Skip to content
Permalink
73f7c32c47
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
185 lines (144 sloc) 5.69 KB
/* Copyright (C) 2003, 2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Martin Schwidefsky <schwidefsky@de.ibm.com>, 2003.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <endian.h>
#include <errno.h>
#include <sysdep.h>
#include <lowlevellock.h>
#include <pthread.h>
#include <pthreadP.h>
#include <shlib-compat.h>
struct _condvar_cleanup_buffer
{
int oldtype;
pthread_cond_t *cond;
pthread_mutex_t *mutex;
unsigned int bc_seq;
};
void
__attribute__ ((visibility ("hidden")))
__condvar_cleanup (void *arg)
{
struct _condvar_cleanup_buffer *cbuffer =
(struct _condvar_cleanup_buffer *) arg;
unsigned int destroying;
/* We are going to modify shared data. */
lll_mutex_lock (cbuffer->cond->__data.__lock);
if (cbuffer->bc_seq == cbuffer->cond->__data.__broadcast_seq)
{
/* This thread is not waiting anymore. Adjust the sequence counters
appropriately. */
++cbuffer->cond->__data.__wakeup_seq;
++cbuffer->cond->__data.__woken_seq;
++cbuffer->cond->__data.__futex;
}
cbuffer->cond->__data.__nwaiters -= 1 << COND_CLOCK_BITS;
/* If pthread_cond_destroy was called on this variable already,
notify the pthread_cond_destroy caller all waiters have left
and it can be successfully destroyed. */
destroying = 0;
if (cbuffer->cond->__data.__total_seq == -1ULL
&& cbuffer->cond->__data.__nwaiters < (1 << COND_CLOCK_BITS))
{
lll_futex_wake (&cbuffer->cond->__data.__nwaiters, 1);
destroying = 1;
}
/* We are done. */
lll_mutex_unlock (cbuffer->cond->__data.__lock);
/* Wake everybody to make sure no condvar signal gets lost. */
if (! destroying)
lll_futex_wake (&cbuffer->cond->__data.__futex, INT_MAX);
/* Get the mutex before returning unless asynchronous cancellation
is in effect. */
__pthread_mutex_cond_lock (cbuffer->mutex);
}
int
__pthread_cond_wait (cond, mutex)
pthread_cond_t *cond;
pthread_mutex_t *mutex;
{
struct _pthread_cleanup_buffer buffer;
struct _condvar_cleanup_buffer cbuffer;
int err;
/* Make sure we are along. */
lll_mutex_lock (cond->__data.__lock);
/* Now we can release the mutex. */
err = __pthread_mutex_unlock_usercnt (mutex, 0);
if (__builtin_expect (err, 0))
{
lll_mutex_unlock (cond->__data.__lock);
return err;
}
/* We have one new user of the condvar. */
++cond->__data.__total_seq;
++cond->__data.__futex;
cond->__data.__nwaiters += 1 << COND_CLOCK_BITS;
/* Remember the mutex we are using here. If there is already a
different address store this is a bad user bug. Do not store
anything for pshared condvars. */
if (cond->__data.__mutex != (void *) ~0l)
cond->__data.__mutex = mutex;
/* Prepare structure passed to cancellation handler. */
cbuffer.cond = cond;
cbuffer.mutex = mutex;
/* Before we block we enable cancellation. Therefore we have to
install a cancellation handler. */
__pthread_cleanup_push (&buffer, __condvar_cleanup, &cbuffer);
/* The current values of the wakeup counter. The "woken" counter
must exceed this value. */
unsigned long long int val;
unsigned long long int seq;
val = seq = cond->__data.__wakeup_seq;
/* Remember the broadcast counter. */
cbuffer.bc_seq = cond->__data.__broadcast_seq;
do
{
unsigned int futex_val = cond->__data.__futex;
/* Prepare to wait. Release the condvar futex. */
lll_mutex_unlock (cond->__data.__lock);
/* Enable asynchronous cancellation. Required by the standard. */
cbuffer.oldtype = __pthread_enable_asynccancel ();
/* Wait until woken by signal or broadcast. */
lll_futex_wait (&cond->__data.__futex, futex_val);
/* Disable asynchronous cancellation. */
__pthread_disable_asynccancel (cbuffer.oldtype);
/* We are going to look at shared data again, so get the lock. */
lll_mutex_lock (cond->__data.__lock);
/* If a broadcast happened, we are done. */
if (cbuffer.bc_seq != cond->__data.__broadcast_seq)
goto bc_out;
/* Check whether we are eligible for wakeup. */
val = cond->__data.__wakeup_seq;
}
while (val == seq || cond->__data.__woken_seq == val);
/* Another thread woken up. */
++cond->__data.__woken_seq;
bc_out:
cond->__data.__nwaiters -= 1 << COND_CLOCK_BITS;
/* If pthread_cond_destroy was called on this varaible already,
notify the pthread_cond_destroy caller all waiters have left
and it can be successfully destroyed. */
if (cond->__data.__total_seq == -1ULL
&& cond->__data.__nwaiters < (1 << COND_CLOCK_BITS))
lll_futex_wake (&cond->__data.__nwaiters, 1);
/* We are done with the condvar. */
lll_mutex_unlock (cond->__data.__lock);
/* The cancellation handling is back to normal, remove the handler. */
__pthread_cleanup_pop (&buffer, 0);
/* Get the mutex before returning. */
return __pthread_mutex_cond_lock (mutex);
}
versioned_symbol (libpthread, __pthread_cond_wait, pthread_cond_wait,
GLIBC_2_3_2);