We give an explicit form for the time reversal operator in the standard $(j,m)$ basis and give a proof for Kramer's degeneracy.
The definition of $K$ given above may be generalized like
\[\begin{aligned}
T^2\left|\phi\right\rangle
&=
UKUK\left|\phi\right\rangle
=UU^*\left|\phi\right\rangle
=\left(\text i\sigma_y\right)^{2n}\left|\phi\right\rangle
=(-)^n\left|\phi\right\rangle,
\\
T\left(a\left|\phi\right\rangle+b\left|\psi\right\rangle\right)
&=
UK\left(a\left|\phi\right\rangle+b\left|\psi\right\rangle\right)
=a^*UK\left|\phi\right\rangle+b^*UK\left|\psi\right\rangle
=a^*T\left|\phi\right\rangle+b^*T\left|\psi\right\rangle
\\
\left(\left\langle\phi\right|T\right)\left|\psi\right\rangle
&=
\left(\left\langle\phi\right|UK\right)\left|\psi\right\rangle
=\left[\left\langle\phi\right|
\left(UK\left|\psi\right\rangle\right)\right]^*
=
\left(\left\langle\psi\right|UK\right)\left|\phi\right\rangle
=
\left(\left\langle\psi\right|T\right)\left|\phi\right\rangle.\end{aligned}\]
For even $n$, nothing changes compared to the spinless case, but for odd $n$, $T^2=-1$.
Total moment $J$
Equivalent to the transformation rules for the spins above, we require
\[J_x
=
-UJ_xU^{-1},
\quad
J_y=UJ_yU^{-1},
\quad
J_z=-UJ_zU^{-1}\]
for a state with total moment $J$. The operator for this rotation of $J$ by an angle $\pi$ around the $y$ axis is
\[U=\exp\left(\text i\pi J_y\right),\]
generalizing the single-spin equation for $U$ above. In the standard $(j,m)$ basis we are using here, $U$ is a $2j+1$-dimensional antidiagonal matrix of the form
\[U=
\begin{pmatrix}
0 & \cdots & 0 & 0 & u_j \\
0 & \cdots & 0 & u_{j-1} & 0 \\
\vdots & 0 & \cdot & 0 & \vdots\\
0 & u_{-(j-1)} & 0 & \cdots & 0\\
u_{-j} & 0 & 0 & \cdots & 0
\end{pmatrix}\]
with matrix elements $u_m=(-)^{j-m}$ on the antidiagonal, $m=j,j-1\ldots,-j$.
Kramers degeneracy
Already for an even number of electrons, $T\left|\phi\right\rangle$ is not the usual complex congugation, but rather $T\left|\phi\right\rangle=UK\left|\phi\right\rangle=U\left|\phi\right\rangle^*$. For an odd number of electrons, $T\left|\phi\right\rangle$ is orthogonal to $\left|\phi\right\rangle$:
\[\left(\left\langle\phi\right|T\right)\left|\phi\right\rangle
=
\left(\left\langle\phi\right|T\right)
\left(TT\left|\phi\right\rangle\right)
=
-\left(\left\langle\phi\right|T\right)\left|\phi\right\rangle
=0.\]
That means, even without any spatial symmetry, energy levels for a system with total momentum $j=n+1/2$, $n$ nonnegative integer, are at least doubly degenerate, protected by symmetry.
Example: take the ground state of the Yb$^\text{3+}$ ion from above,
\[\begin{aligned}
\left|+\right\rangle
&=
-\alpha{\rm e}^{\text i\phi}\left|\frac72,\frac72\right\rangle
+\beta\left|\frac72,\frac12\right\rangle
+\gamma{\rm e}^{-\text i\phi}\left|\frac72,-\frac52\right\rangle,
\\
\left|-\right\rangle
&=
T\left|+\right\rangle
=
U\left(K\left|+\right\rangle\right)
\\
&=
U\left(-\alpha{\rm e}^{-\text i\phi}\left|\frac72,\frac72\right\rangle^*
+\beta\left|\frac72,\frac12\right\rangle^*
+\gamma{\rm e}^{\text i\phi}\left|\frac72,-\frac52\right\rangle^*\right)
\\
&=
\alpha{\rm e}^{-\text i\phi}\left|\frac72,-\frac72\right\rangle
+\beta\left|\frac72,-\frac12\right\rangle
-\gamma{\rm e}^{\text i\phi}\left|\frac72,\frac52\right\rangle.\end{aligned}\]
We note that, perhaps counter-intuitive, the sign of $\beta$ in the above remains unchanged under time reversal, in contrast to $j=s=1/2$ where
\[T\left|\frac12,\frac12\right\rangle
=
-\left|\frac12,-\frac12\right\rangle.\]
In general, we obtain from the form of $U$
\[T\left|j,\pm\frac12\right\rangle
=
(-)^{j\pm1/2}\left|j,\mp\frac12\right\rangle\]
for half-integer angular momentum $j$.