Skip to content
Permalink
6bc0b95489
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
191 lines (160 sloc) 5.16 KB
/* Enqueue and list of read or write requests.
Copyright (C) 1997,1998,1999,2000,2001,2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#ifndef lio_listio
#include <aio.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include "aio_misc.h"
#define LIO_OPCODE_BASE 0
#endif
/* We need this special structure to handle asynchronous I/O. */
struct async_waitlist
{
int counter;
struct sigevent sigev;
struct waitlist list[0];
};
int
lio_listio (mode, list, nent, sig)
int mode;
struct aiocb *const list[];
int nent;
struct sigevent *sig;
{
struct sigevent defsigev;
struct requestlist *requests[nent];
int cnt;
volatile int total = 0;
int result = 0;
/* Check arguments. */
if (mode != LIO_WAIT && mode != LIO_NOWAIT)
{
__set_errno (EINVAL);
return -1;
}
if (sig == NULL)
{
defsigev.sigev_notify = SIGEV_NONE;
sig = &defsigev;
}
/* Request the mutex. */
pthread_mutex_lock (&__aio_requests_mutex);
/* Now we can enqueue all requests. Since we already acquired the
mutex the enqueue function need not do this. */
for (cnt = 0; cnt < nent; ++cnt)
if (list[cnt] != NULL && list[cnt]->aio_lio_opcode != LIO_NOP)
{
list[cnt]->aio_sigevent.sigev_notify = SIGEV_NONE;
requests[cnt] = __aio_enqueue_request ((aiocb_union *) list[cnt],
(list[cnt]->aio_lio_opcode
| LIO_OPCODE_BASE));
if (requests[cnt] != NULL)
/* Successfully enqueued. */
++total;
else
/* Signal that we've seen an error. `errno' and the error code
of the aiocb will tell more. */
result = -1;
}
else
requests[cnt] = NULL;
if (total == 0)
{
/* We don't have anything to do except signalling if we work
asynchronously. */
/* Release the mutex. We do this before raising a signal since the
signal handler might do a `siglongjmp' and then the mutex is
locked forever. */
pthread_mutex_unlock (&__aio_requests_mutex);
if (mode == LIO_NOWAIT)
__aio_notify_only (sig,
sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0);
return result;
}
else if (mode == LIO_WAIT)
{
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct waitlist waitlist[nent];
int oldstate;
total = 0;
for (cnt = 0; cnt < nent; ++cnt)
{
assert (requests[cnt] == NULL || list[cnt] != NULL);
if (requests[cnt] != NULL && list[cnt]->aio_lio_opcode != LIO_NOP)
{
waitlist[cnt].cond = &cond;
waitlist[cnt].next = requests[cnt]->waiting;
waitlist[cnt].counterp = &total;
waitlist[cnt].sigevp = NULL;
waitlist[cnt].caller_pid = 0; /* Not needed. */
requests[cnt]->waiting = &waitlist[cnt];
++total;
}
}
/* Since `pthread_cond_wait'/`pthread_cond_timedwait' are cancelation
points we must be careful. We added entries to the waiting lists
which we must remove. So defer cancelation for now. */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &oldstate);
while (total > 0)
pthread_cond_wait (&cond, &__aio_requests_mutex);
/* Now it's time to restore the cancelation state. */
pthread_setcancelstate (oldstate, NULL);
/* Release the conditional variable. */
if (pthread_cond_destroy (&cond) != 0)
/* This must never happen. */
abort ();
}
else
{
struct async_waitlist *waitlist;
waitlist = (struct async_waitlist *)
malloc (sizeof (struct async_waitlist)
+ (nent * sizeof (struct waitlist)));
if (waitlist == NULL)
{
__set_errno (EAGAIN);
result = -1;
}
else
{
pid_t caller_pid = sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0;
total = 0;
for (cnt = 0; cnt < nent; ++cnt)
{
assert (requests[cnt] == NULL || list[cnt] != NULL);
if (requests[cnt] != NULL
&& list[cnt]->aio_lio_opcode != LIO_NOP)
{
waitlist->list[cnt].cond = NULL;
waitlist->list[cnt].next = requests[cnt]->waiting;
waitlist->list[cnt].counterp = &waitlist->counter;
waitlist->list[cnt].sigevp = &waitlist->sigev;
waitlist->list[cnt].caller_pid = caller_pid;
requests[cnt]->waiting = &waitlist->list[cnt];
++total;
}
}
waitlist->counter = total;
waitlist->sigev = *sig;
}
}
/* Release the mutex. */
pthread_mutex_unlock (&__aio_requests_mutex);
return result;
}