Skip to content
Permalink
57b36a0a75
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
156 lines (136 sloc) 3.95 KB
/* An alternative to qsort, with an identical interface.
This file is part of the GNU C Library.
Copyright (C) 1992,95-97,99,2000,01,02 Free Software Foundation, Inc.
Written by Mike Haertel, September 1988.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <alloca.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <memcopy.h>
#include <errno.h>
static void msort_with_tmp (void *b, size_t n, size_t s,
__compar_fn_t cmp, char *t);
static void
msort_with_tmp (void *b, size_t n, size_t s, __compar_fn_t cmp,
char *t)
{
char *tmp;
char *b1, *b2;
size_t n1, n2;
if (n <= 1)
return;
n1 = n / 2;
n2 = n - n1;
b1 = b;
b2 = (char *) b + (n1 * s);
msort_with_tmp (b1, n1, s, cmp, t);
msort_with_tmp (b2, n2, s, cmp, t);
tmp = t;
if (s == OPSIZ && (b1 - (char *) 0) % OPSIZ == 0)
/* We are operating on aligned words. Use direct word stores. */
while (n1 > 0 && n2 > 0)
{
if ((*cmp) (b1, b2) <= 0)
{
--n1;
*((op_t *) tmp)++ = *((op_t *) b1)++;
}
else
{
--n2;
*((op_t *) tmp)++ = *((op_t *) b2)++;
}
}
else
while (n1 > 0 && n2 > 0)
{
if ((*cmp) (b1, b2) <= 0)
{
tmp = (char *) __mempcpy (tmp, b1, s);
b1 += s;
--n1;
}
else
{
tmp = (char *) __mempcpy (tmp, b2, s);
b2 += s;
--n2;
}
}
if (n1 > 0)
memcpy (tmp, b1, n1 * s);
memcpy (b, t, (n - n2) * s);
}
void
qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)
{
const size_t size = n * s;
if (size < 1024)
{
void *buf = __alloca (size);
/* The temporary array is small, so put it on the stack. */
msort_with_tmp (b, n, s, cmp, buf);
}
else
{
/* We should avoid allocating too much memory since this might
have to be backed up by swap space. */
static long int phys_pages;
static int pagesize;
if (phys_pages == 0)
{
phys_pages = __sysconf (_SC_PHYS_PAGES);
if (phys_pages == -1)
/* Error while determining the memory size. So let's
assume there is enough memory. Otherwise the
implementer should provide a complete implementation of
the `sysconf' function. */
phys_pages = (long int) (~0ul >> 1);
/* The following determines that we will never use more than
a quarter of the physical memory. */
phys_pages /= 4;
pagesize = __sysconf (_SC_PAGESIZE);
}
/* Just a comment here. We cannot compute
phys_pages * pagesize
and compare the needed amount of memory against this value.
The problem is that some systems might have more physical
memory then can be represented with a `size_t' value (when
measured in bytes. */
/* If the memory requirements are too high don't allocate memory. */
if (size / pagesize > (size_t) phys_pages)
_quicksort (b, n, s, cmp);
else
{
/* It's somewhat large, so malloc it. */
int save = errno;
char *tmp = malloc (size);
if (tmp == NULL)
{
/* Couldn't get space, so use the slower algorithm
that doesn't need a temporary array. */
__set_errno (save);
_quicksort (b, n, s, cmp);
}
else
{
__set_errno (save);
msort_with_tmp (b, n, s, cmp, tmp);
free (tmp);
}
}
}
}
libc_hidden_def (qsort)