scores_dict[key_for_bed_dict][int(start) + i] = max(bw_scores[i], scores_dict[key_for_bed_dict][int(start) + i]) | |
#print(scores_dict[key_for_bed_dict][int(start) + i]) | |
else: | |
scores_dict[key_for_bed_dict][int(start) + i] = bw_scores[i] | |
#if we already have background, use it to make the dictionary for fisher exact test | |
if background_dict: | |
#print(scores_dict[key_for_bed_dict][int(start):int(start) + len(hitseq)]) | |
overexpression_mean = np.mean(np.array(scores_dict[key_for_bed_dict][int(start):int(start) + len(hitseq)])) | |
if not np.isnan(overexpression_mean) and overexpression_mean > background_dict[key_for_bed_dict]: | |
motifs_dict[key_for_bed_dict] += 1 | |
else: | |
motifs_dict[key_for_bed_dict] += 1 | |
"""#----------------------------------------------------------------------------------------------------- | |
#one doesnt need to close file that was opened like so, as python does it on itself. file.closed says True | |
return fisher_dict_bg, fisher_dict, control_dict, overexpression_dict, differences | |
else: | |
logger.info("The input for moods was not validated by the MOODS.parsers.pfm. Please check if it has the right format (note that the MOODS accepts only the old version of .pfm files, that is one without the header containing the name and id of the motif)") | |
sys.exit() | |
#check if the bw score is already saved, if so check if it is bigger than the new one <--------------------------- do i need to save motif name in this matrix??? | |
def save_bw_score(motif, key_for_bed_dict, matches_dict, bw_score, hitseq, score): | |
if np.isnan(bw_score): bw_score = 0.0 | |
#bw_score = float(bw_score) * float(score) #apply the moods score | |
if key_for_bed_dict in matches_dict: | |
""" #---------------------------delete or leave as a feature??----------- | |
if float(matches_dict[key_for_bed_dict]['bw_score']) < bw_score: #save the match with the bigger score | |
#print(matches_dict[key_for_bed_dict]['bw_score']) | |
matches_dict[key_for_bed_dict] = {'bw_score': bw_score, 'hitseq': hitseq, 'moods_score': score} | |
#print(matches_dict[key_for_bed_dict]['bw_score']) | |
""" | |
#save the mean of the boths scores | |
#matches_dict[key_for_bed_dict] = np.mean([matches_dict[key_for_bed_dict], bw_score]) | |
#---------------------------------------------------------------------- | |
#save the biggest of scores | |
if matches_dict[key_for_bed_dict] < bw_score: | |
matches_dict[key_for_bed_dict] = bw_score | |
else: | |
matches_dict[key_for_bed_dict] = bw_score | |
return matches_dict | |
#help function for the moods call, convert pfm to log odds | |
def pfm_to_log_odds(filename, bg, pseudocount): | |
if pfm(filename): | |
mat = MOODS.parsers.pfm_to_log_odds(filename, bg, pseudocount) | |
if len(mat) != 4: #if something went wrong, the empty list will be returned | |
return False, mat | |
else: | |
return True, mat | |
else: | |
logger.info('please make sure the motif file has a .pfm format needed for moods') | |
sys.exit() | |
#help function for the moods call, check if the file is in a pfm format using moods | |
def pfm(filename): | |
mat = MOODS.parsers.pfm(filename) | |
if len(mat) != 4: | |
return False | |
else: | |
return True | |
def remove_file(file): | |
if os.path.isfile(file): | |
os.remove(file) | |
def clean_directory(cleans, output_directory, motif, tool_output_file): #<-----------------------check if it is working | |
moods_output_unsorted = os.path.join(tool_output_file.replace("moods_output", "moods_output_unsorted")) | |
for clean in cleans: | |
if clean == 'all': | |
remove_file(motif) | |
remove_file(tool_output_file) | |
remove_file(moods_output_unsorted) | |
elif clean == 'cut_motifs': | |
remove_file(motif) | |
elif clean == 'moods_output': | |
if os.path.basename(tool_output_file).startswith("moods"): | |
remove_file(tool_output_file) | |
def tool_make_output(usage, motif, genome, output_directory, cleans, p_value, bed_dictionary, fimo_data, resolve_overlaps, moods_bg, bw_overexpression, bw_control, mu_control, std_control, mu_overexpression, std_overexpression, global_mean, global_std): | |
standard_moods_bg = 0.25, 0.25, 0.25, 0.25 | |
fisher_dict = defaultdict(int) | |
fisher_dict_bg = defaultdict(int) | |
control_dict = {} | |
overexpression_dict = {} | |
differences = [] | |
#--------------------do we need the differences here? | |
fisher_dict_bg, fisher_dict, control_dict, overexpression_dict, differences = call_moods(motif, genome, output_directory, p_value, standard_moods_bg, fisher_dict_bg, fisher_dict, bw_control, bw_overexpression, control_dict, overexpression_dict, differences) | |
#make arrays of the dictionaries | |
control_array = [] | |
overexpression_array = [] | |
for key in control_dict: | |
control_array.append(control_dict[key]) | |
overexpression_array.append(overexpression_dict[key]) | |
""" | |
#find the mean of both arrays to know if the score is higher in control or in overexpression | |
direction = "control" | |
control_mean = np.mean(control_array) | |
overexpression_mean = np.mean(overexpression_array) | |
if control_mean - overexpression_mean <= 0: | |
#the score of overexpression is higher | |
direction = "overexpression" | |
#print(direction) | |
""" | |
""" | |
#normalize the arrays | |
control_array = normalize(control_array) | |
overexpression_array = normalize(overexpression_array) | |
""" | |
""" | |
#first concatenate two arrays to normalize them at once | |
one_array_len = len(control_array) | |
all_scores = control_array + overexpression_array | |
#scale all the scores together | |
all_scores = scale(all_scores) | |
#cut them in two again | |
control_array = all_scores[:one_array_len] | |
overexpression_array = all_scores[one_array_len:] | |
""" | |
motif_name = motif.replace(output_directory, '') | |
motif_name = motif_name.replace('/', '') | |
#make the wilcoxon signed-rank test | |
my_statistic, my_wilcoxon_pvalue, direction, differences, motif_std = my_wilcoxon(control_array, overexpression_array, mu_control, std_control, mu_overexpression, std_overexpression, global_mean, global_std, motif_name, correction = False) | |
positive_count_bg, negative_count_bg = count_motifs_number(fisher_dict_bg) #<--------------delete this one? | |
# ------------------do we need this as extra features? | |
#find the pearson correlation | |
#r_row, pearson_pvalue = stats.pearsonr(control_array, overexpression_array) | |
#print(r_row, pearson_pvalue) | |
#compute the ranksum statistic | |
#statistic2, ranksum_pvalue = stats.ranksums(control_array, overexpression_array) | |
#print(statistic2, ranksum_pvalue) | |
""" #--------------------do we need fisher test??? | |
positive_count, negative_count = count_motifs_number(fisher_dict) | |
positive_count_bg, negative_count_bg = count_motifs_number(fisher_dict_bg) | |
#find the p value of the motif | |
oddsratio, fisher_p_value = stats.fisher_exact([[positive_count, negative_count], | |
[positive_count_bg, negative_count_bg]]) #, alternative='greater') | |
""" | |
#oddsratio, fisher_p_value = stats.fisher_exact([[positive_count, positive_count_bg], | |
# [negative_count, negative_count_bg]]) | |
#correlation, fisher_p_value = stats.spearmanr([positive_count], [negative_count]) # liefert nan als pvalue :( | |
return my_wilcoxon_pvalue, fisher_dict, direction, positive_count_bg, differences, motif_std | |
def make_normal_distribution_plot(input_array, motif_name): | |
figure_name = motif_name.replace("pfm", "png") | |
output_directory = "./plots3" | |
mu = np.mean(input_array) | |
std = np.std(input_array, ddof = 1) | |
#axes = plt.gca() #gca = get the current axes | |
#axes.set_ylim([0, 80]) | |
fig, ax = plt.subplots() | |
plt.hist(input_array, bins = len(input_array), color = 'g', normed=True) | |
xmin, xmax = plt.xlim() | |
x = np.linspace(xmin, xmax, 100) | |
p = stats.norm.pdf(x, mu, std) | |
plt.plot(x, p, 'r', linewidth = 3) | |
motif_name = motif_name.replace(".pfm", "") | |
title = motif_name + " fit results: mu = %.4f, std = %.4f" % (mu, std) | |
plt.title(title) | |
plt.grid() | |
plt.ylim(0, 50) | |
fig.savefig(os.path.join(output_directory, figure_name)) | |
#plt.show() | |
#modified from scipy.wilcoxon | |
def my_wilcoxon(x, y, mu_control, std_control, mu_overexpression, std_overexpression, global_mean, global_std, motif_name, correction = False): | |
x, y = map(np.asarray, (x, y)) #apply np.asarray to both input arrays | |
if len(x) != len(y): | |
raise ValueError("The length of both arrays in Wilcoxon test should be the same. Aborting") | |
#normalize both arrays considering the global mu and std for overexpression and control | |
#make_normal_distribution_plot(x, "control_no_normalization") | |
#make_normal_distribution_plot(y, "overexpression_no_normalization") | |
#x = (x - mu_control) / std_control | |
#y = (y - mu_overexpression) / std_overexpression | |
#make_normal_distribution_plot(x, "control_with_normalization") | |
#make_normal_distribution_plot(y, "overexpression_with_normalization") | |
d = x - y #find the difference | |
#make_normal_distribution_plot(d, "differences_with_normalization") | |
#keep all non-zero differences | |
d = np.compress(np.not_equal(d, 0), d) #in scipy axis = -1, in my case it does not matter, as i have flattened array | |
#make_normal_distribution_plot(d, motif_name) | |
#correct the differences according to the normal distribution | |
#mu = np.mean(d) | |
#std = np.std(d, ddof = 1) #ddof = 1 calculates corrected sample sd which is sqrt(N/(N-1)) times the population sd where N is the number of points, interpretes the data as samples, estimates true variance | |
#https://stackoverflow.com/questions/15389768/standard-deviation-of-a-list | |
#correct the differences according to the global mean and std | |
d = (d - global_mean) / global_std | |
#motif_name = motif_name.replace(".pfm", "_normalized.pfm") | |
#make_normal_distribution_plot(d, motif_name) | |
count = len(d) | |
if count < 10: | |
logger.info("The sampe size is too small for normal approximation") | |
r = stats.rankdata(abs(d)) #assign ranks to data, dealing with ties appropriately | |
r_plus = np.sum((d > 0) * r, axis = 0) | |
r_minus = np.sum((d < 0) * r, axis = 0) | |
""" | |
#direction towards first array, plus | |
first_array = max(d) | |
#direction towards second array, minus | |
second_array = abs(min(d)) | |
if first_array > second_array: | |
#x was bigger | |
direction = "first_array" | |
else: | |
#y was bigger | |
direction = "second_array" | |
#print(r_plus, r_minus) | |
""" | |
T = min(r_plus, r_minus) | |
mn = count * (count + 1.) * 0.25 | |
se = count * (count + 1.) * (2. * count + 1.) | |
replist, repnum = stats.find_repeats(r) | |
if repnum.size != 0: | |
#correction for repeated elements | |
se -= 0.5 * (repnum * (repnum * repnum -1)).sum() | |
se = np.sqrt(se / 24) | |
correction = 0.5 * int(bool(correction)) * np.sign(T - mn) | |
z = (T - mn - correction) / se | |
#scale down | |
prob = 2. * stats.norm.sf(abs(z), scale = 2.5) | |
motif_std = np.std(d, ddof = 1) | |
motif_mu = np.mean(d) | |
direction = "control" #first_array | |
if motif_mu < 0: | |
direction = "overexpression" #second_array | |
return T, prob, direction, d, motif_std | |
def scale(input_array): | |
output_array = np.interp(input_array, (min(input_array), max(input_array)), (0, 1)) | |
return output_array | |
def normalize(input_array): | |
norm = np.linalg.norm(input_array) | |
if norm == 0: | |
return input_array | |
return input_array / norm | |
def count_motifs_number(fisher_dict): | |
positive_count = 0 | |
negative_count = 0 | |
for k, v in fisher_dict.items(): | |
if v > 0: #the number of found motifs in one peak | |
positive_count += 1 | |
else: #the number of found motifs in this peak is 0 | |
negative_count += 1 | |
return positive_count, negative_count | |
def multiprocess(motifs, genome, output_directory, cleans, fimo_data, p_value, bed_dictionary, cpu_count, resolve_overlaps, usage, moods_bg, bw_overexpression, bw_control): | |
print("entered multiprocess") | |
#check_directory("./plots3") | |
cpu_count = 30 | |
if cleans == None: | |
cleans = ['all'] | |
pool = multiprocessing.Pool(cpu_count) #by default is cpu_count 2 | |
length = len(motifs) #the number of the motifs to find the percentage of the job that was done | |
step = 100/length #the percentage that should be added after the job with each single motif is done | |
#tasks = [] #here the jobs done by processes are saved | |
matrix = {} | |
fisher_p_values = [] | |
list_of_motifs = [] | |
fisher_dict = dict() | |
#pick randomly 10000 scores of bigwig files and find the global score | |
#global_mean, global_std = find_global_score(bw_overexpression, bw_control) | |
global_mean, global_std, mu_control, std_control, mu_overexpression, std_overexpression = compute_differences(bed_dictionary, bw_overexpression, bw_control) | |
#print(global_mean, global_std, mu_control, std_control, mu_overexpression, std_overexpression) | |
#print(nastia) | |
#find global difference: for each peak and the one for all peaks | |
#global_differences, global_difference = compute_differences(bed_dictionary, bw_overexpression, bw_control) | |
#print("global difference", global_difference) | |
all_differences = [] | |
differences_file = open("test_difference12.txt", 'w') | |
motifs_p_values = open("test_motifs_p_values12.txt", 'w') | |
std_file = open("test_stds12.txt", 'w') | |
all_stds = {} | |
#first find motifs using standard background | |
for motif in motifs: | |
fisher_p_value, fisher_dict, direction, positive_count_bg, differences, motif_std = pool.apply_async(tool_make_output, args = (usage, motif, genome, output_directory, cleans, p_value, bed_dictionary, fimo_data, resolve_overlaps, moods_bg, bw_overexpression, bw_control, mu_control, std_control, mu_overexpression, std_overexpression, global_mean, global_std, )).get() | |
motif_name = motif.replace(output_directory, "") | |
motif_name = motif_name.replace("/", "") | |
motif_name = motif_name.replace(".pfm", "") | |
all_stds[motif_name] = motif_std | |
all_differences.extend(differences) | |
print(motif_name, fisher_p_value, direction, positive_count_bg) | |
motifs_p_values.write('\t'.join([str(motif_name), str(fisher_p_value), direction, str(positive_count_bg)]) + '\n') | |
differences_file.write(','.join(map(str, differences)) + ',') | |
std_file.write('\t'.join([str(motif_name), str(motif_std)]) + '\n') | |
#differences_file.write(','.join(map(str, (np.ndarray.tolist(global_differences))))) | |
#differences_file.write(','.join(map(str, global_differences))) | |
#differences_file.write("\n" + str(global_difference)) | |
#sort in descending order - greatest first | |
#all_stds_sorted = sorted(all_stds, key = all_stds.get, reverse=True) | |
#for key in all_stds_sorted: | |
# print(key) | |
differences_file.close() | |
motifs_p_values.close() | |
std_file.close() | |
#print(np.count_nonzero(all_differences), len(all_differences)) | |
#mu, std = stats.norm.fit(all_differences) | |
mu = np.mean(all_differences) | |
std = np.std(all_differences, ddof = 1) #ddof = 1 calculates corrected sample sd which is sqrt(N/(N-1)) times the population sd where N is the number of points, interpretes the data as samples, estimates true variance | |
#https://stackoverflow.com/questions/15389768/standard-deviation-of-a-list | |
plt.hist(all_differences, bins = 1500, color = 'g', normed=True) | |
xmin, xmax = plt.xlim() | |
x = np.linspace(xmin, xmax, 25000) | |
#p = stats.norm.pdf(x, mu, std) | |
p = stats.norm.pdf(x) | |
plt.plot(x, p, 'r', linewidth = 3) | |
title = "fit results: mu = %.4f, std = %.4f" % (mu, std) | |
plt.title(title) | |
plt.grid() | |
plt.show() | |
if mu != 0.0 and std != 1.0: | |
all_differences_corrected = (all_differences - mu ) / std | |
mu_corrected = np.mean(all_differences_corrected) | |
std_corrected = np.std(all_differences_corrected, ddof = 1) | |
plt.hist(all_differences_corrected, bins = 1500, color = 'b', normed=True) | |
xmin, xmax = plt.xlim() | |
x = np.linspace(xmin, xmax, 25000) | |
#p = stats.norm.pdf(x, mu, std) | |
p = stats.norm.pdf(x) | |
plt.plot(x, p, 'r', linewidth = 3) | |
title = "corrected results: mu = %.4f, std = %.4f" % (mu_corrected, std_corrected) | |
plt.title(title) | |
plt.grid() | |
plt.show() | |
""" | |
tasks.append(pool.apply_async(tool_make_output, args = (usage, motif, genome, output_directory, cleans, p_value, bed_dictionary, fimo_data, resolve_overlaps, moods_bg, ))) | |
tasks_done = sum([task.ready() for task in tasks]) #the number of the processes that ended their job | |
#check the number of the processes that are ready till the number of them reaches the number of processes started in the pool | |
while tasks_done < len(tasks): | |
#if the number of ready processes has changed, save the new number and print the percentage of the job done | |
if sum([task.ready() for task in tasks]) != tasks_done: | |
tasks_done = sum([task.ready() for task in tasks]) | |
sys.stdout.write("%-100s| %d%% \r" % (''*tasks_done, step*tasks_done)) | |
sys.stdout.flush() | |
sys.stdout.write("\n") | |
#update the number of ready processes each 0.05 seconds | |
time.sleep(0.05) | |
""" | |
pool.close() | |
pool.join() #make sure all the processes are done and exit | |
#the processes should not delete the merged genome file | |
#so make sure if this file is needed, otherwise delete it | |
for clean in cleans: | |
if clean == 'all' or clean == 'merge_output': | |
for filename in os.listdir(output_directory): | |
if filename == "output_merge.fa": | |
remove_file(genome) | |
if clean != 'nothing': | |
logger.info('the directory ' + output_directory + ' was cleaned, only the required files were left') | |
def compute_differences(bed_dictionary, overexpression, control): | |
print("entered compute_differences") | |
bw_control = pyBigWig.open(control) | |
bw_overexpression = pyBigWig.open(overexpression) | |
global_differences = {} #dict | |
differences_array = [] #to compute the mean at the end | |
control_array = [] | |
overexpression_array = [] | |
for header in bed_dictionary: | |
header_splitted = re.split(r':', header) | |
chromosom = header_splitted[0] | |
positions = re.split(r'-', header_splitted[-1]) | |
#compute the background difference for this peak | |
bw_global_score_control = np.mean(np.nan_to_num(np.array(list(bw_control.values(chromosom, int(positions[0]), int(positions[1])))))) | |
bw_global_score_overexpression = np.mean(np.nan_to_num(np.array(list(bw_overexpression.values(chromosom, int(positions[0]), int(positions[1])))))) | |
bw_global_difference = bw_global_score_control - bw_global_score_overexpression | |
global_differences[header] = bw_global_difference | |
control_array.append(bw_global_score_control) | |
overexpression_array.append(bw_global_score_overexpression) | |
differences_array.append(bw_global_difference) | |
mu = np.mean(differences_array) | |
std = np.std(differences_array, ddof = 1) | |
mu_control = np.mean(control_array) | |
std_control = np.std(control_array, ddof = 1) | |
mu_overexpression = np.mean(overexpression_array) | |
std_overexpression = np.std(overexpression_array, ddof = 1) | |
#make_normal_distribution_plot(control_array, "global_control_peaks") | |
#make_normal_distribution_plot(overexpression_array, "global_overexpression_peaks") | |
if (mu_control != mu_overexpression): | |
print("not the same! The mean of overexpression_array is " + str(mu_overexpression) + ", the mean of control is " + str(mu_control)) | |
print("need to normalize!!!") | |
if abs(mu_control) > mu_overexpression: | |
print("control is bigger") | |
else: | |
print("overexpression is bigger") | |
return mu, std, mu_control, std_control, mu_overexpression, std_overexpression | |
def find_global_score(overexpression, control): | |
print("entered find_global_score") | |
differences = [] | |
bw_control = pyBigWig.open(control) | |
bw_overexpression = pyBigWig.open(overexpression) | |
if not bw_control.isBigWig() or not bw_overexpression.isBigWig(): | |
logger.info("please provide the bigwig file!") | |
sys.exit() | |
chr_list = bw_control.chroms() | |
i = 0 | |
while i < 10000: | |
#find a random chromosome from the list | |
chromosom = random.choice(list(chr_list)) | |
#find a random start | |
start = random.randint(0, bw_control.chroms(chromosom) - 30) | |
length = random.randint(7, 30) #we are considering that the smallest TF has length of 7,vf and the biggest - of 30 bp | |
end = start + length | |
bw_scores_control = np.mean(np.array(list(bw_control.values(chromosom, start, end)))) | |
bw_scores_overexpression = np.mean(np.array(list(bw_overexpression.values(chromosom, start, end)))) | |
bw_difference = bw_scores_control - bw_scores_overexpression | |
if not np.isnan(bw_difference) and bw_difference != 0.0: | |
differences.append(bw_difference) | |
i += 1 | |
print(len(differences)) | |
difference = np.mean(differences) | |
std = np.std(differences, ddof = 1) | |
return difference, std | |
def is_fasta(check_fasta): | |
if not os.path.isfile(check_fasta): | |
logger.info('there is no file with genome, the exit is forced') | |
sys.exit() | |
else: | |
# modified code from https://stackoverflow.com/questions/44293407/how-can-i-check-whether-a-given-file-is-fasta | |
with open(check_fasta, "r") as handle: | |
fasta = SeqIO.parse(handle, "fasta") | |
return any(fasta) # False when `fasta` is empty, i.e. wasn't a FASTA file | |
def check_existing_input_files(args): #---------------------add check for bigwig files | |
if not args.motifs or not args.genome: | |
logger.info('there is no satisfied input, please enter --help or -h to learn how to use this tool') | |
sys.exit() | |
elif not is_fasta(args.genome): | |
logger.info('please make sure the input genome file has a fasta format') | |
sys.exit() | |
#check if the file with motifs exists | |
elif not os.path.isfile(args.motifs): | |
logger.info('there is no file with motifs, the exit is forced') | |
sys.exit() | |
#if the bedfile was given as input, check if this file exists | |
elif args.bed_file: | |
if not os.path.isfile(args.bed_file): | |
logger.info('there is no such bed file ' + args.bed_file + ', the exit is forced') | |
sys.exit() | |
def find_window_length(bed_file): | |
window_length = 0 | |
lengths = list() | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
lengths.append(int(bed_line_array[2]) - int(bed_line_array[1])) #find the length of the peak | |
else: #this is not a bed file, force exit | |
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line) | |
sys.exit() | |
read_bed_file.close() | |
window_length = int(np.mean(lengths)) | |
if window_length % 2 == 1: #if found window_length is an uneven number | |
window_length += 1 #add 1 to make it even for the later division and work | |
return window_length#-------------we don't need this function | |
def make_own_peaks(output_directory, bed_file, internal_window_length): | |
custom_peaks_name = os.path.join(output_directory, "custom_peaks.bed") | |
custom_peaks_file = open(custom_peaks_name, 'w') | |
radius = internal_window_length / 2 | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
center = int((int(bed_line_array[2]) - int(bed_line_array[1])) / 2) + int(bed_line_array[1]) | |
custom_peaks_file.write('\t'.join([bed_line_array[0], str(int(center - radius)), str(int(center + radius))]) + '\n') | |
custom_peaks_file.close() | |
return custom_peaks_name#-------------we don't need this function | |
def make_bed_array(bed_file): #--------------------------do we need this function?? | |
bed_array = list() | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
peak = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2] | |
bed_array.append(peak) | |
else: #this is not a bed file, force exit | |
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line) | |
sys.exit() | |
read_bed_file.close() | |
return bed_array | |
def make_bed_dictionary(bed_file): | |
bed_dictionary = {} | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
key = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2] | |
value = [] | |
for i in range(3, len(bed_line_array)): | |
value.append(bed_line_array[i]) | |
bed_dictionary[key] = value | |
else: #this is not a bed file, force exit | |
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line) | |
sys.exit() | |
read_bed_file.close() | |
return bed_dictionary | |
def print_small_logo(): | |
winnie_logo = """\ | |
__ ___ _ _ _ _ _ | |
\ \ / (_) \| | \| (_)___ | |
\ \/\/ /| | .` | .` | / -_) | |
\_/\_/ |_|_|\_|_|\_|_\___| | |
""" | |
print(winnie_logo) | |
def print_big_logo(): | |
winnie_big_logo = """\ | |
▄▒▀▀▀▒▄ ▄▄▀▀▒▄ | |
▄▄▒▀ ▀▒▄▄ ▄▄▒▀ ▀▒▄ | |
▐▒ ▐▒ ▒▀ ▒ | |
▐▌ ▐▒ ▒ ▐▌ | |
▐▌ ▐▒ ▒ ▐▌ | |
▐▌ ▐▒ ▒ ▒█▌ ▐▌ ▒█▌ | |
▐▌ ▐█▄ ▐▒ ▒ █▀ ▀▀ ▐█▄ ▐█ █▄ █ ▀▀ | |
▀▒▄▄ █▄▄▒▀ ▐█ ▀▒▄▄█ ▄▄▒▀▐██▄ ▐█ ▐██▌ █ ▄█▀▌ | |
▀▒▄▄▄▒▀█▌▄▒▐█▀█▒▄▄██▀▄▄▄▄▐█ ▐█ ▀▌ ▐█ ▐█ ▀█ █ █ ▓█▄▄▐█▄ | |
▄▄▒▀█ █▌ █▌ █▀░▄▄ ▐█ ▐█ ▀█▄█ ▐█ ▀█▄█ █ ▀█▀▀▀▀ | |
▐▌ ▀██ ██ ▐▌ ▐█ ▐█ ██ ▐█ ██ █ █▄ | |
▐ ▐▌ | |
▐ ▐▌ | |
▐ ▐▌ | |
▐▒▄ ▄▒▌ | |
▀▒▄▄ ▄▄▒▀ | |
▀▒▄▒▀ | |
""" | |
print(winnie_big_logo) | |
def main(): | |
print_big_logo() | |
#args = parse_args() | |
logger.removeHandler(ch) | |
#motifs = "small_database.meme" | |
#genome = "small_hg19.fasta" | |
#bed_file = "small_peaks.bed" | |
#motifs = "../../PaperInPrep/TOBIAS/buenrostro_analysis/data/buenrostro_motifs.meme" | |
#genome = "../analysis_my_tool/chipseq/hg19.fasta" | |
#bed_file = "../analysis_my_tool/chipseq/hg19_peaks.bed" | |
#bed_file = "../TOBIAS/tobias/TFBScan/peaks.bed" | |
#output_directory = "./" | |
#bw_overexpression = "overexpression_footprints.bw" | |
#bw_control = "control_footprints.bw" | |
#bw_overexpression = "../../mette.bentsen/to_anastasiia/duxbl_footprints.bw" | |
#bw_control = "../../mette.bentsen/to_anastasiia/gfp_footprints.bw" | |
bw_control = "../../mette.bentsen/to_anastasiia/duxbl_footprints.bw" | |
bw_overexpression = "../../mette.bentsen/to_anastasiia/gfp_footprints.bw" | |
#to check with ame | |
motifs = "../my_ame/JASPAR2018_CORE_vertebrates_non-redundant_pfms_meme.meme" | |
genome = "../my_ame/mm10.fa" | |
#genome = "../my_ame/overexpression_peaks.fa" | |
#genome = "/new_test/merged.fa" | |
bed_file = "../../mette.bentsen/to_anastasiia/all_merged.bed" | |
#bed_file = "../my_ame/overexpression_peaks.bed" | |
output_directory_moods = "new_test" | |
cleans = "nothing" | |
fimo = "" | |
p_value = 0.0001 | |
cores = 31 | |
resolve_overlaps = False | |
moods_bg = 0.2955, 0.2045, 0.2045, 0.2955 | |
#check if there is an existing directory that user gave as input, otherwise create this directory from the path provided from the user | |
check_directory(output_directory_moods) | |
check_directory("./plots3") | |
#merge the genome file with the normal peaks file | |
genome = merge(genome, bed_file, output_directory_moods) | |
#internal_window_length = find_window_length(bed_file) | |
#print("internal window length: ", internal_window_length) | |
#window_length = internal_window_length * 5 | |
#make_bed_array(bed_file) | |
#make custom peaks file with all peaks of the same length | |
#custom_peaks = make_own_peaks(output_directory, bed_file, internal_window_length) | |
#merge thetool_make_output genome file with the custom peaks file | |
#custom_genome = merge(genome, custom_peaks, output_directory) | |
splitted_motifs_moods = split_motifs(motifs, output_directory_moods, "moods") | |
bed_dictionary = make_bed_dictionary(bed_file) | |
moods_start = time.time() | |
multiprocess(splitted_motifs_moods, genome, output_directory_moods, cleans, fimo, p_value, bed_dictionary, cores, resolve_overlaps, "moods", moods_bg, bw_overexpression, bw_control) # <---------------------- put the last as custom_genome | |
print("----- MOODS needed %s seconds -----" % (time.time() - moods_start)) | |
for handler in logger.handlers: | |
handler.close() | |
logger.removeFilter(handler) | |
if __name__ == "__main__": | |
main() |