Starting with Boltzmann's transport equation, we derive a momentum-averaged form of it which in turns serves as a basis for the Navier-Stokes equation. This section serves as a bridge between Boltzmann's phase-space kinetics and hydrodynamic velocity fields, mostly just rewriting integrals.
We will establish a relationship with the Navier-Stokes equation which describes the momentum conserving dynamics of a continuum as a set of differential equations for a space and time dependent velocity field $\overline v=\overline v(x,t)$. So let’s see what we can do with our transport equation and first multiply with $mv$ and integrate over $v$, assuming $m=\text{const}$:
\[\int{\rm d}^3v mv\partial_tf
+\int{\rm d}^3v mv(v\cdot\nabla_x)f
+\int{\rm d}^3v mv(a\cdot\nabla_v)f
=\int{\rm d}^3v mv\left.\partial_tf\right|_{\text{Streu}},\]
in components:
\[\int{\rm d}^3v mv_j\frac{\partial f}{\partial t}
+\sum_i
\left(\frac\partial{\partial x_i}
\int{\rm d}^3v mv_iv_jf
+
\int{\rm d}^3v ma_iv_j
\frac{\partial f}{\partial v_i}
\right)
=\int{\rm d}^3v mv_j\left.\frac{\partial f}{\partial t}\right|_{\text{Streu}}.\]
We need some definitions:
-
mass density
$\displaystyle\rho(x,t):=\int{\rm d}^3vmf(x,v,t).$
-
average velocity
$\displaystyle\overline v(x,t):=\frac1\rho\int{\rm d}^3vmvf(x,v,t).$
The first term in the integral equation above then acquires the form
\[\int{\rm d}^3v mv_j\frac{\partial f}{\partial t}=\frac\partial{\partial t}(\rho\overline v_j).\]
For the second term, we define $v=\overline v+\delta v$, $\delta v:=v-\overline v$,
\[\begin{eqnarray*}
\rho\overline{v_iv_j}
&:=&
\int{\rm d}^3v mv_iv_jf
=
\int{\rm d}^3vm(\overline v_i+\delta v_i)(\overline v_j+\delta v_j)f
\\
&=&
\int{\rm d}^3vm\left(\overline v_i\overline v_j+\overline v_i\delta v_j
+\overline v_j\delta v_i+\delta v_i\delta v_j\right)f
\\
&=&
\rho\overline v_i\overline v_j+\rho\overline v_i\overline{\delta v_j}
+\rho\overline v_j\overline{\delta v_i}+\rho\overline{\delta v_i\delta v_j}
\\
\Rightarrow\sum_i\frac\partial{\partial x_i}\int{\rm d}^3v mv_iv_jf
&=&
\sum_i\frac\partial{\partial x_i}\left(\rho\overline v_i\overline v_j
+\rho\overline{\delta v_i\delta v_j}\right).
\end{eqnarray*}\]
For the third contribution to our integrated Boltzmann equation, we use Gauß’ theorem and assume that $f\to0$ for large enough velocities $v$. With $v_j\partial f/\partial v_i=\partial(v_jf)/\partial v_i-\delta_{ij}f$, we obtain
\[\begin{eqnarray*}
\int{\rm d}^3vm\sum_ia_iv_j
\frac{\partial f}{\partial v_i}
&=&
\int{\rm d}^3v m\sum_ia_i
\left[
\frac\partial{\partial v_i}
\left(v_jf\right)
-\delta_{ij}f
\right]
\\
&=&
\int{\rm d}^3v\sum_i\frac\partial{\partial v_i}\left(a_i
v_jmf\right)
-a_j\int{\rm d}^3v mf
\\
&=&
\int{\rm d}^3v\nabla\cdot av_jmf-a_j\int{\rm d}^3v mf
\\
&=&
\int_{\partial V}{\rm d}An\cdot av_jmf-\rho a_j
\\
&=&
-\rho a_j
\end{eqnarray*}\]
for velocity-independent external forces. Averaging over the collision term as well we eventually obtain the momentum-averaged form of Boltzmann’s equation,
\[\fbox{$\displaystyle
\frac\partial{\partial t}
\rho\overline v_j
+\sum_i
\frac\partial{\partial x_i}
\left(
\rho\overline v_i\overline v_j
+\rho\overline{\delta v_i\delta v_j}
\right)
-\rho a_j
=
\left.
\frac\partial{\partial t}
\rho\overline v_j
\right|_{\text{Streu}}.
$}\]
We stress that this is an equation for the mean velocity of a fluid $\overline v=\overline v(x,t)$ and space- and time-dependent fluctuations around this.