Skip to content
Permalink
958528b013
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
655 lines (588 sloc) 21.2 KB
/* Machine-dependent ELF dynamic relocation inline functions. IA-64 version.
Copyright (C) 1995-1997, 2000-2002, 2003 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#ifndef dl_machine_h
#define dl_machine_h 1
#define ELF_MACHINE_NAME "ia64"
#include <assert.h>
#include <string.h>
#include <link.h>
#include <errno.h>
#include <tls.h>
/* Translate a processor specific dynamic tag to the index
in l_info array. */
#define DT_IA_64(x) (DT_IA_64_##x - DT_LOPROC + DT_NUM)
/* There are currently 123 dynamic symbols in ld.so.
IA64_BOOT_FPTR_TABLE_LEN needs to be at least that big. */
#define IA64_BOOT_FPTR_TABLE_LEN 200
/* An FDESC is a function descriptor. */
struct ia64_fdesc
{
Elf64_Addr ip; /* code entry point */
Elf64_Addr gp; /* global pointer */
};
struct ia64_fdesc_table
{
struct ia64_fdesc_table *next;
unsigned int len; /* # of entries in fdesc table */
volatile unsigned int first_unused; /* index of first available entry */
struct ia64_fdesc fdesc[0];
};
extern Elf64_Addr __ia64_make_fptr (struct link_map *, const Elf64_Sym *,
Elf64_Addr);
static inline void
__ia64_init_bootstrap_fdesc_table (struct link_map *map)
{
Elf64_Addr *boot_table;
/* careful: this will be called before got has been relocated... */
asm (";; addl %0 = @gprel (__ia64_boot_fptr_table), gp" : "=r"(boot_table));
map->l_mach.fptr_table_len = IA64_BOOT_FPTR_TABLE_LEN;
map->l_mach.fptr_table = boot_table;
}
#define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \
__ia64_init_bootstrap_fdesc_table (&bootstrap_map);
/* Return nonzero iff ELF header is compatible with the running host. */
static inline int
elf_machine_matches_host (const Elf64_Ehdr *ehdr)
{
return ehdr->e_machine == EM_IA_64;
}
/* Return the link-time address of _DYNAMIC. */
static inline Elf64_Addr
elf_machine_dynamic (void)
{
Elf64_Addr *p;
__asm__ (
".section .sdata\n"
" .type __dynamic_ltv#, @object\n"
" .size __dynamic_ltv#, 8\n"
"__dynamic_ltv:\n"
" data8 @ltv(_DYNAMIC#)\n"
".previous\n"
" addl %0 = @gprel(__dynamic_ltv#), gp ;;"
: "=r" (p));
return *p;
}
/* Return the run-time load address of the shared object. */
static inline Elf64_Addr
elf_machine_load_address (void)
{
Elf64_Addr ip;
int *p;
__asm__ (
"1: mov %0 = ip\n"
".section .sdata\n"
"2: data4 @ltv(1b)\n"
" .align 8\n"
".previous\n"
" addl %1 = @gprel(2b), gp ;;"
: "=r" (ip), "=r" (p));
return ip - (Elf64_Addr) *p;
}
/* Set up the loaded object described by L so its unrelocated PLT
entries will jump to the on-demand fixup code in dl-runtime.c. */
static inline int
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
{
extern void _dl_runtime_resolve (void);
extern void _dl_runtime_profile (void);
if (lazy)
{
register Elf64_Addr gp __asm__ ("gp");
Elf64_Addr *reserve, doit;
/*
* Careful with the typecast here or it will try to add l-l_addr
* pointer elements
*/
reserve = ((Elf64_Addr *)
(l->l_info[DT_IA_64 (PLT_RESERVE)]->d_un.d_ptr + l->l_addr));
/* Identify this shared object. */
reserve[0] = (Elf64_Addr) l;
/* This function will be called to perform the relocation. */
if (!profile)
doit = (Elf64_Addr) ((struct ia64_fdesc *) &_dl_runtime_resolve)->ip;
else
{
if (_dl_name_match_p (GL(dl_profile), l))
{
/* This is the object we are looking for. Say that we really
want profiling and the timers are started. */
GL(dl_profile_map) = l;
}
doit = (Elf64_Addr) ((struct ia64_fdesc *) &_dl_runtime_profile)->ip;
}
reserve[1] = doit;
reserve[2] = gp;
}
return lazy;
}
/*
This code is used in dl-runtime.c to call the `fixup' function
and then redirect to the address it returns. `fixup()' takes two
arguments, however profile_fixup() takes three.
The ABI specifies that we will never see more than 8 input
registers to a function call, thus it is safe to simply allocate
those, and simpler than playing stack games.
- 12/09/99 Jes
*/
#define TRAMPOLINE_TEMPLATE(tramp_name, fixup_name) \
extern void tramp_name (void); \
asm ( \
" .global " #tramp_name "#\n" \
" .proc " #tramp_name "#\n" \
#tramp_name ":\n" \
" { .mmi\n" \
" .prologue\n" \
" .save ar.pfs, r40\n" \
" alloc loc0 = ar.pfs, 8, 6, 3, 0\n" \
" adds r2 = -144, r12\n" \
" adds r3 = -128, r12\n" \
" }\n" \
" { .mii\n" \
" .fframe 160\n" \
" adds r12 = -160, r12\n" \
" .save rp, r41\n" \
" mov loc1 = b0\n" \
" .body\n" \
" mov out2 = b0 /* needed by fixup_profile */\n" \
" ;;\n" \
" }\n" \
" { .mfb\n" \
" mov loc2 = r8 /* preserve struct value register */\n" \
" nop.f 0\n" \
" nop.b 0\n" \
" }\n" \
" { .mii\n" \
" mov loc3 = r9 /* preserve language specific register */\n" \
" mov loc4 = r10 /* preserve language specific register */\n" \
" mov loc5 = r11 /* preserve language specific register */\n" \
" }\n" \
" { .mmi\n" \
" stf.spill [r2] = f8, 32\n" \
" stf.spill [r3] = f9, 32\n" \
" mov out0 = r16\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" stf.spill [r2] = f10, 32\n" \
" stf.spill [r3] = f11, 32\n" \
" shl out1 = r15, 4\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" stf.spill [r2] = f12, 32\n" \
" stf.spill [r3] = f13, 32\n" \
" shladd out1 = r15, 3, out1\n" \
" ;;\n" \
" }\n" \
" { .mmb\n" \
" stf.spill [r2] = f14\n" \
" stf.spill [r3] = f15\n" \
" br.call.sptk.many b0 = " #fixup_name "#\n" \
" }\n" \
" { .mii\n" \
" ld8 r9 = [ret0], 8\n" \
" adds r2 = 16, r12\n" \
" adds r3 = 32, r12\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ldf.fill f8 = [r2], 32\n" \
" ldf.fill f9 = [r3], 32\n" \
" mov b0 = loc1\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ldf.fill f10 = [r2], 32\n" \
" ldf.fill f11 = [r3], 32\n" \
" mov b6 = r9\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ldf.fill f12 = [r2], 32\n" \
" ldf.fill f13 = [r3], 32\n" \
" mov ar.pfs = loc0\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ldf.fill f14 = [r2], 32\n" \
" ldf.fill f15 = [r3], 32\n" \
" .restore sp /* pop the unwind frame state */\n" \
" adds r12 = 160, r12\n" \
" ;;\n" \
" }\n" \
" { .mii\n" \
" mov r9 = loc3 /* restore language specific register */\n" \
" mov r10 = loc4 /* restore language specific register */\n" \
" mov r11 = loc5 /* restore language specific register */\n" \
" }\n" \
" { .mii\n" \
" ld8 gp = [ret0]\n" \
" mov r8 = loc2 /* restore struct value register */\n" \
" ;;\n" \
" }\n" \
" /* An alloc is needed for the break system call to work.\n" \
" We don't care about the old value of the pfs register. */\n" \
" { .mmb\n" \
" .prologue\n" \
" .body\n" \
" alloc r2 = ar.pfs, 0, 0, 8, 0\n" \
" br.sptk.many b6\n" \
" ;;\n" \
" }\n" \
" .endp " #tramp_name "#\n");
#ifndef PROF
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
TRAMPOLINE_TEMPLATE (_dl_runtime_profile, profile_fixup);
#else
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
TRAMPOLINE_TEMPLATE (_dl_runtime_resolve, fixup); \
strong_alias (_dl_runtime_resolve, _dl_runtime_profile);
#endif
/* Initial entry point code for the dynamic linker.
The C function `_dl_start' is the real entry point;
its return value is the user program's entry point. */
#define RTLD_START asm ( \
".text\n" \
" .global _start#\n" \
" .proc _start#\n" \
"_start:\n" \
"0: { .mii\n" \
" .prologue\n" \
" .save ar.pfs, r32\n" \
" .save rp, r0\n" \
" alloc loc0 = ar.pfs, 0, 3, 4, 0\n" \
" .body\n" \
" mov r2 = ip\n" \
" addl r3 = @gprel(0b), r0\n" \
" ;;\n" \
" }\n" \
" { .mlx\n" \
" /* Calculate the GP, and save a copy in loc1. */\n" \
" sub gp = r2, r3\n" \
" movl r8 = 0x9804c0270033f\n" \
" ;;\n" \
" }\n" \
" { .mii\n" \
" mov ar.fpsr = r8\n" \
" sub loc1 = r2, r3\n" \
" /* _dl_start wants a pointer to the pointer to the arg block and\n" \
" the arg block starts with an integer, thus the magic 16. */\n" \
" adds out0 = 16, sp\n" \
" }\n" \
" { .bbb\n" \
" br.call.sptk.many b0 = _dl_start#\n" \
" ;;\n" \
" }\n" \
" .endp _start#\n" \
" /* FALLTHRU */\n" \
" .global _dl_start_user#\n" \
" .proc _dl_start_user#\n" \
"_dl_start_user:\n" \
" .prologue\n" \
" .save ar.pfs, r32\n" \
" .save rp, r0\n" \
" .body\n" \
" { .mii\n" \
" /* Save the pointer to the user entry point fptr in loc2. */\n" \
" mov loc2 = ret0\n" \
" /* Store the highest stack address. */\n" \
" addl r2 = @ltoff(__libc_stack_end#), gp\n" \
" addl r3 = @gprel(_dl_skip_args), gp\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ld8 r2 = [r2]\n" \
" ld4 r3 = [r3]\n" \
" adds r11 = 24, sp /* Load the address of argv. */\n" \
" ;;\n" \
" }\n" \
" { .mii\n" \
" st8 [r2] = sp\n" \
" adds r10 = 16, sp /* Load the address of argc. */\n" \
" mov out2 = r11\n" \
" ;;\n" \
" /* See if we were run as a command with the executable file\n" \
" name as an extra leading argument. If so, adjust the argv\n" \
" pointer to skip _dl_skip_args words.\n" \
" Note that _dl_skip_args is an integer, not a long - Jes\n" \
"\n" \
" The stack pointer has to be 16 byte aligned. We cannot simply\n" \
" addjust the stack pointer. We have to move the whole argv and\n" \
" envp and adjust _dl_argv by _dl_skip_args. H.J. */\n" \
" }\n" \
" { .mib\n" \
" ld8 out1 = [r10] /* is argc actually stored as a long\n" \
" or as an int? */\n" \
" addl r2 = @ltoff(_dl_argv), gp\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" ld8 r2 = [r2] /* Get the address of _dl_argv. */\n" \
" sub out1 = out1, r3 /* Get the new argc. */\n" \
" shladd r3 = r3, 3, r0\n" \
" ;;\n" \
" }\n" \
" {\n" \
" .mib\n" \
" ld8 r17 = [r2] /* Get _dl_argv. */\n" \
" add r15 = r11, r3 /* The address of the argv we move */\n" \
" ;;\n" \
" }\n" \
" /* ??? Could probably merge these two loops into 3 bundles.\n" \
" using predication to control which set of copies we're on. */\n" \
"1: /* Copy argv. */\n" \
" { .mfi\n" \
" ld8 r16 = [r15], 8 /* Load the value in the old argv. */\n" \
" ;;\n" \
" }\n" \
" { .mib\n" \
" st8 [r11] = r16, 8 /* Store it in the new argv. */\n" \
" cmp.ne p6, p7 = 0, r16\n" \
"(p6) br.cond.dptk.few 1b\n" \
" ;;\n" \
" }\n" \
" { .mmi\n" \
" mov out3 = r11\n" \
" sub r17 = r17, r3 /* Substract _dl_skip_args. */\n" \
" addl out0 = @gprel(_rtld_local), gp\n" \
" }\n" \
"1: /* Copy env. */\n" \
" { .mfi\n" \
" ld8 r16 = [r15], 8 /* Load the value in the old env. */\n" \
" ;;\n" \
" }\n" \
" { .mib\n" \
" st8 [r11] = r16, 8 /* Store it in the new env. */\n" \
" cmp.ne p6, p7 = 0, r16\n" \
"(p6) br.cond.dptk.few 1b\n" \
" ;;\n" \
" }\n" \
" { .mmb\n" \
" st8 [r10] = out1 /* Record the new argc. */\n" \
" ld8 out0 = [out0] /* get the linkmap */\n" \
" }\n" \
" { .mmb\n" \
" st8 [r2] = r17 /* Load the new _dl_argv. */\n" \
" br.call.sptk.many b0 = _dl_init_internal#\n" \
" ;;\n" \
" }\n" \
" /* Pass our finializer function to the user,\n" \
" and jump to the user's entry point. */\n" \
" { .mmi\n" \
" ld8 r3 = [loc2], 8\n" \
" mov b0 = r0\n" \
" }\n" \
" { .mmi\n" \
" addl ret0 = @ltoff(@fptr(_dl_fini#)), gp\n" \
" ;;\n" \
" mov b6 = r3\n" \
" }\n" \
" { .mmi\n" \
" ld8 ret0 = [ret0]\n" \
" ld8 gp = [loc2]\n" \
" mov ar.pfs = loc0\n" \
" ;;\n" \
" }\n" \
" { .mfb\n" \
" br.sptk.many b6\n" \
" ;;\n" \
" }\n" \
" .endp _dl_start_user#\n" \
".previous\n");
#ifndef RTLD_START_SPECIAL_INIT
#define RTLD_START_SPECIAL_INIT /* nothing */
#endif
/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or TLS
variable, so undefined references should not be allowed to define the
value.
ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
of the main executable's symbols, as for a COPY reloc, which we don't
use. */
/* ??? Ignore *MSB for now. */
#if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD)
#define elf_machine_type_class(type) \
(((type) == R_IA64_IPLTLSB || (type) == R_IA64_DTPMOD64LSB \
|| (type) == R_IA64_DTPREL64LSB || (type) == R_IA64_TPREL64LSB) \
* ELF_RTYPE_CLASS_PLT)
#else
#define elf_machine_type_class(type) \
(((type) == R_IA64_IPLTLSB) * ELF_RTYPE_CLASS_PLT)
#endif
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries. */
#define ELF_MACHINE_JMP_SLOT R_IA64_IPLTLSB
/* According to the IA-64 specific documentation, Rela is always used. */
#define ELF_MACHINE_NO_REL 1
/* Return the address of the entry point. */
#define ELF_MACHINE_START_ADDRESS(map, start) \
DL_STATIC_FUNCTION_ADDRESS (map, start)
#define elf_machine_profile_fixup_plt(l, reloc, rel_addr, value) \
elf_machine_fixup_plt (l, reloc, rel_addr, value)
#define elf_machine_profile_plt(reloc_addr) ((Elf64_Addr) (reloc_addr))
/* Fixup a PLT entry to bounce directly to the function at VALUE. */
static inline Elf64_Addr
elf_machine_fixup_plt (struct link_map *l, lookup_t t,
const Elf64_Rela *reloc,
Elf64_Addr *reloc_addr, Elf64_Addr value)
{
/* l is the link_map for the caller, t is the link_map for the object
* being called */
/* got has already been relocated in elf_get_dynamic_info() */
reloc_addr[1] = t->l_info[DT_PLTGOT]->d_un.d_ptr;
/* we need a "release" here to ensure that the gp is visible before
the code entry point is updated: */
((volatile Elf64_Addr *) reloc_addr)[0] = value;
return (Elf64_Addr) reloc_addr;
}
/* Return the final value of a plt relocation. */
static inline Elf64_Addr
elf_machine_plt_value (struct link_map *map, const Elf64_Rela *reloc,
Elf64_Addr value)
{
/* No need to handle rel vs rela since IA64 is rela only */
return value + reloc->r_addend;
}
#endif /* !dl_machine_h */
#ifdef RESOLVE_MAP
#define R_IA64_TYPE(R) ((R) & -8)
#define R_IA64_FORMAT(R) ((R) & 7)
#define R_IA64_FORMAT_32MSB 4
#define R_IA64_FORMAT_32LSB 5
#define R_IA64_FORMAT_64MSB 6
#define R_IA64_FORMAT_64LSB 7
/* Perform the relocation specified by RELOC and SYM (which is fully
resolved). MAP is the object containing the reloc. */
static inline void
elf_machine_rela (struct link_map *map,
const Elf64_Rela *reloc,
const Elf64_Sym *sym,
const struct r_found_version *version,
Elf64_Addr *const reloc_addr)
{
const unsigned long int r_type = ELF64_R_TYPE (reloc->r_info);
Elf64_Addr value;
#if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED
/* This is defined in rtld.c, but nowhere in the static libc.a; make the
reference weak so static programs can still link. This declaration
cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
because rtld.c contains the common defn for _dl_rtld_map, which is
incompatible with a weak decl in the same file. */
weak_extern (_dl_rtld_map);
#endif
/* We cannot use a switch here because we cannot locate the switch
jump table until we've self-relocated. */
#if !defined RTLD_BOOTSTRAP || !defined HAVE_Z_COMBRELOC
if (__builtin_expect (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_REL64LSB),
0))
{
assert (ELF64_R_TYPE (reloc->r_info) == R_IA64_REL64LSB);
value = *reloc_addr;
# if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC
/* Already done in dynamic linker. */
if (map != &GL(dl_rtld_map))
# endif
value += map->l_addr;
}
else
#endif
if (__builtin_expect (r_type == R_IA64_NONE, 0))
return;
else
{
struct link_map *sym_map;
/* RESOLVE_MAP() will return NULL if it fail to locate the symbol. */
if ((sym_map = RESOLVE_MAP (&sym, version, r_type)))
{
value = sym_map->l_addr + sym->st_value + reloc->r_addend;
if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DIR64LSB))
;/* No adjustment. */
else if (r_type == R_IA64_IPLTLSB)
{
elf_machine_fixup_plt (NULL, sym_map, reloc, reloc_addr, value);
return;
}
else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_FPTR64LSB))
value = __ia64_make_fptr (sym_map, sym, value);
else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_PCREL64LSB))
value -= (Elf64_Addr) reloc_addr & -16;
#if defined USE_TLS && (!defined RTLD_BOOTSTRAP || defined USE___THREAD)
else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DTPMOD64LSB))
# ifdef RTLD_BOOTSTRAP
/* During startup the dynamic linker is always index 1. */
value = 1;
# else
/* Get the information from the link map returned by the
resolv function. */
value = sym_map->l_tls_modid;
else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_DTPREL64LSB))
value -= sym_map->l_addr;
# endif
else if (R_IA64_TYPE (r_type) == R_IA64_TYPE (R_IA64_TPREL64LSB))
{
# ifndef RTLD_BOOTSTRAP
CHECK_STATIC_TLS (map, sym_map);
# endif
value += sym_map->l_tls_offset - sym_map->l_addr;
}
#endif
else
assert (! "unexpected dynamic reloc type");
}
else
value = 0;
}
/* ??? Ignore MSB and Instruction format for now. */
if (R_IA64_FORMAT (r_type) == R_IA64_FORMAT_64LSB)
*reloc_addr = value;
else if (R_IA64_FORMAT (r_type) == R_IA64_FORMAT_32LSB)
*(int *) reloc_addr = value;
else if (r_type == R_IA64_IPLTLSB)
{
reloc_addr[0] = 0;
reloc_addr[1] = 0;
}
else
assert (! "unexpected dynamic reloc format");
}
/* Let do-rel.h know that on IA-64 if l_addr is 0, all RELATIVE relocs
can be skipped. */
#define ELF_MACHINE_REL_RELATIVE 1
static inline void
elf_machine_rela_relative (Elf64_Addr l_addr, const Elf64_Rela *reloc,
Elf64_Addr *const reloc_addr)
{
/* ??? Ignore MSB and Instruction format for now. */
assert (ELF64_R_TYPE (reloc->r_info) == R_IA64_REL64LSB);
*reloc_addr += l_addr;
}
/* Perform a RELATIVE reloc on the .got entry that transfers to the .plt. */
static inline void
elf_machine_lazy_rel (struct link_map *map,
Elf64_Addr l_addr, const Elf64_Rela *reloc)
{
Elf64_Addr *const reloc_addr = (void *) (l_addr + reloc->r_offset);
const unsigned long int r_type = ELF64_R_TYPE (reloc->r_info);
if (r_type == R_IA64_IPLTLSB)
{
reloc_addr[0] += l_addr;
reloc_addr[1] += l_addr;
}
else if (r_type == R_IA64_NONE)
return;
else
assert (! "unexpected PLT reloc type");
}
#endif /* RESOLVE_MAP */