The time reversal operator $T$ is antisymmetric, which has interesting consequences for our Yb states.
Time reversal in quantum mechanics
Here we follow a paper by Eugene Paul Wigner from 1932, Über die
Operation der Zeitumkehr in der
Quantenmechanik .
Schrödinger’s equation is
\[H\left|\Psi(t)\right\rangle
=
{\rm i}\hbar\partial_t\left|\Psi(t)\right\rangle,\]
connecting an
operator in Hilbert space with a time derivative acting onto a parameter
of a wavefunction, definitely not an operator in Hilbert space. If we
just replace $t\to-t$, the equation reads
$H\left|\Psi(-t)\right\rangle=-{\rm i}\hbar\partial_t\left|\Psi(-t)\right\rangle$.
For real $H$, the original form is restored by
complex conjugation:
\[H\left|\Psi(-t)\right\rangle^*
=
{\rm i}\hbar\partial_t\left|\Psi(-t)\right\rangle^*,\]
so we are
searching for an antilinear operator
$K$
transforming
$\left|\Psi(-t)\right\rangle\to\left|\Psi_\text{umk}(t)\right\rangle$.
Definition (by Wigner): An antilinear operator $K$ obeys the following
rules:
\[\begin{aligned}
K^2\left|\phi\right\rangle
&=
\left|\phi\right\rangle,
&
K^2
&=1,\\
K\left(a\left|\phi\right\rangle+b\left|\psi\right\rangle\right)
&=
a^*K\left|\phi\right\rangle+b^*K\left|\psi\right\rangle,
\\
\left(\left\langle\phi\right|K\right)\left|\psi\right\rangle
&=
\left[\left\langle\phi\right|
\left(K\left|\psi\right\rangle\right)\right]^*
=
\left(\left\langle\psi\right|K\right)\left|\phi\right\rangle.\end{aligned}\]
We note that in contrast to linear operators, the «direction» in which $K$ is
applied matters, indicated by the parentheses in the last line of the
above equations.
But time reversal in quantum mechanics is not just complex conjugation:
We can only require that probabilites (generalized scalar products)
don’t change upon time reversal, or
\[\begin{aligned}
\left\langle\phi_\text{umk}(t)\right|
\left.\psi_\text{umk}(t)\right\rangle
&=
\left(\left\langle\phi(-t)\right|
\left.\psi(-t)\right\rangle\right)^*
=
\left(\left\langle\phi(-t)\right|UU^\dagger
\left|\psi(-t)\right\rangle\right)^*
\\
\Rightarrow
\left|\psi_\text{umk}(t)\right\rangle
&=
U\left|\psi(-t)\right\rangle^*
=
\underbrace{
UK
}_{T}
\left|\psi(-t)\right\rangle\end{aligned}\]
with $U$ being some
unitary transformation and $T$ being the (antiuntary) time-reversion
transformation. We always have
\[K^2=1
\Rightarrow
K=K^{-1}
\Rightarrow
T^{-1}=(UK)^{-1}=K^{-1}U^{-1}=KU^\dagger.\]
If such a unitary
operator $U$ exists with
\[TH(-t)T^{-1}
=
UH^*(-t)U^\dagger
=
H(t),\]
we can write Schrödinger’s equation like
\[\begin{aligned}
UH^*(-t)U^\dagger U\left|\psi(-t)\right\rangle^*
&=
{\rm i}\hbar\partial_tU\left|\psi(-t)\right\rangle^*
\\
\Rightarrow
H(t)\left|\psi_\text{umk}(t)\right\rangle
&=
{\rm i}\hbar\partial_t\left|\psi_\text{umk}(t)\right\rangle.\end{aligned}\]
It follows that if $\left|\psi(t)\right\rangle$ is a solution,
$\left|\psi_\text{umk}(t)\right\rangle=T\left|\psi(-t)\right\rangle$
is a solution, too.
Corollary: A time-reversal invariant Hamiltonian is real. Because
$\left|\phi\right\rangle$ and $T\left|\phi\right\rangle$ are
eigenfunctions, we can replace these by the real functions
$\left|\phi\right\rangle+T\left|\phi\right\rangle$ and
${\rm i}\left(\left|\phi\right\rangle-T\left|\phi\right\rangle\right)$.
Therefore all eigenfunctions can be assumed to be real. Therefore also
the Hamiltonian $H$ (called Energieoperator by Wigner)
must be real. [A function $\left|\phi\right\rangle$ is real if $T\left|\phi\right\rangle=\left|\phi\right\rangle$, imaginary if $T\left|\phi\right\rangle=-\left|\phi\right\rangle$].
The same holds for all spatial symmetries: It is irrelevant whether we
first transform spatially, then reverse time, or vice versa. That is,
$T$ commutes with the spatial transformation $Q$ up to a possible
multiplicative phase (constant $c$ of unit modulus). Linearity for
$Q$ requires that this constant must be identical for all
wavefunctions $Q$ is applied to, so setting $O=\sqrt cQ$ indeed
makes $O$ a real operator (which commutes with $T$ and $H$).
Comparison with classical mechanics
We require $TxT^{-1}=T$ and $TpT^{-1}=-p$ for the position and momentum operators, respectively. This requrement has its origin in the requirement that Lagrange’s equation of motion,
\[\frac{\partial L}{\partial x}
-\frac{\text d}{\text dt}\frac{\partial L}{\partial\dot x}
=0\]
is invariant under $t\to-t$. Thus angular momentum $\ell=x\times p$ and spin $s$ should transform as $T\ell T^{-1}=-\ell$ and $TsT^{-1}=-s$.
Parametrizing the spin using Pauli’s matrices as $s_i=(1/2)\sigma_i$ in their standard form, the following relations hold:
\[\begin{aligned}
T\sigma T^{-1}
&=
UK\sigma K^{-1}U^{-1}
\Rightarrow
\sigma
\stackrel!=
-T\sigma T^{-1}
=
-UK\sigma K^{-1}U^{-1}
=
-U\sigma^*U^{-1}
\nonumber\\
\Rightarrow\sigma_x
&=
-U\sigma_xU^{-1},
\quad
\sigma_y=U\sigma_yU^{-1},
\quad
\sigma_z=-U\sigma_zU^{-1}.
\label{eqn:time:spin}\end{aligned}\]
This corresponds to a rotation of the spin $s$ by an angle $\pi$ around the $y$ axis. A common choice (up to an irrelevant phase factor) is the real matrix
\[U
=
\exp\left({\rm i}\pi s_y\right)
=
\begin{pmatrix}
0&1\\-1&0
\end{pmatrix}
=
{\rm i}\sigma_y,
\quad
U^2
=
-1.
\label{eqn:time:u}\]
For $n$ spin-$1/2$ particles, we obtain
\[\begin{aligned}
T\left|x_1,\dots,x_n;\sigma^{(1)},\dots,\sigma^{(n)}\right\rangle
&=
{\rm i}^n
\sigma_y^{(1)}\cdots\sigma_y^{(n)}
\left|x_1,\dots,x_n;\sigma^{(1)},\dots,\sigma^{(n)}\right\rangle
\\
&\stackrel!=
{\rm i}^n
\sigma_y^{(1)}\cdots\sigma_y^{(n)}
\left|x_1,\dots,x_n;-\sigma^{(1)},\dots,-\sigma^{(n)}\right\rangle^*\end{aligned}\]