Skip to content

Commit

Permalink
Update.
Browse files Browse the repository at this point in the history
2000-10-25  Ulrich Drepper  <drepper@redhat.com>

	* sysdeps/ieee754/dbl-64/e_jn.c: Use __ieee754_sqrt instead of __sqrt.
	* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
	* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
	* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.
  • Loading branch information
Ulrich Drepper committed Oct 25, 2000
1 parent 6a39d02 commit 1065998
Show file tree
Hide file tree
Showing 6 changed files with 67 additions and 59 deletions.
8 changes: 8 additions & 0 deletions ChangeLog
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
2000-10-25 Ulrich Drepper <drepper@redhat.com>

* sysdeps/ieee754/dbl-64/e_jn.c: Use __ieee754_sqrt instead of __sqrt.
* sysdeps/ieee754/dbl-64/e_j1.c: Likewise.
* sysdeps/ieee754/dbl-64/e_j0.c: Likewise.
* sysdeps/ieee754/flt-32/e_j1f.c: Likewise.
* sysdeps/ieee754/flt-32/e_j0f.c: Likewise.

2000-10-25 David Mosberger <davidm@hpl.hp.com>

* sysdeps/unix/sysv/linux/ia64/profil-counter.h: Multiply slot
Expand Down
8 changes: 4 additions & 4 deletions sysdeps/ieee754/dbl-64/e_j0.c
Original file line number Diff line number Diff line change
Expand Up @@ -124,10 +124,10 @@ static double zero = 0.0;
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(x);
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*cc-v*ss)/__sqrt(x);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
}
return z;
}
Expand Down Expand Up @@ -215,10 +215,10 @@ V[] = {1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
Expand Down
8 changes: 4 additions & 4 deletions sysdeps/ieee754/dbl-64/e_j1.c
Original file line number Diff line number Diff line change
Expand Up @@ -125,10 +125,10 @@ static double zero = 0.0;
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrt(y);
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
else {
u = pone(y); v = qone(y);
z = invsqrtpi*(u*cc-v*ss)/__sqrt(y);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
}
if(hx<0) return -z;
else return z;
Expand Down Expand Up @@ -214,10 +214,10 @@ static double V0[5] = {
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrt(x);
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
else {
u = pone(x); v = qone(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrt(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
}
return z;
}
Expand Down
46 changes: 23 additions & 23 deletions sysdeps/ieee754/dbl-64/e_jn.c
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
Expand All @@ -18,7 +18,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* __ieee754_jn(n, x), __ieee754_yn(n, x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
Expand All @@ -37,7 +37,7 @@ static char rcsid[] = "$NetBSD: e_jn.c,v 1.9 1995/05/10 20:45:34 jtc Exp $";
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*
*/

#include "math.h"
Expand Down Expand Up @@ -76,7 +76,7 @@ static double zero = 0.00000000000000000000e+00;
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
if(n<0){
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
Expand All @@ -87,13 +87,13 @@ static double zero = 0.00000000000000000000e+00;
x = fabs(x);
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
b = zero;
else if((double)n<=x) {
else if((double)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
Expand All @@ -109,8 +109,8 @@ static double zero = 0.00000000000000000000e+00;
case 2: temp = -__cos(x)-__sin(x); break;
case 3: temp = __cos(x)-__sin(x); break;
}
b = invsqrtpi*temp/__sqrt(x);
} else {
b = invsqrtpi*temp/__ieee754_sqrt(x);
} else {
a = __ieee754_j0(x);
b = __ieee754_j1(x);
for(i=1;i<n;i++){
Expand All @@ -121,7 +121,7 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
if(ix<0x3e100000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
Expand All @@ -136,14 +136,14 @@ static double zero = 0.00000000000000000000e+00;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
Expand All @@ -159,9 +159,9 @@ static double zero = 0.00000000000000000000e+00;
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
double t,v;
Expand All @@ -183,7 +183,7 @@ static double zero = 0.00000000000000000000e+00;
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
Expand Down Expand Up @@ -219,9 +219,9 @@ static double zero = 0.00000000000000000000e+00;
}

#ifdef __STDC__
double __ieee754_yn(int n, double x)
double __ieee754_yn(int n, double x)
#else
double __ieee754_yn(n,x)
double __ieee754_yn(n,x)
int n; double x;
#endif
{
Expand All @@ -244,10 +244,10 @@ static double zero = 0.00000000000000000000e+00;
if(n==1) return(sign*__ieee754_y1(x));
if(ix==0x7ff00000) return zero;
if(ix>=0x52D00000) { /* x > 2**302 */
/* (x >> n**2)
/* (x >> n**2)
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
* Let s=sin(x), c=cos(x),
* Let s=sin(x), c=cos(x),
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
*
* n sin(xn)*sqt2 cos(xn)*sqt2
Expand All @@ -263,14 +263,14 @@ static double zero = 0.00000000000000000000e+00;
case 2: temp = -__sin(x)+__cos(x); break;
case 3: temp = __sin(x)+__cos(x); break;
}
b = invsqrtpi*temp/__sqrt(x);
b = invsqrtpi*temp/__ieee754_sqrt(x);
} else {
u_int32_t high;
a = __ieee754_y0(x);
b = __ieee754_y1(x);
/* quit if b is -inf */
GET_HIGH_WORD(high,b);
for(i=1;i<n&&high!=0xfff00000;i++){
for(i=1;i<n&&high!=0xfff00000;i++){
temp = b;
b = ((double)(i+i)/x)*b - a;
GET_HIGH_WORD(high,b);
Expand Down
26 changes: 13 additions & 13 deletions sysdeps/ieee754/flt-32/e_j0f.c
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
Expand All @@ -27,9 +27,9 @@ static float pzerof(), qzerof();
#endif

#ifdef __STDC__
static const float
static const float
#else
static float
static float
#endif
huge = 1e30,
one = 1.0,
Expand All @@ -52,9 +52,9 @@ static float zero = 0.0;
#endif

#ifdef __STDC__
float __ieee754_j0f(float x)
float __ieee754_j0f(float x)
#else
float __ieee754_j0f(x)
float __ieee754_j0f(x)
float x;
#endif
{
Expand All @@ -79,10 +79,10 @@ static float zero = 0.0;
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if(ix>0x48000000) z = (invsqrtpi*cc)/__sqrtf(x);
if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*cc-v*ss)/__sqrtf(x);
z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
}
return z;
}
Expand Down Expand Up @@ -121,9 +121,9 @@ v03 = 2.5915085189e-07, /* 0x348b216c */
v04 = 4.4111031494e-10; /* 0x2ff280c2 */

#ifdef __STDC__
float __ieee754_y0f(float x)
float __ieee754_y0f(float x)
#else
float __ieee754_y0f(x)
float __ieee754_y0f(x)
float x;
#endif
{
Expand All @@ -133,7 +133,7 @@ v04 = 4.4111031494e-10; /* 0x2ff280c2 */
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if(ix>=0x7f800000) return one/(x+x*x);
if(ix>=0x7f800000) return one/(x+x*x);
if(ix==0) return -one/zero;
if(hx<0) return zero/zero;
if(ix >= 0x40000000) { /* |x| >= 2.0 */
Expand Down Expand Up @@ -161,10 +161,10 @@ v04 = 4.4111031494e-10; /* 0x2ff280c2 */
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if(ix>0x48000000) z = (invsqrtpi*ss)/__sqrtf(x);
if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
else {
u = pzerof(x); v = qzerof(x);
z = invsqrtpi*(u*ss+v*cc)/__sqrtf(x);
z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
}
return z;
}
Expand Down Expand Up @@ -306,7 +306,7 @@ static float pS2[5] = {
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}


/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
Expand Down
Loading

0 comments on commit 1065998

Please sign in to comment.